The SPDE approach for spatio-temporal datasets with advection and diffusion - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

The SPDE approach for spatio-temporal datasets with advection and diffusion

Lucia Clarotto
  • Fonction : Auteur correspondant
  • PersonId : 1113622
  • IdRef : 272339164

Connectez-vous pour contacter l'auteur
Denis Allard
Thomas Romary
Nicolas Desassis

Résumé

In the task of predicting spatio-temporal fields in environmental science, introducing models inspired by the physics of the underlying phenomena that are numerically efficient is of growing interest in spatial statistics. The size of space-time datasets calls for new numerical methods to efficiently process them. The SPDE (Stochastic Partial Differential Equation) approach has proven to be effective for the estimation and the prediction in a spatial context. We present here the advection-diffusion SPDE with first order derivative in time to enlarge the SPDE family to the space-time context. By varying the coefficients of the differential operators, the approach allows to define a large class of non-separable spatio-temporal models. A Gaussian Markov random field approximation of the solution of the SPDE is built by discretizing the temporal derivative with a finite difference method (implicit Euler) and by solving the purely spatial SPDE with a finite element method (continuous Galerkin) at each time step. The "Streamline Diffusion" stabilization technique is introduced when the advection term dominates the diffusion term. Computationally efficient methods are proposed to estimate the parameters of the SPDE and to predict the spatio-temporal field by kriging. The approach is applied to a solar radiation dataset. Its advantages and limitations are discussed.
Fichier principal
Vignette du fichier
main_new.pdf (1.85 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03762403 , version 1 (29-08-2022)
hal-03762403 , version 2 (16-12-2022)
hal-03762403 , version 3 (22-03-2023)
hal-03762403 , version 4 (19-07-2024)

Licence

Identifiants

Citer

Lucia Clarotto, Denis Allard, Thomas Romary, Nicolas Desassis. The SPDE approach for spatio-temporal datasets with advection and diffusion. 2022. ⟨hal-03762403v2⟩
259 Consultations
495 Téléchargements

Altmetric

Partager

More