Estimation of extreme quantiles from heavy-tailed distributions with neural networks - Archive ouverte HAL
Article Dans Une Revue Statistics and Computing Année : 2023

Estimation of extreme quantiles from heavy-tailed distributions with neural networks

Résumé

We propose new parametrizations for neural networks in order to estimate extreme quantiles in both non-conditional and conditional heavy-tailed settings. All proposed neural network estimators feature a bias correction based on an extension of the usual second-order condition to an arbitrary order. The convergence rate of the uniform error between extreme log-quantiles and their neural network approximation is established. The finite sample performances of the non-conditional neural network estimator are compared to other bias-reduced extreme-value competitors on simulated data. It is shown that our method outperforms them in difficult heavy-tailed situations where other estimators almost all fail. The source code is available at https://github.com/michael-allouche/nn-quantile-extrapolation.git. Finally, the conditional neural network estimators are implemented to investigate the behaviour of extreme rainfalls as functions of their geographical location in the southern part of France.
Fichier principal
Vignette du fichier
extrapolationNN-v1.2.pdf (15.74 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03751980 , version 1 (16-08-2022)

Licence

Identifiants

Citer

Michaël Allouche, Stéphane Girard, Emmanuel Gobet. Estimation of extreme quantiles from heavy-tailed distributions with neural networks. Statistics and Computing, 2023, 34 (12), pp.1-35. ⟨10.1007/s11222-023-10331-2⟩. ⟨hal-03751980⟩
578 Consultations
346 Téléchargements

Altmetric

Partager

More