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Abstract

In the task of predicting spatio-temporal fields in environmental science,
introducing models inspired by the physics of the underlying phenomena
that are numerically efficient is of growing interest in spatial statis-
tics. The size of space-time datasets calls for new numerical methods
to efficiently process them. The SPDE (Stochastic Partial Differential
Equation) approach has proven to be effective for the estimation and the
prediction in a spatial context. We present here the advection-diffusion
SPDE with first order derivative in time to enlarge the SPDE family
to the space-time context. By varying the coefficients of the differential
operators, the approach allows to define a large class of non-separable
spatio-temporal models. A Gaussian Markov random field approximation
of the solution of the SPDE is built by discretizing the temporal deriva-
tive with a finite difference method (implicit Euler) and by solving the
purely spatial SPDE with a finite element method (continuous Galerkin)
at each time step. The “Streamline Diffusion” stabilization technique
is introduced when the advection term dominates the diffusion term.
Computationally efficient methods are proposed to estimate the param-
eters of the SPDE and to predict the spatio-temporal field by kriging, as
well as to perform conditional simulations. The approach is applied to
a solar radiation dataset. Its advantages and limitations are discussed.
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2 The SPDE approach for spatio-temporal datasets with advection and diffusion

1 Introduction

Many areas of environmental science seek to predict a space-time variable of
interest from observations at scattered points in the space-time field of study.
Among modern techniques proposing efficient methods for estimation and pre-
diction in a spatio-temporal framework, there is a clear distinction between
two possible ways of constructing and treating spatio-temporal models (Wikle
and Hooten, 2010): either one follows the traditional geostatistical paradigm,
using joint space-time covariance functions (see for example Cressie and Huang
(1999), Gneiting (2002), Stein (2005)), or one uses dynamical models, by com-
bining time series and spatial statistics (see for example Wikle and Cressie
(1999), Sigrist et al. (2012) and Mart́ınez-Hernández and Genton (2022)).

While the theoretical aspects of spatio-temporal geostatistics are well
developed (Cressie and Wikle, 2011), implementations lack behind. The geosta-
tistical paradigm can be computationally expensive for large spatio-temporal
datasets, due to the factorization of dense covariance matrices, whose com-
plexity scales with the cube of the number of observation. Banerjee et al.
(2014) called this issue the “big n problem”. Moreover, it is hard to define
complex space-time covariance functions. For this reason, separable space-time
covariance functions have often been applied to spatio-temporal models to
take advantage of their computational convenience, even when they are not
realistic in describing the processes due to the impossibility of allowing space-
time interaction in the covariance. Recent studies have focused on constructing
non-separable models, which are physically more realistic, albeit computa-
tionally more expensive. Non-separable space-time covariance models can be
constructed from Fourier transforms of permissible spectral densities, mixtures
of separable models, and partial differential equations (PDEs) representing
physical laws (Chen et al., 2021; Lindgren et al., 2022). They can be fully
symmetric or asymmetric, stationary or non-stationary, univariate or multi-
variate, and in the Euclidean space or on the sphere. See Porcu et al. (2021)
for a recent comprehensive review.

In this paper, we follow the dynamic approach that makes use of physical
laws and study models which are defined through Stochastic Partial Differ-
ential Equations (SPDEs), where the stochasticity is obtained by adding a
random noise as a forcing term. The SPDE approach relies on the represen-
tation of a continuously indexed Gaussian Field (GF) as a discretely indexed
random process, i.e. a Gaussian Markov Random Field (GMRF, see Rue and
Held (2005)). Passing from a GF to a GMRF, the covariance function and the
dense covariance matrix are substituted respectively by a neighborhood struc-
ture and a sparse precision matrix. The advantage of using GMRFs is that
the use of sparse precision matrices implies computationally efficient numer-
ical methods, especially for matrix factorization. The link between GF and
GMRFs in the purely spatial case has been pioneered by Lindgren et al. (2011),
who proposed to construct a GMRF representation of the spatial Matérn field
on a triangulated mesh of the domain through the discretization of a diffusion
SPDE with a Finite Element Method (FEM). We refer to Bakka (2018) for a
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simple explanation of FEM applied to the spatial SPDE or to Section 2.3 for
a detailed generalization to spatio-temporal SPDE.

In the spatial framework, major mathematical and algorithmic advances
in the SPDE approach have been made (Fuglstad et al., 2015; Pereira and
Desassis, 2019; Pereira et al., 2022), making it possible to efficiently process
very large datasets, even in the presence of non-stationarities and varying local
anisotropy. The development of SPDE-based approaches to Gaussian processes
has led to several practical solutions, among which we find the R package for
approximate Bayesian inference R-INLA (Rue et al., 2009; Lindgren and Rue,
2015) that uses SPDEs to sample from spatial and spatio-temporal models.

When generalizing to the spatio-temporal framework, a direct space-time
formulation of the SPDE approach was first suggested in Lindgren et al. (2011),
without any precise detail on estimation and prediction methods. The SPDE
approach was coupled with the Bayesian framework by Cameletti et al. (2011)
to provide a separable space-time model. Non-separable spatio-temporal mod-
els have been elaborated in Krainski et al. (2018) and Lindgren et al. (2020)
as a spatio-temporal generalization of the diffusion-Matérn model of Lindgren
et al. (2011).

In all the approaches overviewed above, the space-time processes are sym-
metrical in the sense that the spatio-temporal covariance does not change when
the sign of the space and/or time lag changes. However, atmospheric and geo-
physical processes are often asymmetric due to transport effects, such as air
and water flows. Carrizo-Vergara et al. (2022) defined new spatio-temporal
models incorporating the physical processes linked to the studied phenomena
(advection, diffusion, etc.). Problems relating to the estimation of the parame-
ters and the conditioning to the observed data remained however open. Sigrist
et al. (2015) built non-symmetrical and non-separable space-time Gaussian
as a solution to an advection-diffusion SPDE with computationally efficient
algorithms for statistical estimation using fast Fourier transforms and Kalman
filters. Liu et al. (2020) extended the approach to spatially-varying advection-
diffusion and non-zero mean source-sink, leading to a space-time covariance
which is non-stationary in space. The applicability of this approach remains
difficult however, especially with scattered data, as it relies on the Fourier
transform of the data.

In this work, we propose an alternative approach for dealing with spatio-
temporal SPDEs that includes both a diffusion and an advection terms. In
contrast to Sigrist et al. (2015), we make use of the sparse formulation of the
spatio-temporal field which is the approximate solution of the SPDE obtained
by a combination of FEM and finite differences. This sparse formulation allows
to get fast algorithms for parameter estimation and spatio-temporal prediction.
We also treat the case of an advection-dominated SPDE, by introducing the
Streamline Diffusion stabilization term in the SPDE (Hughes and Brooks,
1981).

The paper is organized as follows: Section 2 first presents the background
of the spatio-temporal SPDE approach, then defines the spatio-temporal
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advection-diffusion model developed in the paper and its discretization. More-
over, the stabilization of advection-dominated SPDEs is introduced. Section 3
explores fast and scalable estimation methods, kriging formula for prediction
and conditional simulations. Section 4 presents an application of the proposed
spatio-temporal SPDE approach to a solar radiation dataset. Section 5 dis-
cusses the advantages and the limitations of the approach and opens the way
to further works on the subject.

2 The spatio-temporal advection-diffusion
SPDE and its discretization

2.1 Background

In the SPDE representation, Gaussian random fields on Rd are viewed as
solutions to specific stochastic partial differential equations (Whittle, 1954,
1963). In particular, Gaussian Whittle-Matérn fields, analyzed in details in
Lindgren et al. (2011) and reviewed in Lindgren et al. (2022), are solutions to

(κ2 −∆)α/2X(s) = τW (·), (1)

with α > d/2 and τ > 0. ∆ =
∑d

i=1
∂2

∂s2i
is the Laplacian operator and W (·) is a

standard spatial Gaussian white noise, whose definition is briefly recalled: W (·)
is as a Generalized GRF such that E[W (A)] = 0 and Cov(W (A),W (B)) =
|A∩B| for any two Borelians of Rd and where |A| is the Lebesgue measure of
A over Rd. In principle, W (·) has no elementwise definition, but for an easier
reading, we will allow ourselves to write W (s).

The covariance function of the Gaussian Whittle-Matérn field solution to
Equation (1) is the well known Matérn covariance function

CMν (h) =
σ2

2ν−1Γ(ν)
(κh)

ν Kν (κh) , (2)

with smoothness parameter ν = α− d/2 > 0, scale parameter κ and variance
σ2 = τ2(4π)−d/2Γ(ν)Γ(ν + d/2)−1κ−2ν . Kν is the modified 2nd order Bessel
function and h = ‖s− s′‖ is the Euclidean distance between the two locations
s and s′ in Rd. In particular, when ν = 1/2 we get the exponential covariance
function and when ν → +∞, after proper renormalization, (2) tends to the
Gaussian covariance function.

In Lindgren et al. (2011), the smoothness parameter ν considered in the
Matérn covariance function corresponds to integer values of α. When non-
integer values of ν are introduced in the modeling, the SPDE is said to be
fractional. Recent reviews of results and applications of the fractional SPDE
approach are available in Xiong et al. (2022); Bolin and Kirchner (2020);
Roques et al. (2022), but this case will not be treated further in this work.
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When generalizing to spatio-temporal processes X(s, t), we consider the
framework proposed in Carrizo-Vergara et al. (2022) for extending the SPDE
approach to a wide class of linear spatio-temporal SPDEs. Let us denote
ξ ∈ Rd a spatial frequency and ω ∈ R a temporal frequency. The space-
time white noise with unit variance, denoted W (s, t), is characterized by its
spectral measure dµW (ξ, ω) = (2π)−(d+1)d ξ dω. New spatio-temporal models
were obtained from known PDEs describing physical processes, such as diffu-
sion, advection, and oscillations with stochastic forcing terms. In particular,
Carrizo-Vergara et al. (2022) provides sufficient conditions to the existence
and uniqueness of stationary solutions to[

∂β

∂tβ
+ Lg

]
X(s, t) = WS(s)⊗WT (t). (3)

In (3), the spatial operator Lg is defined using the spatial Fourier transform

on Rd, denoted FS ,
Lg(·) = F−1

S (gFS(·)),
where g : Rd → C is a sufficiently regular and Hermitian-symmetric function

called the symbol function of the operator Lg. The temporal operator ∂β

∂tβ
is

∂β

∂tβ
(·) = F−1

T ((iω)βFT (·)),

where FT is the temporal Fourier transform on R and where we have used the
symbol function over R

ω 7→ (iω)β = |ω|βei sgn(ω)βπ/2.

The spatio-temporal symbol function of the operator involved in (3) is thus

(ξ, ω) 7→ (iω)β+g(ξ) = |ω|β cos

(
βπ

2

)
+gR(ξ)+i

(
sgn(ω)|ω|β sin

(
βπ

2

)
+ gI(ξ)

)
where gR and gI are the real and imaginary part of the spatial symbol func-
tion g(ξ). Theorem 1 and Proposition 3 in Carrizo-Vergara et al. (2022) state
that (3) admits a unique stationary solution for every arbitrary gI function if
|gR| is inferiorly bounded by the inverse of a strictly positive polynomial and

gR cos
(
βπ
2

)
≥ 0.

2.2 The spatio-temporal advection-diffusion SPDE

The advection-diffusion equation is a Partial Differential Equation (PDE)
that describes physical phenomena where particles, energy, or other physical
quantities evolve inside a physical system due to two processes: diffusion and
advection. Advection represents the mass transport due to the average velocity
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of all particles, and diffusion represents the mass transport due to the instanta-
neously varying velocity of individual particles. The advection-diffusion SPDE
studied in this work writes[

∂

∂t
+

1

c
(κ2 −∇ ·H∇)α +

1

c
γ ·∇

]
X(s, t) =

τ√
c
Z(s, t), (4)

where

• the operator ∇ · H∇ is a diffusion term that can incorporate anisotropy
in the matrix H. When the field is isotropic, i.e. when H = λ I, this term
reduces to the Laplacian operator λ∆;

• the operator γ ·∇ models the advection, γ ∈ Rd being a velocity vector;
• α ≥ 0 relates to the smoothness of X(·, t), κ2 > 0 accounts for damping and
c is a positive time-scale parameter;

• τ ≥ 0 is a standard deviation factor and Z is a stochastic forcing term. From
now on, we will assume a Gaussian distribution for Z.

This equation was mentioned in Lindgren et al. (2011), Carrizo-Vergara
et al. (2022) and Lindgren et al. (2020), and was analyzed using spectral
approaches in Sigrist et al. (2015) and Liu et al. (2020). The stochastic forcing
term Z(s, t) is assumed separable with

Z(s, t) = WT (t)⊗ ZS(s),

where ZS is a spatial Generalized Random Field and WT is a temporal white
noise. ZS is often chosen to be a spatial white noise, denoted WS in this
case. To ensure a sufficient regularity for Z, ZS can alternatively be a colored
noise, such as for example the solution to the spatial Whittle-Matérn SPDE
(Lindgren et al., 2011)

(κ2 −∇ ·H∇)αS/2ZS(s) = WS(s), (5)

where WS is a Gaussian white noise. Notice that the parameter κ2 in the
forcing term has been set identical to that in the diffusion term in the left-
hand-side of (4) to make sure that the spatial marginalization of the process
is a Matérn field, as detailed below.

When α > 0, X(s, t) is a non-separable spatio-temporal field. The
advection-diffusion equation (4) is a particular first order evolution model as
in Equation (3) with β = 1. Its spatial symbol function

g(ξ) =
1

c

[
(κ2 − ξ>H ξ)α + iγ> ξ

]
,

verifies the sufficient condition for existence and uniqueness of a stationary
solution recalled at the end of Section 2.1. It can be shown that the advection
term does not affect the spatial trace of the solution, as stated in the following
Proposition 1.
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Proposition 1 Let Z(s, t) be a spatio-temporal noise colored in space (such that
ZS(s) satisfies (5)), and let define αtot = α + αS . If αtot > d/2, the spatial trace
of the stationary solution X(s, t) of the SPDE (4) is a Gaussian Matérn field with
covariance (2) with ν = αtot − d/2 and marginal variance σ2 equal to

σ2 =
τ2Γ(αtot − d/2)

Γ(αtot)2(4π)d/2κ2(αtot−d/2)|H|1/2
. (6)

Proposition 1 is adapted from Proposition 1 in Lindgren et al. (2020).
For completeness, a proof including an anisotropy matrix H is reported in
Appendix A.

Corollary 2 Let the coefficients of the SPDE (4) be such that α = 0 and γ = 0; the
spatial operator applied to the spatio-temporal field X(s, t) is then the constant value
c−1. Let Z(s, t) be a spatio-temporal noise colored in space, with ZS(s) satisfying (5).
If αS > d/2, the stationary solution of the SPDE is a separable spatio-temporal field
whose covariance is the product of an exponential temporal covariance (with scale
parameter equal to c) and a Matérn spatial covariance (2) with scale parameter equal
to κ, smoothness parameter ν = αS − d/2 and marginal variance equal to

σ2 =
τ2Γ(αS − d/2)

2Γ(αS)(4π)d/2κ2(αS−d/2)|H|1/2
.

The corollary is a particular case of Proposition 1.

2.3 Discretization

The advection-diffusion SPDE in (4) is discretized in time and space, using
a Finite Difference Method (FDM) and a Finite Element Method (FEM),
respectively. The temporal domain [1, T ] is discretized in NT regular time steps
of length T/NT . Since implicit solvers are usually less sensitive to numerical
instability than explicit solvers, the implicit Euler scheme is chosen for the tem-
poral discretization. This choice implies stability, hence convergence towards
the stationary solution. The FEM method for the spatial discretization is the
continuous Galerkin method with Neumann Boundary Conditions as detailed
in Lindgren et al. (2011).

The solution in two dimensions is now detailed. The solution in three
dimensions involve geometrical technicalities, but is otherwise very similar.
Let Ω ⊂ R2 be a compact and connected domain of R2. Ω is meshed using a
triangulation T with NS vertices {s1, . . . , sNS} ⊂ Ω. Let h := maxTr∈T hTr,
where hTr is the diameter of the triangle Tr ∈ T . A first order finite element
representation Xh of the solution to the spatial SPDE is a linear combination
Xh =

∑NS
i=1 xiψi of piecewise linear basis functions {ψi}NSi=1, each ψi being

equal to 1 at the vertex si and 0 at all the other vertices. The weights {xi}NSi=1

define uniquely the values of the field at the vertices, while the values in the
interior of the triangles are determined by linear interpolation. The continu-
ous Galerkin solution is then obtained by finding the weights that fulfill the
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weak formulation of Equation (4) for test functions belonging to the space V
spanned by {ψi}NSi=1.

Proposition 3 Let X(s, t) be the spatio-temporal process solution to Equation (4)
with H = I, α ∈ {0, 1} and spatio-temporal white noise, i.e. Z(s, t) = W (s, t) =

WT (t) ⊗WS(s). Let T be a triangulation of Ω and {ψi}NSi=1 be the piecewise linear

basis functions defined over T . Let us define the mass matrix M = [Mij ]
NS
i,j=1, the

stiffness matrix G = [Gij ]
NS
i,j=1, the advection matrix B = [Bij ]

NS
i,j=1 and the matrix

K = [Kij ]
NS
i,j=1 as follows:

Mij =

∫
Ω
ψi(s)ψj(s) d s ,

Gij =

∫
Ω
∇ψi(s) · ∇ψj(s) d s ,

Bij =

∫
Ω
γ ·∇ψi(s)ψj(s) d s ,

(Kκ2)ij = (κ2Mij +Gij)
α.

Then, at each time step, the continuous Galerkin finite element solution vector
xt+dt = {xt+dt,i}NSi=1 satisfies(

M +
dt

c
(K + B)

)
xt+dt = M xt +

τ
√
dt√
c

M1/2 zt+dt, (7)

where zt+dt ∼ N (0, INS ), M1/2 is any matrix such that M1/2 M1/2 = M and
dt = T/NT . When the noise on the right-hand side is colored in space, i.e. Z(s, t) =
WT (t)⊗ ZS(s), the discretization reads(

M +
dt

c
(K + B)

)
xt+dt = M xt +

τ
√
dt√
c

M L>S zt+dt,

where LS is the Cholesky decomposition of Q−1
S , the covariance matrix of the dis-

cretized solution of the spatial SPDE (5), obtained with the continuous Galerkin FEM
(Lindgren et al., 2011).

Proof The proof is available in Appendix B. �

Remark that the elements of the matrices M, G, B and K are non-zero
only for pairs of basis functions which share common triangles. This implies
that the matrix (M +dt

c (K + B)) is sparse and that Equation (7) can be solved
by Cholesky decomposition in an efficient way.

2.4 Stabilization of advection-dominated SPDE

When the advection term is too strong with respect to the diffusion term,
advection-domination occurs. In the framework outlined above, when α = 1,
the non-symmetric matrix

[
M +dt

c (K + B)
]

becomes ill-conditioned, which
induces oscillations and unstable solutions for the continuous Galerkin approx-
imation. Specifically, the advection-domination occurs when the Péclet number
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Peh = ‖γ‖h
2λ > 1, where λ is the coefficient of the isotropic Laplacian operator

(see for example Mekuria and Rao (2016) or Quarteroni (2008, Chapter 5)).
One possible solution is to decrease the diameter h, i.e., to refine the tri-

angulation, until the advection no longer dominates on the element-level, with
Peh < 1. However, in many cases this is not a feasible solution because it
would increase the number of vertices beyond computation limits. Another
solution, adopted here, is to introduce a stabilization term. Many stabilization
approaches are possible, some being more accurate than others (Quarteroni,
2008, Chapter 5). In our case, we opt for the Streamline Diffusion (SD) stabi-
lization approach (Hughes and Brooks, 1981), considered as a good trade-off
between accuracy and computational complexity. Essentially, the SD approach
consists in stabilizing the advection by introducing an artificial diffusion term
along the advection direction. A detailed presentation of the stabilization
approach is reported in Appendix C. The following proposition presents the
stabilized solution to (4).

Proposition 4 Assume the same hypotheses as in Proposition 3 with α = 1. The
solution to Equation (4) in presence of Streamline Diffusion stabilization is(

M +
dt

c
(K + B + S)

)
xt+dt = M xt +

τ̃
√
dt√
c

M1/2 zt+dt, (8)

where S = [Sij ]
NS
i,j=1 is the matrix of the Streamline Diffusion stabilization oper-

ator S, such that Sij = S(ψi, ψj) = h|γ|−1 ∫
Ω(γ ·∇ψi)(γ ·∇ψj) d s, and τ̃ =

τ
(
|H +h|γ|−1 γ γ>|

)−1/4
(|H|)1/4. When the noise on the right-hand side of

Equation (4) is colored in space, the discretization becomes(
M +

dt

c
(K + B + S)

)
xt+dt = M xt +

τ̃
√
dt√
c

M L>S zt+dt,

where LS is as in Proposition 3.

The proof of the discretized equation follows the same reasoning as that
of Proposition 3 with the addition of the matrix S. The Streamline Diffu-
sion approach can be seen as a perturbation of the original SPDE (Bank
et al., 1990). Indeed, by making the classical hypothesis of Neumann boundary
condition on Ω and by using the Green’s first identity, we get∫

Ω

(γ ·∇x)(γ ·∇v) d s = −
∫

Ω

∇ · (γ γ>)∇xv d s .

As a consequence, the original SPDE (4) can be rewritten with an additional
diffusion term as[

∂

∂t
+

1

c

(
κ2 −∇ ·

(
H +h|γ|−1 γ γ>

)
∇+ γ ·∇

)]
X(s, t) =

τ̃√
c
Z(s, t). (9)
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The term (h|γ|−1 γ γ>) acts as an anisotropic “diffusion” matrix that is added
to the anisotropy (or identity) matrix H of the original diffusion. This extra
diffusion stabilizes the advection directed along the direction γ. By following
the proof of Proposition 1, we find that the variance of the field X(s, t) of
Equation (9) is equal to

σ2 =
τ2Γ(αtot − d/2)

Γ(αtot)2(4π)d/2κ2(αtot−d/2)|H +h|γ|−1 γ γ>|1/2
.

For the variance to be equal to the variance in Proposition 1, τ must be

replaced by τ̃ = τ
(
|H +h|γ|−1 γ γ>|

)−1/4
(|H|)1/4

.

2.5 Spatio-temporal Gaussian Markov Random Field
approximation

Proposition 5 In presence of an advection-dominated flow and a spatio-temporal
white noise on the right-hand side of Equation (4), the discretized vector xt+dt on
the mesh T at each time step is the solution of the following equation:

x1 ∼ N (0,Σ),

xt+dt = D xt + E zt+dt, ∀t > 1 (10)

where

D =

(
M +

dt

c
(K + B + S)

)−1

M,

E =
τ̃
√
dt√
c

(
M +

dt

c
(K + B + S)

)−1

M1/2, (11)

and zt+dt ∼ N (0, INS ) is independent of x1, . . . ,xt+dt.
In presence of a spatio-temporal noise colored in space on the right-hand side of

Equation (4), the matrix E reads

E =
τ̃
√
dt√
c

(
M +

dt

c
(K + B + S)

)−1

M L>S ,

where LS is defined in Proposition 3.

Proof Starting from Equation (8), which represents the numerical scheme for the
advection-diffusion spatio-temporal SPDE with stabilization, it is straightforward to
obtain (10). �

When the SPDE is not advection-dominated, which implies that no sta-
bilization term is needed, Equation (11) is replaced by the similar equation
where the matrix S is deleted and where τ̃ is replaced by τ .

The covariance matrix Σ can be taken to be equal to any admissible positive
definite matrix. The speed of convergence to the stationary solution of the
equation will depend on the proximity of the covariance of the spatial trace of
X(s, t) to Σ. When the noise is colored in space, an efficient option is to choose



The SPDE approach for spatio-temporal datasets with advection and diffusion 11

Σ so as to correspond to the Matérn covariance of the spatial trace defined in
Proposition 1. For this reason κ is identical in both hand-sides of Equation (4).

To obtain a GMRF representation of the spatio-temporal discretized solu-
tion x1:NT = [x1, . . . ,xNT ]>, its precision matrix must be sparse. For this

reason M is replaced by the diagonal matrix M̃, where M̃ii = 〈ψi, 1〉 (Lindgren
et al., 2011). This technique is called mass lumping and is common practice in
FEM (Quarteroni, 2008, Chapter 5). From now on, we always use the diagonal

matrix M̃, but for ease of reading, it will still be denoted M.

Proposition 6 Let x1:NT = [x1, . . . ,xNT ]> be the vector containing all spatial
solutions until time step NT of Equation (10). The global precision matrix Q of the
vector x1:NT of size (NSNT , NSNT ) reads

Q =



Σ−1 + D> F−1 D −D> F−1 0 . . . 0

−F−1 D F−1 + D> F−1 D −D> F−1 . . .
...

...
. . .

. . .
. . . 0

...
. . . −F−1 D F−1 + D> F−1 D −D> F−1

0 . . . 0 −F−1 D F−1


,

(12)
where F = E E>.

Proof The proof is available in Appendix D. �

3 Estimation, prediction and simulation

This section presents how the estimation of the parameters and the spatio-
temporal prediction can be efficiently implemented within the spatio-temporal
SPDE framework described in Section 2. We will consider the advection-
diffusion SPDE (4) with d = 2, α = 1, H = INS (isotropic diffusion) and
colored noise in space with αS = 2. Similar computations can be generalized
to other values of αS such that αS/2 is integer or to anisotropic diffusion.

We consider n spatio-temporal data y1:NT = [y1, . . . ,yNT ]> scattered in
the spatio-temporal domain Ω×[1, T ], discretized in space with a triangulation
T with NS nodes and discretized in time by means of NT regular time steps.
We denote this space-time discretization T ′ = T ×{T/NT , 2T/NT , . . . , T}. We
consider a statistical model with fixed and random effects. The fixed effect is a
regression on a set of covariates and the random effect is modeled as the FEM
discretization of a random field described by the SPDE (4) with the addition
of random noise:

y1:NT = η b +A> x1:NT +σ0 ε, (13)

where b is the vector of q fixed effects and η is a (n, q) matrix of covariates with
[η]jk = ηk(sj , tj), j = 1 . . . , n and k = 1, . . . , q. The matrix A is the (NSNT , n)
projection matrix between the points in T ′ and the data, and ε is a standard
Gaussian random vector with independent components. When the locations
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of the observation stations do not change during the time window, A A> is a
(NSNT , NSNT ) block-diagonal matrix with all (NS , NS) equal blocks.

3.1 Estimation of the parameters

The parameters of the SPDE are estimated using Maximum Likelihood. We
collect the parameters of the SPDE in the vector θ> = (κ, γx, γy, c, τ), while

the parameters of the statistical model are collected in ψ> = (θ>,b>, σ0).
Following (13), y1:NT is a Gaussian vector with expectation η b and covariance
matrix

Σy1:NT
= A>Q−1(θ) A +σ2

0 In,

where Q(θ) is a precision matrix of size (NSNT , NSNT ) depending on
the parameters θ. For ease of notation, we use Q instead of Q(θ). The
log-likelihood is equal to

L(ψ) = −n
2

log(2π)− 1

2
log|Σy1:NT

(ψ)|− 1

2
(y1:NT −η b)>Σ−1

y1:NT
(y1:NT −η b).

(14)
We use the Broyden, Fletcher, Goldfarb, and Shanno optimization algo-

rithm (Nocedal and Wright, 2006), that makes use of the second-order
derivative of the objective function. The gradients of the log-likelihood function
(14) with respect to the different parameters included in ψ are approximately
computed with a Finite Difference Method. We now propose a computationally
efficient formulation of each term of the log-likelihood (14).

Proposition 7 In the framework outlined above, we have

log|Σy1:NT
| = n log σ2

0 − log|Q|+ log|Q +σ−2
0 A A>|. (15)

Proof To compute log|Σy1:NT
|, let us consider the augmented matrix

Σc =

(
Q−1 Q−1 A

A>Q−1 Σy1:NT

)
. (16)

Hence,

Qc = Σ−1
c =

(
Q +σ−2

0 A A> −σ−2
0 A

−σ−2
0 A> σ−2

0 In

)
. (17)

By using block formulas, we have

log|Σc| = − log|Qc| = − log|Q|+ n log σ2
0 ,

and

log|Σc| = log|Σy1:NT
|+ log|Q−1−Q−1 A Σ−1

y1:NT
A>Q−1|

= log|Σy1:NT
| − log|Q +σ−2

0 A A>|,

where the last equality is a consequence of the Woodbury identity. This leads to the
result. �
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Proposition 8 The term log|Q| in Equation (15) can be computed with the
computationally cheaper formula

log|Q| = log|Σ−1|+ (NT − 1) log|F−1|, (18)

with

F−1 =
c

τ̃2dt
(M +

dt

c
(K + B + S))>M−1(M +

dt

c
(K + B + S)).

When the noise is colored in space, M−1 must be replaced by M−1 QS M−1.

Note that |F−1| is now the determinant of a (NS , NS) sparse, symmet-
ric and positive definite matrix. The computation of its determinant can be
obtained by Cholesky decomposition of F−1.

Proof Following Powell (2011), let NN = [Ni j]
N
i,j=1 be an (nN, nN) matrix, which

is partitioned into N blocks, each of size (n, n). Then the determinant of NN is

|NN | =
N∏
k=1

|α(N−k)
kk |,

where the α(k) are defined by

α
(0)
ij = Nij

α
(k+1)
ij = α

(k)
ij − α

(k)
i,N−k(α

(k)
N−k,N−k)−1α

(k)
N−k,j , k ≥ 1.

Q is a block-matrix organized as NN . Hence, the formula for |Q| is

|Q| = |Σ−1||F−1|N−1. (19)

Applying the logarithm, we obtain Equation (18). �

The term log|Q +σ−2
0 A A>| requires a detailed analysis. The term

σ−2
0 A A> is an (NSNT , NSNT ) diagonal block matrix, whose (NS , NS) blocks

are sparse. The computation of log|Q +σ−2
0 A A>| is not as straightforward

as in the case of log|Q|, because there is no way of reducing the computation
to purely spatial matrices. Depending on the size NSNT , we can either apply
a Cholesky decomposition of the (NSNT , NSNT ) matrix (Q +σ−2

0 A A>) or
the matrix-free approach proposed in Pereira et al. (2022). For the sake
of completeness, the approach is briefly sketched. The logarithm function
is first approximated by a Chebyschev polynomial P (·), then the Hutchin-
son’s estimator (Hutchinson, 1990) is used to obtain a stochastic estimate of
tr[P (|Q +σ−2

0 A A>|)]. The method is detailed in Algorithm 5 in Pereira et al.
(2022).

Concerning the computation of the quadratic term of the log-likelihood,
we can work with the more convenient expression obtained thanks to the
Woodbury formula

Σ−1
y1:NT

= σ−2
0 In−σ−4 A>(Q +σ−2

0 A A>)−1 A .
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Hence

(y1:NT −η b)>Σ−1
y1:NT

(y1:NT −η b) = σ−2
0 (y1:NT −η b)> In(y1:NT −η b)

− σ−4
0 (y1:NT −η b)>A>(Q +σ−2

0 A A>)−1 A(y1:NT −η b).

The second term can be computed either by Cholesky decomposition or using
the Conjugate Gradient method. This latter method solves N v = w with
respect to v and computes vsol = w> v, with N = (Q +σ−2

0 A A>) and w =
A(y1:NT −η b). In this case, it is useful to find a good preconditioner for the

matrix (Q +σ−2
0 A A>) to ensure fast convergence of the conjugate gradient

method. We found that a temporal block Gauss-Seidel preconditioner was a
good choice in this case. A detailed presentation of the Conjugate Gradient
method and the Gauss-Seidel preconditioner is available in Appendix E.

3.2 Prediction by Kriging

Under a Gaussian assumption, optimal prediction is the conditional expecta-
tion, also known in the geostatistics literature as kriging. We here detail two
prediction settings: space-time interpolation and temporal extrapolation.

In the space-time interpolation setting, the spatio-temporal vector x1:NT

is predicted on the entire spatial mesh during the time window [1, T ], i.e. on
T ′, using the data y1:NT defined in Equation (13). The kriging predictor is
directly read from Equation (17):

x?1:NT = E(x1:NT | y1:NT ) = σ−2
0 (Q +σ−2

0 A A>)−1 A(y1:NT −ηb̂). (20)

The computation of (20) requires the inversion of (Q +σ−2
0 A A>), see Section

3.1. The conditional variance, also called kriging variance, is

Var(x1:NT |y1:NT ) = (Q +σ−2
0 A A>)−1.

The computation of the diagonal of an inverse matrix is not straightfor-
ward when only the Cholesky decomposition of the matrix is available. Among
the existing methods there is the Takahashi recursive algorithm described in
Takahashi et al. (1973) and Erisman and Tinney (1975). Another way of com-
puting the kriging variance is through conditional simulations, as detailed in
Section 3.3.

In the temporal extrapolation setting, the vector xNT+1 is predicted at
time step (NT + 1) on T using all the data available until time T , i.e. from
y1:NT . Following Equation (10), we have

xNT+1 = D xNT + E zNT+1, (21)

where zNT+1 is a standardized Gaussian vector.
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The kriging predictor x?NT+1 is

x?NT+1 = E(xNT+1 | y1:NT ) = DE(xNT | y1:NT ) = D x?NT , (22)

where x?NT is extracted from x?1:NT
. The same procedure can be iterated to

predict x at further time steps.

3.3 Conditional simulations

To perform a conditional simulation, we use the conditional kriging paradigm
presented below. This approach relies on the fact that kriging predictors and
kriging residuals are uncorrelated (independent under Gaussian assumption),
see Chilès and Delfiner (2012, Chapter 7). First, a non-conditional simulation

x
(NC)
1:NT

is performed on the spatio-temporal grid T ′. From this simulation,
kriging residuals

r1:NT = E
(
x1:NT | A

> x
(NC)
1:NT

)
− x

(NC)
1:NT

are computed over the entire spatio-temporal grid T ′. The conditional expec-
tation is computed using the method presented in the previous section. In a
second step, these independently generated residuals are added to the usual
kriging of the data to get the conditional simulation

x
(C)
1:NT

= x∗1:NT + r1:NT .

Conditional simulations at further time steps are obtained by iteratively

computing x
(C)
NT+k using the propagation equation (21) with k ≥ 1.

3.4 Simulation study

We here report some results of estimation of the parameters θ> =
(κ, γx, γy, c, τ) for a spatio-temporal model simulated with the SPDE (4). We
set H = INS , α = 1 and αS = 2. The spatial domain is a [100, 100] square
with a grid triangulation of NS = 900 spatial points. The time window is
[1, 10] with unit NT = 10 time steps. The nS = 100 observations are randomly
located into the spatial domain and their position do not change during the
NT time steps (hence n = 1000). Since the size of both the dataset and the
spatio-temporal mesh is quite small, we report only the estimations computed
with the Cholesky decomposition.

As initial values we used estimated values obtained from the spatial and
temporal traces of the process. Specifically, the initial value for κ is the
estimated scale parameter of a Matérn covariance function with smoothness
parameter ν = α+ αS − 1 = 2 considering independent temporal repetitions,
the initial value for c is deduced from the estimated parameter of nS inde-
pendent repetitions of AR(1) processes of length NT and τ2 is computed from
Equation (6) with σ2 being the empirical variance computed on the data.
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Finally, the initial value for γ is the null vector. The results are depicted in
Table 1.

κ κ̂ γx γ̂x γy γ̂y c ĉ τ τ̂ average time (s)

0.2 0.203 (0.051) -2 -2.043 (0.262) 3 2.979 (0.351) 1 1.037 (0.093) 1 1.036 (0.092) 120

0.33 0.328 (0.059) -1 -1.008 (0.134) 1 1.018 (0.143) 0.5 0.546 (0.041) 1.2 1.221 (0.037) 124

Table 1 Mean (and standard deviation) of ML estimates θ̂
>

= (κ̂, γ̂x, γ̂y , ĉ, τ̂) over 10
simulations for two different subsets of advection-diffusion model parameters

4 Application to a solar radiation dataset

The approach detailed in the previous sections is now applied to a solar radi-
ation dataset for which experts agree on the presence of advection due to
Western prevailing winds transporting the clouds from one side of the domain
to the other. The HOPE campaign (Macke et al., 2017) recorded Global Hori-
zontal Irradiance (GHI) (or SSI, Surface Solar Irradiance) over a 10× 16 km2

region in West Germany near the city of Jülich from the 2nd of April, to the
second of July, 2013. The sensors were located at 99 stations located as pictured
in Figure 1 and GHI was recorded every 15 seconds. A detailed description of
the campaign can be found in Macke et al. (2017).

Fig. 1 Stations over the spatial domain

The dataset was cleaned for outlying values and non-operating sensors, and
the temporal resolution was reduced from 15 seconds to 1 minute. Figure 2
(left panel) shows GHI as a function of time (in minute, during a full day –
the 28th of May 2013) at 4 different stations. These stations, represented in
color in Figure 1, are located at the border of the domain, far from each other.
The GHI starts close to 0, increases after sunrise, peaks at midday and tends
to 0 at sunset. The maximal theoretical amount of irradiance reaching the
sensor follows an ideal concave curve. The divergence between the measured
irradiance and the optimal curve can be slight or important, depending on the
presence of clouds. One can see on this example that the evolution among the
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Fig. 2 GHI G and Clear Sky Index Kc for 4 different stations on the 28th of May 2013

4 stations is similar, with variations accounting for spatio-temporal variations
of the clouds.

A first preprocessing was made in order to stationarize the phenomenon.
Oumbe et al. (2014) showed that the solar irradiance at ground level, GHI
(denoted G for short from now on), computed by a radiative transfer model
can be approximated by the product of the irradiance under clear atmosphere
(called Clear Sky GHI, or Gc) and a modification factor due to cloud properties
and ground albedo only (Clear Sky Index, or Kc, Beyer et al. (1996)):

G ' GcKc. (23)

The error made in using this approximation depends mostly on the solar zenith
angle, the ground albedo and the cloud optical depth. In most cases, the max-
imum errors (95th percentile) on global and direct surface irradiances are less
than 15 Wm−2 and less than 2- to 5 % in relative value, as recommended
by the World Meteorological Organization for high-quality measurements of
the solar irradiance (Oumbe et al., 2014). Practically, it means that a model
for fast calculation of surface solar irradiance may be separated into two dis-
tinct and independent models: i) a deterministic model for G, under clear-sky
conditions, as computed according to Gschwind et al. (2019), considered as
known in this study; ii) a model for Kc which accounts for cloud influence on
the downwelling radiation and is expected to change in time and space. Kc is
modeled as a random spatio-temporal process and will be the subject of our
analysis. Figure 2 (right panel) shows the variable Kc at the same 4 stations
and on the same day of left panel. In general, Kc lies between 0 and 1, but
in rare occasions, values above 1 can be observed. This phenomenon is called
overshooting (Schade et al., 2007).

A time window of 20 minutes around 4 p.m. on the 28th of May 2013 is
extracted with observations every minute at the 73 stations with well recorded
values. Parameters will be estimated on this 20-minute window using the
method described in Section 3.1. The spatio-temporal grid contains NT = 20
one-minute time steps, from t = 1 to t = 20 and NS = 900 spatial mesh points.
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Fig. 3 Histogram of GHI over 20 time steps

4.1 Estimation and prediction

Six different models are fitted to the data and used for prediction: 3 mod-
els with advection (called “adv-diff”) and 3 models without advection (called
“diff”) obtained by setting γ = 0. Both groups contain the three following
sub-models: (i) a separable model with a Matérn spatial trace with ν = 1; (ii)
a non-separable model whose spatial trace has no known closed form expres-
sion for the covariance function; (iii) a non-separable model with a Matérn
spatial trace with ν = 2. In the general model of Equation (4) they correspond
respectively to (α, αS) = (0, 2), (1, 0), (1, 2). The parameters of the SPDE are
estimated for each model separately. The results are reported in Table 2. The
log-likelihood of the models that include advection is at least 34 units larger
than those with diffusion only. As a point of comparison, if all spatio-temporal
dependencies were ignored, the BIC penalization to the log-likelihood of the
model with advection would be 2 ln(1460) ' 14.5. These results indicate strong
evidence in favor of the model with advection.

We then perform prediction with two different validation settings contain-
ing 80% of conditioning data and 20% of validation data. In the first case
(called “Random”) the validation locations are uniformly randomly selected.
In the second case (called “South-East”) the validation locations are located
downwind (i.e. South-East) with respect to the estimated advection direction.
See Figure 4 for a representation of the validation settings.

Recall that a time window containing 20 time-steps, from T = 1 to T = 20,
was selected. For each validation setting and from T = 11 to T = 20, three
prediction configurations using conditioning data from time (T − 9) to T are
computed and compared to the real values, allowing us to compute a Root
Mean Square Error (RMSE) validation score. First, the kriging is performed
spatially only (hereafter referred to as “S” kriging). Second, a temporal extrap-
olation is computed at the conditioning locations at time horizons (T + 1),
(T + 2) and (T + 3) (“T1”, “T2”, “T3” kriging). Third, the spatio-temporal
prediction is computed at the validation locations at time horizons (T + 1),
(T + 2) and (T + 3) (“ST1”, “ST2”, “ST3” kriging). We thus have a total of
6 models × 2 validation settings × 3 prediction configurations. RMSEs are
averaged on the 10 repetitions. Results are shown in Table 3. It is clear that
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Fig. 4 Validation settings: Random (left) and South-East (right)

Fig. 5 Predictions of Kc at (T + 1), (T + 2) and (T + 3) with model (3) (“adv-diff” with
α = 1 and αS = 2). The black contoured dots are the conditioning locations and the white
contoured dots are the validation locations for the Random setting

non-separable advection-diffusion models ((2) and (3)) outperform the others
in both temporal and spatio-temporal settings.

An example of prediction maps on T at time horizons (T + 1), (T + 2) and
(T+3) is reported in Figure 5, along with the observed values (black contoured
dots). The white contoured dots are the locations used for validation in the
Random setting.

Model α αS log-likelihood κ̂ γ̂x γ̂y ĉ τ̂ σ̂0 b̂

(1) adv-diff 0 2 2587 1.477 9.642 -5.382 11.659 2.254 0.052 0.570
(2) adv-diff 1 0 2577 0.237 4.718 -0.928 9.315 0.458 0.045 0.598
(3) adv-diff 1 2 2579 1.299 17.325 -8.442 41.017 3.072 0.058 0.574
(4) diff 0 2 2507 1.240 0 0 12.558 1.081 0.059 0.569
(5) diff 1 0 2545 0.246 0 0 6.594 0.436 0.047 0.577
(6) diff 1 2 2512 0.940 0 0 34.607 1.248 0.064 0.580

Table 2 Estimated parameters and log-likelihood for 6 different models from all data on a
20-minute window
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Random South-East

Model α αS S (min,max) S (min,max)

(1) adv-diff 0 2 0.088 (0.052,0.127) 0.103 (0.051,0.138)
(2) adv-diff 1 0 0.103 (0.064,0.142) 0.105 (0.045,0.158)
(3) adv-diff 1 2 0.102 (0.062,0.134) 0.109 (0.054,0.149)
(4) diff 0 2 0.119 (0.074,0.140) 0.134 (0.092,0.181)
(5) diff 1 0 0.094 (0.060,0.131) 0.136 (0.067,0.187)
(6) diff 1 2 0.110 (0.066,0.132) 0.140 (0.085,0.192)

Model α αS T1 (min,max) T2 (min,max) T3 (min,max) T1 (min,max) T2 (min,max) T3 (min,max)

(1) adv-diff 0 2 0.095 (0.067,0.120) 0.146 (0.111,0.186) 0.181 (0.131,0.236) 0.095 (0.065,0.122) 0.142 (0.106,0.185) 0.172 (0.121,0.228)
(2) adv-diff 1 0 0.071 (0.046,0.090) 0.093 (0.054,0.124) 0.102 (0.060,0.143) 0.074 (0.045,0.099) 0.097 (0.065,0.128) 0.109 (0.069,0.148)
(3) adv-diff 1 2 0.072 (0.046,0.093) 0.095 (0.054,0.127) 0.104 (0.055,0.144) 0.074 (0.049,0.097) 0.096 (0.062,0.122) 0.106 (0.061,0.139)
(4) diff 0 2 0.094 (0.058,0.123) 0.137 (0.091,0.181) 0.166 (0.102,0.231) 0.090 (0.063,0.116) 0.128 (0.097,0.167) 0.154 (0.113,0.209)
(5) diff 1 0 0.079 (0.058,0.098) 0.108 (0.082,0.135) 0.124 (0.099,0.158) 0.081 (0.057,0.105) 0.111 (0.090,0.147) 0.128 (0.100,0.169)
(6) diff 1 2 0.083 (0.054,0.108) 0.110 (0.077,0.149) 0.125 (0.085,0.180) 0.084 (0.056,0.109) 0.109 (0.086,0.152) 0.123 (0.091,0.176)

Model α αS ST1 (min,max) ST2 (min,max) ST3 (min,max) ST1 (min,max) ST2 (min,max) ST3 (min,max)

(1) adv-diff 0 2 0.105 (0.067,0.144) 0.147 (0.106,0.193) 0.179 (0.140,0.231) 0.102 (0.081,0.121) 0.158 (0.130,0.180) 0.210 (0.160,0.241)
(2) adv-diff 1 0 0.091 (0.052,0.131) 0.103 (0.062,0.161) 0.110 (0.071,0.165) 0.079 (0.044,0.119) 0.075 (0.039,0.127) 0.070 (0.038,0.132)
(3) adv-diff 1 2 0.085 (0.050,0.127) 0.094 (0.058,0.142) 0.100 (0.061,0.157) 0.090 (0.052,0.121) 0.099 (0.056,0.149) 0.109 (0.057,0.172)
(4) diff 0 2 0.123 (0.072,0.186) 0.150 (0.081,0.237) 0.170 (0.116,0.257) 0.128 (0.092,0.157) 0.165 (0.112,0.195) 0.199 (0.116,0.236)
(5) diff 1 0 0.104 (0.070,0.153) 0.122 (0.095,0.181) 0.131 (0.095,0.187) 0.107 (0.050,0.201) 0.100 (0.042,0.223) 0.094 (0.0380,0.217)
(6) diff 1 2 0.108 (0.073,0.153) 0.126 (0.085,0.188) 0.134 (0.082,0.199) 0.114 (0.060,0.204) 0.111 (0.058,0.229) 0.108 (0.059,0.223)

Table 3 Averaged RMSE computed at 10 successive time steps for 6 different models, 2
validation settings (Random and South-East) and 3 prediction configurations (S, T and
ST); see text for details. In each case, the best score among the models is in bold font

4.2 Conditional simulations

Figure 6 shows 100 conditional simulations of Kc computed at time T = 11
and horizons (T + 1), (T + 2), . . . , (T + 6) with the advection-diffusion model
(3). Two validation stations have been selected: one selected in the ”Random”
setting, in the North-West part of the domain (the orange star in the left panel
of Figure 4) and one selected in the ”South-East” setting (the green star in the
right panel of Figure 4). Given that there is an advection from NW to SE, it is
therefore expected that the advection-diffusion model should be able to trans-
port some information. The mean of the 100 simulations and the envelopes
corresponding to twice the pointwise standard deviation have also been rep-
resented, along with the true values. As expected, most of the conditional
simulations lie within the envelopes in both cases and at all time horizons.
The remarkable result is that the variance of the conditional simulations at
the green station is smaller than that at the orange one at every time step,
especially when the time horizon increases. This is due to the advection term
in model (3), able to propagate information from North-West to South-East.

5 Conclusion

The spatio-temporal SPDE approach based on advection-diffusion equations
proposed in this work combines elements of physics, numerical analysis and
statistics. It can be seen as a first step toward physics informed geostatis-
tics, which introduces physical dynamics into a statistical model, accounting
for possible hidden structures governing the evolution of the spatio-temporal
phenomenon. The different terms of the SPDE (advection, diffusion) directly
influence the spatio-temporal dependencies of the process, by controlling its
variability in space and time. Compared to spatio-temporal models built on
covariance functions such as the Gneiting class (Gneiting, 2002), we gain in
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Fig. 6 Real Kc, mean of conditional simulations of Kc and ±2σ envelope at time horizons
T, (T+1), (T+2), . . . , (T+6). Left: orange station with Random setting. Right: green station
with South-East setting

interpretability since the parameters of the model can be directly linked to the
physical coefficients of SPDEs.

We showed that it is possible to build an accurate space-time approxima-
tions of the process driven by the SPDE using a combination of FEM in space
and implicit Euler scheme in time. It leads to sparse structured linear systems.
We obtained promising results for the estimation and for the prediction of pro-
cesses both in terms of precision and speed. When the size of the dataset is
moderate, direct matrix implementation is possible. We showed how matrix-
free methods can be implemented in order to obtain scalable computations
even for very large datasets.

The application to the solar radiation dataset showed that the non-
separable advection-diffusion model exhibited the best prediction perfor-
mances on a phenomenon that is certainly governed by advection and diffusion
processes.

Further work would be necessary to better assess the prediction accuracy
and the computational complexity. Applications to larger and more complex
datasets should be considered and comparison to models expressing the advec-
tion in a Lagrangian framework (Ailliot et al., 2011; Salvaña and Genton, 2021)
should be performed.

We implemented a maximum likelihood approach for parameter estimation.
It would be interesting to investigate a possible Bayesian estimation procedure
through the INLA approach (Rue et al., 2009).

One of the main advantages of the SPDE formulation is that it is easy to
generalize to non-stationary settings. Non-stationary fields can be defined by
letting the parameters (κ(s, t), γ(s, t)) be space-time-dependent. This general-
ization implies only minimal changes to the method used in the stationary case
concerning the simulation, but needs more work for estimation and prediction,
since the maximum likelihood approach becomes much more expensive. We
can also incorporate models of spatially varying anisotropy by modifying the
general operator ∇ ·H(s, t)∇X(s, t) with a non-stationary anisotropic matrix
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H(s, t). The introduction of non-stationarities could allow to better describe
phenomena where local variations are clearly present. The generalization of
the approaches by Fuglstad et al. (2015) and Pereira et al. (2022) should be
investigated and generalized to the spatio-temporal framework.

Another interesting consequence of defining the models through local
stochastic partial differential equations is that the SPDEs still make sense when
Rd is replaced by a space that is only locally flat. We can define non-stationary
Gaussian fields on manifolds, and still obtain a GMRF representation. Impor-
tant improvements were obtained in the spatial case (Pereira et al., 2022). The
generalization to space-time processes could be explored further.

Possible generalization to spatio-temporal SPDEs with a fractional expo-
nent in the diffusion term could also be considered. A development of the
methods proposed by Bolin and Kirchner (2020) and Vabishchevich (2015)
should be explored.
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Appendix A Proof of Proposition 1

Proof The spatial trace is the covariance function between X(s, t) and X(s′, t) for a
spatial lag h = s− s′

Cov(h, 0) =

∫
Rd

∫
R

exp(ih ξ)S(ξ, ω) dω d ξ

=

∫
Rd

exp(ih ξ)

[∫
R

S(ξ, ω) dω

]
d ξ

=

∫
Rd

exp(ih ξ)SS(ξ), (A1)

where SS(ξ) is the spatial spectral density defined as

SS(ξ) =
τ2

(2π)dc(κ2 + ξ>H ξ)αS

∫
R

1

2π
[
ω2 + c−2(κ2 + ξ>H ξ)2α

] dω

=
τ2

(2π)dc(κ2 + ξ>H ξ)αS

1

2 [c−2(κ2 + ξH ξ)2α]
1/2

=
τ2

2(2π)d(κ2 + ξ>H ξ)αtot
. (A2)

By using the change of variable ξ = κH−1/2 w and by plugging Equation (A2) into
(A1), we obtain

Cov(h, 0) =
τ2

2

∫
Rd

eih ξ

(2π)d(κ2 + κ2 ξ>H ξ)αtot
d ξ

=
τ2

2

∫
Rd

eihκH−1/2 w|κH−1/2|
(2π)d(κ2 + κ2 w>w)αtot

d w

=
τ2

2κ2(αtot−d/2)|H|1/2

∫
Rd

eihκH−1/2 w

(2π)d(1 + w>w)αtot
d w

=
τ2Γ(αtot − d/2)

2Γ(αtot)(4π)d/2κ2(αtot−d/2)|H|1/2
CMαtot−d/2 (κ‖h‖) .

�

Appendix B Discretization of spatio-temporal
advection-diffusion SPDE

Here, we detail the discretization scheme of the advection-diffusion spatio-
temporal SPDE (4). For the sake of a clearer exposition, we have set H = INS ,
α = 1 and we consider a spatio-temporal white noise Z(s, t) = W (s, t). The
proof for the general case follows exactly the same lines as the proof below.
The considered SPDE is[

∂

∂t
+

1

c
(κ2 −∆) +

1

c
γ ·∇

]
X(s, t) =

τ√
c
W (s, t). (B3)



The SPDE approach for spatio-temporal datasets with advection and diffusion 27

For the discretization of the temporal derivative in Equation (B3), we opt
for the implicit Euler scheme, which considers the differential equation

∂X

∂t
= f(t,X),

with initial value X(t0) = X0, where both the function f and the initial data
t0 and X0 are known; the function X depends on the real variable t and
is unknown. The method produces a sequence X0, X1, X2, . . ., such that Xk

approximates X(t0 + kdt), where dt is the time step size. The approximation
reads

Xk+1 = Xk + dtf(tk+1, Xk+1).

In the specific case of Equation (B3), the implicit Euler discretization step
reads

X(s, t+dt)−X(s, t)+dt

[
1

c
(κ2 −∆) +

1

c
γ ·∇

]
X(s, t+dt) =

√
dtτ√
c
WS,t+dt(s),

(B4)
where WS,t+dt(s) is a spatial white noise. For ease of notation, we denote
x = X(s, t+ dt) the unknown variable, defined with respect to xt = X(s, t).

At each time step of the temporal discretization, a spatial Finite Element
Method method is applied. In our case, we use the continuous Galerkin with
Neumann boundary condition. The weak form of Equation (B4) is∫

Ω

xv d s +
dt

c

(∫
Ω

κ2xv d s−
∫

Ω

∆xv d s +

∫
Ω

γ ·∇xv d s

)
=

∫
Ω

xtv d s +

√
dtτ√
c

∫
Ω

vW (s) d s , ∀v ∈ V,

where V is the space of the solutions.
By applying Green’s first identity, i.e., by writing

∫
Ω

∆xv d s = −
∫

Ω
∇x ·

∇v d s+
∫
∂Ω
v ·(∇x·n̂)dσ, with n̂ being the normal vector on the boundary, and

by simplifying the second term thanks to the Neumann boundary condition,
we obtain∫

Ω

xv d s +
dt

c

(∫
Ω

κ2xv d s +

∫
Ω

∇x · ∇v d s +

∫
Ω

γ ·∇xv d s

)
︸ ︷︷ ︸

A(x,v)

=

∫
Ω

xtv d s︸ ︷︷ ︸
C(xt,v)

+

√
dtτ√
c

∫
Ω

vW (s) d s︸ ︷︷ ︸
E(v)

, ∀v ∈ V.

Let Vh be the space of finite element solutions spanned by the basis
functions {ψi}NSi=1. The generalized Galerkin method allows us to find an
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approximated solution xh ∈ Vh ⊆ V to the SPDE, such that

A(xh, vh) = C(xt,h, vh) + E(vh) ∀vh ∈ Vh.

The functions xh, xt,h and vh are linear combinations of the basis functions,
with

xh =

NS∑
i=1

xh,iψi; xt,h =

NS∑
i=1

xt,h,iψi; vh =

NS∑
i=1

vh,iψi,

Because of the linearity in the first argument of A(·, ·) and C(·, ·), we get

NS∑
i=1

A(ψi, vh)xh,i =

NS∑
i=1

C(ψi, vh)xt,h,i + E(vh), ∀vh ∈ Vh, (B5)

where

A(ψi, vh) =M(ψi, vh) +
dt

c
(K(ψi, vh) + B(ψi, vh))

C(ψi, vh) =M(ψi, vh),

with K(ψi, vh) = κ2M(ψi, vh) + G(ψi, vh). Here, M and G are the mass and
stiffness operators, respectively M(v, w) =

∫
Ω
vw d s and G(v, w) =

∫
Ω
∇v ·

∇w d s. B is the advection operator, i.e., B(v, w) =
∫

Ω
γ ·∇vw d s. Finally, E is

the operator of the form E(v) =
√
dtτ√
c

∫
Ω
vW (s) d s.

Since any vh can be written as a linear combination of basis functions, the
formulation (B5) is equivalent to

NS∑
i=1

A(ψi, ψj)xh,i =

NS∑
i=1

C(ψi, ψj)xt,h,i + E(ψj), ∀j (B6)

We define M = [Mij ]
NS
i,j=1 = [M(ψi, ψj)]

NS
i,j=1, G = [Gij ]

NS
i,j=1 =

[G(ψi, ψj)]
NS
i,j=1, B = [Bij ]

NS
i,j=1 = [B(ψi, ψj)]

NS
i,j=1 the mass, stiffness and

advection matrices, respectively.
E(ψj) is a random variable with expectation 0 and covariance equal to

Cov(E(ψi), E(ψj)) =
dtτ2

c
Cov

(∫
Ω

ψiW (s) d s ,

∫
Ω

ψjW (s) d s

)
=
dtτ2

c

∫
Ω

ψiψj d s =
dtτ2

c
Mij .

If zt+dt is a (NS)-Gaussian vector such that zt+dt ∼ N (0, INS ), xt+dt is
the vector containing the values {xh,i}NSi=1 and xt is the vector containing the
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values {xt,h,i}NSi=1, then the sparse linear system corresponding to Equation
(B6) reads

M xt+dt +
dt

c
(K + B)xt+dt = M xt +

√
dtτ√
c

M1/2 zt+dt, (B7)

where K = κ2 M + G.
When the spatial noise is colored, i.e. zS = ZS(s), the right-hand side

operator ES(v) becomes

ES(zS , v) =

√
dtτ√
c

∫
Ω

zSv d s

and it satisfies

ES(zS,h, vh) =

NS∑
i=1

ES(ψi, vh)zS,h,i.

Hence,

NS∑
i=1

A(ψi, ψj)xh,i =

NS∑
i=1

C(ψi, ψj)xt,h,i +

NS∑
i=1

M(ψi, ψj)zS,h,i, ∀j,

where zS,h has precision matrix equal to QS . The sparse linear system thus
reads

M xt+dt +
dt

c
(K + B)xt+dt = M xt +

√
dtτ√
c

M L>S zt+dt, (B8)

where LS is the Cholesky decomposition of Q−1
S .

Appendix C Advection-dominated SPDE

The stabilization of advection-dominated SPDEs is made through the intro-
duction of a stabilization term for eliminating, or at least reducing, the
numerical oscillations produced by the Galerkin method when the mesh is not
fine enough. This term must vanish as h→ 0 to ensure consistency.

In the simplified case of a one-dimensional PDE with diffusion and
advection terms

−∇ · λ∇u+ γ · ∇u = f,

a way of stabilizing the advection operator γ · ∇ is to replace the diffusion
coefficient λ with λ̃ = λ(1 + φ(Peh)), where Peh is the Péclet number defined
in Section 2.4 and limh→0 φ(Peh) = 0. A clear explanation of this method is
detailed in Quarteroni (2008, Chapter 5). The method is called upwind (U)
in the simplified case where φ(Peh) = Peh. The idea behind the stabilization
method is to add an artificial diffusion term equal to ∇ · λφ(Peh)∇u that
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depends on the size of the discretization mesh h and on the Péclet number. In
this way, the equation with the additional stabilization term reads

−∇ · λ(1 + φ(Peh))∇u+ γ · ∇u = f

and it is no more advection-dominated since its Péclet number P̃eh is now
equal to

P̃eh =
Peh

1 + φ(Peh)

and always satisfies P̃eh < 1.
The extension of the 1D upwind stabilization model to dimension d =

2 is obtained by adding to the bilinear form A defined in Appendix B the
stabilization term SU such that

SU (uh, vh) = Qh

∫
Ω

∇uh · ∇vh d s , Q > 0. (C9)

This stabilization term can be considered as an additional artificial diffusion
equal to Qh∆X(s, t) in SPDE (4). This diffusion is not only on the direction
of the transport, where we aim to reduce the oscillations, but also on the
orthogonal direction, where there is no problem of convergence. For this reason,
we use a different stabilization method, called Streamline Diffusion method
(SD) (Hughes and Brooks, 1981), that considers only an artificial diffusion
along the advection direction by adding in the left-hand side of SPDE (4) the
term

SSD(uh, vh) =
h

|γ|

∫
Ω

(γ ·∇uh)(γ ·∇vh) d s . (C10)

It is worth emphasizing that in both the stabilization terms (C9) and
(C10) the scaling coefficient h has been introduced to recover consistency.
Both methods are only weakly consistent and provide an error that is O(h) if
finite elements are used (first order convergent). In our work, we opt for the
Streamline Diffusion method and define S = SSD for ease of notation.

Appendix D Global precision matrix

We present here the proof of Proposition 6. Let us denote x1:NT =
[x1, . . . ,xNT ]> the vector containing all spatial solutions until time step NT .
Then,

x1:NT = R

(
x1

z2:NT

)
,
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with z2:NT = [z2, . . . , zNT ]> and

R =



INS 0 0 0 . . . 0
D E 0 0 . . . 0

D2 D E E 0 . . . 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . . D2 D E


.

R has a block structure which allows easy computation of its inverse

R−1 =



INS 0 0 0 . . . 0

−E−1 D E−1 0 0 . . . 0

0 −E−1 D E−1 0 . . . 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . . . . 0 −E−1 D E−1


.

The precision matrix of x1:NT is thus

Q = R−1>


Σ−1 0 . . . 0

0 INS . . . 0
...

. . .
. . .

...
0 0 . . . INS

R−1 .

By denoting F = E E>, the global precision matrix reads

Q =



Σ−1 + D>F−1 D −D>F−1 0 . . . 0

−F−1 D F−1 + D>F−1 D −D>F−1 . . .
...

...
. . .

. . .
. . . 0

...
. . . −F−1 D F−1 + D>F−1 D −D>F−1

0 . . . 0 −F−1 D F−1


.

By replacing the values of D and F and by defining J =
[
M +dt

c (K + B)
]
,

we obtain

Q =
c

τ2dt



Σ−1 + QS −M−1 J QS 0 . . . 0

−M−1 J>QS J>M−1 QS M−1 J + QS −M−1 J QS

. . .
...

...
. . .

. . .
. . . 0

...
. . . −M−1 J>QS J>M−1 QS M−1 J + QS −M−1 J QS

0 . . . 0 −M−1 J>QS J>M−1 QS M−1 J


.
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Appendix E Matrix-free approach for solving
systems

In computational mathematics, a matrix-free method is an algorithm for solv-
ing a linear system of equations that does not store the coefficient matrix
explicitly, but accesses the matrix by evaluating matrix-vector products. Such
methods can be preferable when the matrix is so big that storing and manipu-
lating it would cost a lot of memory and computing time, even with the use of
methods for sparse matrices. Many iterative methods allow for a matrix-free
implementation, including the Conjugate Gradient method.

E.1 Conjugate Gradient method

Suppose we want to solve the system of linear equations

A x = b

for the vector x, where the known (n, n) matrix A is symmetric, positive-
definite, and real, and b is known as well. We denote the unique solution of this
system by x?. The Conjugate Gradient (CG) method is an iterative method
that allows us to approximately solve systems where n is so large that the
direct method would take too much time.

We denote the initial guess for x? by x0 (without loss of generality x0 = 0).
Starting with x0, at each iteration we need a metric to tell us whether we are
closer to the solution x?. This metric comes from the fact that the solution x?

is also the unique minimizer of the following quadratic function

f(x) =
1

2
x>A x−x> b, x ∈ Rn,

The existence of a unique minimizer is guaranteed by the fact that the
Hessian matrix of f is symmetric positive-definite H(f(x)) = A, and that the
minimizer solves the initial problem, since ∇f(x) = A x−b.

We take the first basis vector p0 to be the negative of the gradient of f
at x = x0, leading to p0 = b−A x0. The other vectors in the basis will be
conjugate to the gradient. Note that p0 is also the residual r0 provided by
this initial step of the algorithm. In fact, rk is such that rk = b−A xk. The
directions pk has to be conjugate to each other. To enforce this condition, we
require the next search direction to be built out of the current residual and
all previous search directions. The conjugation constraint is an orthonormal-
type constraint, which makes the algorithm an example of Gram-Schmidt
orthonormalization. This gives the expression

pk = rk −
∑
i<k

p>i A rk
p>i A pi

pi .
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Following this direction, the next optimal location is given by

xk+1 = xk +αk pk,

with

αk =
p>k (b−A xk)

p>k A pk
=

p>k rk
p>k A pk

.

The expression for αk can be derived if one substitutes the expression for xk+1

into f and minimizes it w.r.t. αk:

f(xk+1) = f(xk +αk pk) = g(αk)

g′(αk) 6= 0⇒ αk =
p>k (b−A xk)

p>k A pk
.

The algorithm seems to require storage of all previous searching directions
and residual vectors, as well as many matrix-vector multiplications, leading
to expensive computations. However, a closer analysis of the algorithm shows
that ri is orthogonal to rj , i.e. r>i rj = 0 for i 6= j, and pi is A-orthogonal to
pj , i.e. p>i A pj = 0 for i 6= j. This means that, as the algorithm progresses,
pi and ri span the same Krylov subspace. {ri} form the orthogonal basis with
respect to the standard inner product, and {pi} form the orthogonal basis with
respect to the inner product induced by A. Therefore, xk can be regarded as
the projection of x on the Krylov subspace.

E.2 Gauss-Seidel preconditioner

The general concept behind a preconditioner is the following: given a linear
system A x = b, we want to find the matrix PR and/or PL such that the con-
dition number of A P−1

R (right preconditioner) or P−1
L A (left preconditioner)

or P−1
L A P−1

R is better than for A and that we can easily solve PL y = g
or PR y = g for any g. Then we solve for A P−1

R y = b (right precondi-
tioner), PR x = y or P−1

L A x = P−1
L b (left preconditioner) or even both

P−1
L A P−1

R y = P−1
L b, PR x = y.

The best choice is of course P = A, but this does not make life easier. One
of the ideas is to use other iterative methods as preconditioners, such as the
Jacobi method, the Gauss-Seidel method or the SOR(ω) method (Successive
over-relaxation).

A well-known method is Gauss-Seidel (GS) method, whose matrix form is
here detailed. Given the matrix A, we have

A = L + D + L?,

where D is the diagonal of A, L is lower-triangular part with zero on the
diagonal. One iteration of the GS method reads

xk+1 = xk −(L + D)−1(A xk −b)
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and we refer to the preconditioner P = L + D as Gauss-Seidel preconditioner.
A good property of this preconditioner is that ρ(I−(L + D)−1 A) < 1, where
ρ is the spectral radius, i.e., for a positive definite matrix GS-method always
converges.
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