Multi-objective optimization of layout with functional constraints
Résumé
The conventional layout problem is concerned with finding the arrangements of components inside the container to optimize objectives under geometrical constraints, i.e., no component overlap and no container protrusion. In this paper, the multi-objective optimization for layout balance and component activity requirements with functional constraints is developed. Integrating the accessibility of components as functional constraints ensures components maintenance or proper operation. However, addressing the functional constraints increase the complexity of the layout optimization. A novel multi-objective optimization algorithm is proposed using the constructive placement and the simulated annealing to search for compromised solutions between the two objectives. Thereafter, a similarity indicator is defined to evaluate how similar optimized layout designs are. The experiments indicate that the proposed optimization approach performs well in ensuring accessibility and efficiently finding high-qualified solutions, where the constructive placement largely contributes to the search for alternatives satisfying constraints.
Origine | Fichiers produits par l'(les) auteur(s) |
---|