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Abstract—This paper extends the concept of Laplacian filtered
quasi-Helmholtz decompositions we have recently introduced, to
the basis-free projector-based setting. This extension allows the
discrete analyses of electromagnetic integral operators spectra
without passing via an explicit Loop-Star decomposition as
previously done. We also present a fast scheme for the evaluation
of the filters in quasi linear complexity in the total number of
unknowns. Together with the fact that only a logarithmic number
of these filters are required for solving the h-refinement break-
down of electric field integral equation, this results in an effective
preconditioner that rivals Calderón strategies in performance
without relying on barycentric refinements. Numerical results
confirm the theoretically predicted behavior and the effectiveness
of the approach.

I. INTRODUCTION

The concept of Laplacian filtered Loop and Star bases was
recently introduced [1] to obtain a discrete block spectral
decomposition of the Laplacian on a general geometry for
preconditioning the electric field integral equation (EFIE).
Although the approach could be used to obtain a full graph
basis with a detailed spectral resolution, it was shown that
a logarithmic number of spectral filtered subdivisions was
sufficient to regularize the otherwise ill-conditioned operator
as also suggested by standard wavelet preconditioning theory
(see [2] and references therein). An alternative to standard
Loop and Star bases is a quasi-Helmholtz decomposition ap-
proach based on projectors [2]. Following the same paradigm
in this work we perform the transition from the Laplacian
filtered Loop and Star bases in [1] to projector Laplacian filters
that can effectively perform spectral analyses of the EFIE
and of related operators and thus produce well conditioned
and rapidly converging formulations, among other things. In
addition, we complement the contribution by presenting a fast
approach that allows for the application of each projector
in quasi-linear complexity. Theoretical considerations will be
complemented by numerical results to show the practical
impact of the proposed strategies.

II. BACKGROUND AND NOTATION

Consider a Lipschitz boundary Γ modeling a perfectly
electrically conducting (PEC) object with outward pointing
normal n̂. Solving the EFIE yields the electric current surface
density J induced by a time harmonic incident wave Ei. The
EFIE reads T J = TsJ + ThJ = −n̂(r)×Ei (1)
where TsJ = n̂(r)× ik

∫
Γ

eik‖r−r′‖

4π‖r−r′‖J(r
′)dS(r′) and ThJ =

−n̂(r) × 1
ik∇r

∫
Γ

eik‖r−r′‖

4π‖r−r′‖∇r′ · J(r′)dS(r′) with k the
wavenumber. The EFIE is discretized in a standard way

by approximating Γ with a mesh of triangular elements
of average edge length h and expanding the current as
J =

∑N
n=1 jnfn(r), where fn(r) are the Rao-Wilton-

Glisson (RWG) basis functions. Finally, testing the equation
with n̂(r) × fn(r) functions, the linear system Tj = e is
obtained. This system is lamentably very ill-conditioned for
both decreasing frequencies and increasing mesh densities
with cond(T) . 1/(hk)2 [2]. In the following we will use
the normalized loop-to-RWG and star-to-RWG transformation
matrices Λ and Σ whose explicit definition is omitted due to
space limitations but can be found in [2]. The normalization is
chosen so that ΛTΛ and ΣTΣ are respectively the vertices-
and the cells- based graph Laplacians [2].

III. LAPLACIAN FILTERS: THE PROJECTOR APPROACH

Laplacian filters were exploited in [1] to render the EFIE
matrix spectrally block diagonal to precondition it in a
“wavelet-like manner”. In doing so we obtained a filtered
Loop-Star decomposition based on filtered basis functions.
That approach however, did not have the versatility of basis-
free quasi Helmholtz projectors that is especially useful when
dealing with complex geometries. To overcome this limitation,
we adapt in this work our previously proposed filters to the
projector’s framework. The general form of the projector filters
we propose, a definition that allow for normalization and
geometry matrices when needed, reads

PΛ
ε =
√

GΛA
(
ATΛTGΛA

)+
ε

ATΛT
√

G , (2)

PΣ
ε =

√
G−1ΣB

(
BTΣTG−1ΣB

)+
ε

BTΣT
√

G−1 , (3)
where + denotes pseudoinversion and

(
ATΛTGΛA

)+
ε

and(
BTΣTG−1ΣB

)+
ε

are the filtered Primal and Dual Laplacian
theoretically obtained by taking the SVD of each matrix and
cutting the singular values at a relative error ε with respect
to the first one. In practice, because of the cost of the SVD,
those matrices should be obtained with other strategies. In [1]
we proposed a Butterworth-like filtering approach which is
effective when the filtering spectral point is fixed. Here we
will present a different strategy that will work without this
constraint. Note that the matrices G, A, and B are not always
required, depending on the formulation and can be set to an
identity in case of need. Finally, the filters defined above are
those applicable to the normalized operators (i.e. operators
discretized with orthonormal bases) and thus the square root
matrices appearing in the definitions will simplify or will be
squared with the normalization matrices of the operators to
be preconditioned. In other words the computation of these
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Fig. 1: Mesh to Sphere Mesh Morphing

matrix square roots will not be necessary. For the sake of
completeness we also define the dual filters that can be used for
operators discretized with dual functions (such as the Buffa-
Christiansen (BC) or the Chen-Wilton (CW) functions).

PΛε =
√

G−1d ΛC
(
ATΛTG−1d ΛC

)+
ε

ATΛT
√

G−1d , (4)

PΣε =
√

GdΣD
(
BTΣTGdΣD

)+
ε

BTΣT
√

Gd . (5)
On simply connected geometries the complementarity proper-
ties PΛ

0 = I−PΣ
0 and PΛ0 = I− PΣ0 can be proven. On non-

simply connected geometries the filters above need to be com-
plemented with the harmonic projectors PH = I−PΣ

0 −PΛ
0

and PH = I − PΣ0 − PΛ0 for standard and dual meshes
respectively.

IV. FAST FILTERING

Consider the case of an homogeneous mesh so that all
matrices G, Gd, A, B, C,D are identities to focus on filtering
the graph Laplacians ΛTΛ and ΣTΣ. This assumption is
only introduced to simplify the treatment, but can be lifted
by leveraging spectral equivalences and bandlimitedness of
the geometry. We also assume the structure to be simply
connected. The algorithm below will never build the filtered
Laplacian matrix itself, but it will perform a spectrally equiv-
alent matrix vector multiplication of the filter with the vector
to be analyzed, in quasi linear complexity. To do so, we
followed for these matrices the philosophy of a morphing
approach we have proposed previously in [3]. The algorithm
is the following: 1) Map the geometry and its mesh onto
the unitary sphere and its induced mesh (see Fig. 1, note
that the graph Laplacians do not change in this case). 2)
Evaluate the projectors by using as G the RWG (or BC in the
dual case) matrix of the obtained sphere after mapping. This
produces from the graph Laplacian a variational Laplacian
corresponding to a Galerkin discretization with scalar linear
Lagrange interpolants (dual piecewise-linear interpolants in the
dual case). 3) Obtain the multiplication by leveraging a fast
spherical filter: this is obtained by interpolating the pyramidal
potentials in the fast spherical filter grid, multiplying times
the Laplacian spherical harmonics transformed diagonal with
proper zeroing of the spectrum depending on the filter to
obtain and, finally, interpolating to the mesh to retrieve the
final result. This step it is quite similar to what it is done in
high frequency fast multipole method and can be achieved in
quasi-linear complexity.

V. AN APPLICATION: A WAVELET-STYLE PRECONDITIONER

As also explained in [1], our Laplacian filtering approach
can have several applications and one of them is certainly
in preconditioning since, differently from quasi-Helmholtz
projectors that can solve the low-frequency breakdown, but not

Fig. 2: Effect of the wavelet-like scaled projectors

the dense-mesh breakdown, Laplacian filters can solve both
using a “wavelet philosophy” requiring only a number of filters
scaling logarithmically with the number of unknowns. Practi-
cally, by defining the projectors WΛ,Σ

j = PΛ,Σ
2−j −PΛ,Σ

2−j+1 with
j = 1, . . . , L, L = min(logNΛ, logNΣ), and WΛ,Σ

0 = PΛ,Σ
1 .

a preconditioner of additive Schwarz kind for the EFIE can
then be built as QTQ with

Q =

L∑
j=0

WΣ
j√

‖WΣ
j TWΣ

j )‖
+

L∑
j=0

WΛ
j√

‖WΛ
j TWΛ

j )‖
. (6)

To allow for a better understanding of the spectral analysis
capabilities of the filters, we show in Fig. 2 the spectrum of
the EFIE (after curing the low-frequency breakdown to render
the figure more readable), the spectrum of the filters with their
logarithmically growing supports (we indicate synthetically
QΣ and QΛ the two operator sums in (6). We also show the
spectrum of the preconditioned symmetric blocks for blocks
that clearly show why the preconditioning is working: in each
logarithmically growing spectral range, the spectrum grows
only of approximately a factor 2 before being rescaled again
to 1 in the next range. The preconditioner has also been
tested on a set of refined geometries as in Fig. 1 left. The
condition numbers of the EFIE matrix for 1638, 3210, and
4785 unknowns are after quasi-Helmholtz solution of the low-
frequency breakdown 184, 396, and 553; by further adding
the action of the new Laplacian filters, the condition numbers
become 8, 5, and 6 that are not far from the theoretical foreseen
value of 2.
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