A Dobrowolski type minoration of the Mahler measure of height 1 trinomials - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

A Dobrowolski type minoration of the Mahler measure of height 1 trinomials

Résumé

The method of Poincaré asymptotic expansions on the roots of the trinomials G_n (x) := -1+x+x^n is used to deduce the limit Mahler mesure lim_{n \to \infty} M(G_n) = 1.38135 =: Lambda, as a Log-Sine integral (Clausen integral, Bloch-Wigner dilogarithm). This method is compared with that of Boyd and Smyth with 2-variables Mahler measures, who have also proved that this limit is Lambda by their approach. The present method allows to obtain an asymptotic expansion of M(G_n) with respect to Lambda, and a Dobrowolski-type inequality for $\theta_n^{-1}$, as a function of n, if $\theta_n$ is the root of G_n in the interval (0,1). The extension to a Conjecture of C. Smyth on the limit Mahler measure of the trinomials \pm 1 \pm x^k + x^n , as n tends to infinity, is discussed, by comparison with the recent result of Flammang stating that this Conjecture is true for large n.
vergerJA2015.pdf (282.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03754982 , version 1 (20-08-2022)

Identifiants

  • HAL Id : hal-03754982 , version 1

Citer

Jean-Louis Verger-Gaugry. A Dobrowolski type minoration of the Mahler measure of height 1 trinomials. 29e Journées Arithmétiques JA 2015 Debrecen, Attila Berczes, Nora Varga, Zsolt Rabai, Jul 2015, Debrecen, Hungary. ⟨hal-03754982⟩
20 Consultations
7 Téléchargements

Partager

More