Laplacian Filters for Integral Equations: Further Developments and Fast Algorithms - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Laplacian Filters for Integral Equations: Further Developments and Fast Algorithms

Résumé

This paper extends the concept of Laplacian filtered quasi-Helmholtz decompositions we have recently introduced, to the basis-free projector-based setting. This extension allows the discrete analyses of electromagnetic integral operators spectra without passing via an explicit Loop-Star decomposition as previously done. We also present a fast scheme for the evaluation of the filters in quasi linear complexity in the total number of unknowns. Together with the fact that only a logarithmic number of these filters are required for solving the h-refinement breakdown of electric field integral equation, this results in an effective preconditioner that rivals Calder\'on strategies in performance without relying on barycentric refinements. Numerical results confirm the theoretically predicted behavior and the effectiveness of the approach.
Fichier principal
Vignette du fichier
2203.08603.pdf (1.31 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-03762878 , version 1 (24-07-2023)

Licence

Identifiants

Citer

Adrien Merlini, Clément Henry, Davide Consoli, Lyes Rahmouni, Francesco P. Andriulli. Laplacian Filters for Integral Equations: Further Developments and Fast Algorithms. IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI 2022), Jul 2022, Denver, CO, United States. ⟨10.1109/AP-S/USNC-URSI47032.2022.9886850⟩. ⟨hal-03762878⟩
54 Consultations
53 Téléchargements

Altmetric

Partager

More