
HAL Id: hal-03749692
https://hal.science/hal-03749692v1

Submitted on 11 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-objective optimization of layout with functional
constraints

Xiaoxiao Song, Emilie Poirson, Yannick Ravaut, Fouad Bennis

To cite this version:
Xiaoxiao Song, Emilie Poirson, Yannick Ravaut, Fouad Bennis. Multi-objective optimization of layout
with functional constraints. Optimization and Engineering, In press, �10.1007/s11081-022-09754-z�.
�hal-03749692�

https://hal.science/hal-03749692v1
https://hal.archives-ouvertes.fr


Optimization and Engineering manuscript No.
(will be inserted by the editor)

Multi-objective optimization of layout with
functional constraints

Xiaoxiao Song1 · Emilie Poirson1 ·
Yannick Ravaut2 · Fouad Bennis1

Received: date / Accepted: date

Abstract The conventional layout problem is concerned with finding the ar-
rangements of components inside the container to optimize objectives under
geometrical constraints, i.e., no component overlap and no container pro-
trusion. In this paper, the multi-objective optimization for layout balance
and component activity requirements with functional constraints is devel-
oped. Integrating the accessibility of components as functional constraints
ensures components maintenance or proper operation. However, addressing
the functional constraints increase the complexity of the layout optimization.
A novel multi-objective optimization algorithm is proposed using the con-
structive placement and the simulated annealing to search for compromised
solutions between the two objectives. Thereafter, a similarity indicator is de-
fined to evaluate how similar optimized layout designs are. The experiments
indicate that the proposed optimization approach performs well in ensuring
accessibility and efficiently finding high-qualified solutions, where the construc-
tive placement largely contributes to the search for alternatives satisfying con-
straints.

Keywords Layout problem · Multi-objective optimization · Accessibility
integration · Constructive placement · Similarity indicator

1 Introduction

The layout problems are inherently multidisciplinary tasks. The applications
can be the space radiator design (Cuco et al., 2011), the chip layout design

� Xiaoxiao Song
E-mail: Xiaoxiao.song@ec-nantes.fr

1 Laboratoire des sciences du numérique de Nantes (LS2N), ECN, UMR 6004, 44321
Nantes, France.

2 Thales Communications, 49300 Cholet, France.



2 Xiaoxiao Song1 et al.

(Gao et al., 2019), the vehicle layout design (Fossati et al., 2019), the architec-
ture layout design (Zawidzki and Szklarski, 2020) in Fig. 1(a), the manufac-
turing systems layout design (Niroomand et al., 2015) in Fig. 1(b) and so on.
Excellent layout design can effectively improve the system performance. The

(a) (b)

Fig. 1 Layout problem examples (a) Architecture layout, (b) Manufacturing system.

problem is generally solved as an optimization problem. It concerned with find-
ing the optimal arrangements of components(i.e., equipment, machines) inside
the container(i.e., workshop, plant) to optimize the objectives and respect
geometrical and functional constraints. The most encountered components
are represented by rectangles with determined sizes (Ou-Yang and Utamima,
2013) or determined area (Saraswat et al., 2015). No component overlap and
no container protrusion are the common geometrical constraints, while orien-
tation or alignment is to define functional relationships between components
(Cagan et al., 2002). The functional constraints specify the requirements to
ensure the system’s proper functioning. A majority of studies optimize, for ex-
ample the mass distribution related to mobile spacecraft layout (Cuco et al.,
2014), or the adjacency requirement (Ghassemi Tari and Neghabi, 2015) and
the material handling cost (Lin and Yingjie, 2019) in facility layouts.

The constraint satisfied region, the non-linear and non-convex objective of
layout formulation make the optimization complex in nature. The constraints
satisfied solutions can be obtained by penalizing the constraints violations in
the objective function or generated from the feasible designs domains (Szyk-
man and Cagan, 1997). The most commonly encountered layout problems have
multiple objectives that need to be optimized. In fact, multi-objective problems
can be solved by single-objective optimization or multi-objective optimization
techniques. The former case transforms multiple objectives into an aggregation
function using predefined weights, so there is a corresponding single solution.
In the latter approach, a multi-objective optimizer considers multiple objec-
tives simultaneously and aims to find a set of compromised solutions, known
as the Pareto front. In this paper, multi-objective layout optimization is em-
ployed and the optimal solution could be subjectively decided by the designer
after optimization.

Analyzing the similarities between optimized layout designs can reduce
the work load of designer in the selection phase. Usually, similarity computa-



Multi-objective optimization of layout with functional constraints 3

tion is the difference in layout designs. Layout i and layout j are geometrically
different if any component is moved a certain distance from the layout configu-
ration (Bénabès et al., 2011). Nevertheless, evaluating the similarities globally
is more generic than individual component comparison. A similarity indicator
defines how similar two layout designs are based on the element-wise differ-
ence in Song et al. (2021b). However, it can not differentiate the symmetrical
configuration, and it becomes time consuming when the size of the layout area
increases. The main contributions of this paper are the following:

1. It develops a multi-objective layout model with functional constraints us-
ing the new component representation. The proposed model optimizes the
balance and activity requirements between components, and considers the
accessibility of components from the container’s entry.

2. An efficient multi-objective optimizer that integrates accessibility analysis
within simulated annealing method is proposed to conduct the optimization
in the feasible alternatives that respect all constraints.

3. The proposed algorithm allows efficient optimization of complex layout
problems, enabling a truly interactive design process. A modified similar-
ity indicator based on the relative position is proposed. The user could
select the most favorable solution based on the hierarchical similarity vi-
sualization.

The paper is organized as follows. Section 2 introduces the overview of the
related work. Section 3 formally defines the problem model. Then the proposed
optimization framework is described in Section 4. Section 5 presents the results
analysis. The conclusions and perspectives are discussed in Section 6.

2 Related work

2.1 Layout optimization

The layout problem defined by the representation of components, formulation
of objectives, and evaluation of constraints maybe different but it is non-
deterministic polynomial-time hard in general. Finding optimal layouts is be-
yond the reach of exact optimization techniques (Xie and Sahinidis, 2008).
Stochastic algorithms have been proposed to provide sub-optimal solutions in
reasonable computational time, such as extended pattern search designed for
wind farm layout (Du Pont and Cagan, 2012), genetic algorithm applied for
vehicle layout (Guarneri et al., 2013), particle swarm optimization of oper-
ating theater layout (Chraibi et al., 2016) and simulated annealing used for
plans layout (Zheng and Ren, 2020). The optimal configuration can be ob-
tained through design techniques. Cagan and Mitchell (1993) developed shape
annealing by integrating shape grammars into simulated annealing. The shape
grammar defines a transformation rule for an existing shape(component) and
is applied incrementally to generate a set of configurations. It is worth not-
ing that layout problems involve components placements and have a range of
variability.



4 Xiaoxiao Song1 et al.

Current layout optimization techniques can be divided into mathemati-
cal models or heuristic methods. In the continuous formulation, the position
and/or orientation of components are variables. Mixed integer programming
approach takes the orientation as integer variable while a modified genetic al-
gorithm with rotation operator can avoid the mixed integer form (Hasda et al.,
2016). Various placement algorithms and encoding schemes are designed for
efficient layout optimization (Tiwari et al., 2006). Miao et al. (2008) devel-
oped a packing genetic algorithm with customized operators and the encoding
scheme for an army vehicle. Cagan et al. (1998) developed a simulated anneal-
ing algorithm using translation and rotation related movement for complex
geometrical shapes layout problems. What’s more, the layout problem can be
formulated as a quadratic assignment problem and solved as a combinatorial
problem. Simulated annealing demonstrated the robustness in combinatorial
layout optimization (Baykasoğlu and Gindy, 2001; Singh and Sharma, 2008;
Şahin, 2011; Moradi and Shadrokh, 2019).

The mathematical model can easily incorporate description of the prob-
lem and perfectly reflect reality, while using heuristic methods can reduce the
search complexity. A flexible bay structure (Mazinani et al., 2012; Garcia-
Hernandez et al., 2015) and a slicing tree (Shayan and Chittilappilly, 2004;
Ripon et al., 2013; Kang and Chae, 2017) divide the container into horizon-
tal and vertical directions, and the components are restricted to be located
inside follow a specific logical order. Whereas the constructive heuristic gen-
erates a complete layout that others cannot represent by sequentially placing
components anywhere inside the container (Hosseini nasab et al., 2018).

The placement approach applied with meta-heuristic proved to be an ef-
ficient algorithm for layout optimization (Halawa et al., 2021a). A genetic
algorithm encodes the packing sequences and a placement algorithm deter-
mines the component placements for components packing in Li et al. (2014).
Gonçalves and Resende (2015) proposed one hybrid approach to minimize the
distances between components. A biased random-key genetic algorithm deter-
mines the order and a placement positions facilities, finally, a linear program-
ming model is applied for local optimization. In Huo et al. (2021), an NSGAII
algorithm encodes the placement sequence to optimize multi-objective layout
problems, a local optimization algorithm based on simulated annealing is in-
voked if the similarity among individuals extends the threshold. In parallel,
several layout optimization methods combined constructive approach and sim-
ulated annealing can be found in recent layout problems studies. Xiao et al.
(2013) proposed a two-step heuristic algorithm using discrete modeling, first,
the feasible layout is constructed using the placement order of simulated an-
nealing. Then, local optimization is followed to improve the solution in each
zone. Allahyari and Azab (2018) developed a simulated annealing with swap
operator and displaced operator to optimize the solution generated by the
placement. Simulated annealing has fewer parameters and the simpler struc-
ture compared to genetic algorithm optimizations.



Multi-objective optimization of layout with functional constraints 5

2.2 Accessibility integration

In most real-world applications, the main constraints are the geometrical con-
straints between components. More importantly, the components are function-
ally connected. The accessibility is one particular layout functional constraint
that expresses the maintainability, inspection as well as reachability to compo-
nents. For instances, leave free space around the facility to ensure components
function properly (Bénabès et al., 2010), keep enough whitespace in cell de-
sign to ensure pins reachability (Seo et al., 2017) and bundle multiple wires
as a harness for easy inspection (Masoudi and Fadel, 2021). Accessibility is a
functional constraint in layout design, but can be formulated as a geometrical
expression. Considering the accessibility requirement, the designer can insert
the expertise in problem descriptions or integrate the accessibility constraint
in problem formulations. Michalek et al. (2002) applied the intersection con-
straint to force the room interaction to ensure access and RazaviAlavi and
AbouRizk (2017) integrated minimum distance constraint for accessibility be-
tween facilities. More recently, Halawa et al. (2021b) formed identical rooms
into one or two rows to ensure a corridor can access the rooms in pods de-
sign. The intuition-inspired way limits innovation of finding solutions. Grignon
and Fadel (2004) implemented necessary access volumes as static components
and maximized the number of intersecting components. Bénabès et al. (2010)
characterized the accessibility as one distance-based objective in layout opti-
mization. However, introducing the objective may increase the difficulty and
computational cost. As far as we know, the accessibility analysis in layout
optimizations has not been developed maturely yet.

The reviewed studies have greatly enriched the layout knowledge base and
applications. However, most research work is tested using pre-defined prob-
lems and remains theoretical. Also, accessibility is not completely considered.
And the optimization may generate many infeasible solutions, particularly in
the dense layout problem. Besides, the existing constructive method is applied
in parallel with meta-heuristic optimization, where the component placement
is determined by estimating the objective iteratively. In other words, the ob-
jective function evaluation is based on the accumulating process, assuming
that the objective function values between component are determined inde-
pendently. However, the assumption is not true in reality.

3 Layout model

The problem is to locate the rectangular components in a rectangular con-
tainer. Based on the different functional properties of components, the novel
component, including the solid and virtual part is defined. To formulate the
model, we define the following notations in Table 1.



6 Xiaoxiao Song1 et al.

Table 1 Model notations

ci Component i
si Solid component i
vij Virtual component j of si
n Number of component
ni Number of virtual component attached to si
(xi, yi) Coordinates of si
(wi, hi) Size of si
(xLi

, yBi
, xRi

, yTi
) Left, Bottom, Right, Top side location of si

(xij , yij) Coordinates of vij
(wij , hij) Size of vij
βs Solid components density
βv Virtual components density
βc Components capacity
a Available space
(xa, ya) Coordinates of available space a
(wa, ha) Size of available space a
(xLa , yBa , xRa , yTa ) Left, Bottom, Right, Top side location of a
mi Mass of si
(xci , yci ) Gravity center of si
(Xgra, Ygra) Gravity center of all solid components
(X′

gra, Y
′
gra) Geometry center of container

(W,H) Size of container
ωij Activity factor between ci and cj
dij Distance from center of si to sj

3.1 Component definition

The layout problem aims to find the optimal arrangement of components in a
container. If the components are solid, meaning that the overlap is forbidden.
However, in reality, there are virtual components without mass where the
overlap among them is acceptable. For example, the space of the cabinet for
door opening and closing in Fig. 2(a), the space of the drawer to pull it out
in Fig. 2(b), and the space of desk to allow the user sit down as shown in
Fig. 2(c) etc. Moreover, a collapsible object is designed to be folded flat when

(a) (b) (c)

Fig. 2 Component examples (a) Cabinet, (b) Drawer, (c) Desk.



Multi-objective optimization of layout with functional constraints 7

it is not being used, such as a collapsible chair or desk in the office. The
collapsible component is stored easily and its foldable character saves more
space. Besides, the foldable, expandable, retractable, inflatable, and stackable
components also allow multi-task.

Based on the analysis above, the different components are summarized for
the layout problem formulation:

1. Virtual components could overlap with virtual components and have no
mass.

2. Solid components could not overlap with solid or virtual components and
have mass. A solid component may become temporary solid if it is collapsi-
ble and can overlap with virtual and solid components.

Thus, the component ci = (si, vij), i = 1, ..., n, j = 1, ..., ni, can have the
solid component si (solid rectangle) and the virtual component vij (dotted
rectangle), as shown in Fig. 3. Each solid component si is represented by
coordinates (xi, yi) and rectangle size (wi, hi). There are ni accessibility spaces,
namely virtual components vij , attached to si. The virtual component vij is
defined by coordinates (xij , yij) and dotted rectangle size (wij , hij) in the
local frame of si. The solid and virtual components can be denoted as si =
(xi, yi, wi, hi) and vij = (xij , yij , wij , hij), respectively.

Fig. 3 Component ci representation.

3.2 Capacity definition

Before applying an optimization algorithm, it is necessary to analyze the fea-
sible complexity of the problem. The feasible complexity analysis aims to es-
timate the space capacity, which is the most desirable question in a layout
design. For the layout description, the area occupied by components should be
less than the container area. One example of three solid components packing
is shown in Fig. 4(a). The density represents the container area occupied by

the components. The density of solid components βs =
∑n

i=1(wi×hi)

W×H , and the

density of virtual components βv =
∑n

i=1

∑ni
j=1(wij×hij)

W×H , W,H are the size of
the container space. However, the overlap among virtual components is ac-
ceptable. The sum of the dimensions of the components will exaggerate the
feasibility complexity and incorrectly indicates that the problem can not be



8 Xiaoxiao Song1 et al.

(a) (b)

Fig. 4 Component packing (a) Solid components, (b) Solid and virtual components.

solved (i.e., βs +βv > 1). Therefore, a capacity index βc is defined to measure
the minimum occupied space of a given number of solid and virtual com-
ponents. Bénabès et al. (2012) estimated the capacity using the intersection
matrix with no geometry included. Song et al. (2021a) maximized the overlap
of virtual spaces and found the minimum occupied space of the components.
It turns out that the latter method is more accurate. One example of three
components packing is shown in Fig. 4(b). We can deduce the relationship
between the density and capacity as:

βs ≤ βc ≤ βs + βv (1)

In the early problem design, space capacity is essential to the designer. If the
layout problem is feasible, the capacity should be less than 1. The larger the
value, the more difficult it is to find feasible solutions. And the capacity is
more precise than the density.

3.3 Problem formulation

In most layout problems, the problem formulation comprises the various com-
ponents, the geometrical and functional constraints, the qualitative and quan-
titative objectives. The functional constraints specify the functional require-
ments of components. Some components like external windows and doors are
not orientation-free and need a specific direction to connect to the wall. The
edge constraint is designed to force the component against the edge of the
space because of a window or door. To simplify the formulation, we introduce
the side location. The side location of component si can be extracted from
two extreme corners’ coordinates (xi, yi, xi + wi, yi + hi). Each component si
has four sides, defined as (xLi

, yBi
, xRi

, yTi
):

1. Left side location xLi
= xi

2. Bottom side location yBi
= yi

3. Right side location xRi
= xi + wi

4. Top side location yTi
= yi + hi

In order to force a component si to the side of a rectangular space a =
(xa, ya, wa, ha), defined by the bottom left coordinates and sizes, the com-
ponent side locations (xLi

, yBi
, xRi

, yTi
) and available space side locations

(xLa
, yBa

, xRa
, yTa

) should satisfy:

min{(xLa
− xLi

)
2
, (yBi

− yBa
)
2
, (xRi

− xRa
)
2
, (yTi

− yTa
)
2} = 0 (2)



Multi-objective optimization of layout with functional constraints 9

The layout problem is a multi-objective problem. The first objective aims
to balance the mass distribution. It is calculated as the minimization of the Eu-
clidean distance between gravity center of all solid components and geometry
center of the container:

f1 =

√(
Xgra −X ′

gra

)2
+
(
Ygra − Y ′

gra

)2
(3)

Xgra =

∑n
i=1 (xci ×mi)∑n

i=1 mi
, Ygra =

∑n
i=1 (yci ×mi)∑n

i=1 mi
(4)

where xci , yci are the gravity center and mi is the mass of si. Xgra and Ygra

are the gravity center of all solid components that can be obtained according
to the sizes and coordinates. X

′

gra, Y
′

gra represent the geometry center of the
container.

Another objective f2 optimizes the functional distance of components. In
order to quantitatively describe the activity relationship between components,
an activity factor is designed according to expert judgment to define the rela-
tionship between components. For instance, there is less circulation between
energy network and ventilation, and the activity factor may be zero to reduce
the distance effects. In contrast, it is important to limit interactions between
the energy network and the electrical network, so the circulation distance
should be maximized and the activity coefficient between them can be taken
-1. The formulation can be expressed as:

f2 =

n−1∑
i=1

n∑
j=i+1

dij × ωij (5)

dij =

√(
xci − xcj

)2
+
(
yci − ycj

)2
(6)

where ωij represents activity factor and dij measures the Euclidean distance
between component ci and cj .

The multi-objective layout optimization aims to find the arrangement (lo-
cation and dimension) of components c = {c1, c2, ..., cn}, optimize objectives
f1, f2 and satisfy geometrical (non-overlap and non-protrusion) and functional
constraints (accessibility, edge).

4 Optimization approach

In the problem modelling, we introduce the virtual components connected
to the solid component to deal with local accessibility. Indeed, the virtual
space may be inaccessible from the entrance if there is no path to access
it. The integration of virtual spaces is necessary but is not suffice for the
component accessibility. The layout model is composed by a set of rectangular
components. Therefore, the proposed method uses rectangle as the accessible
space required by the user, shown in Fig. 5, where rectangles represent the
path taken by the user inside the layout, in order to reach to the component



10 Xiaoxiao Song1 et al.

Fig. 5 Accessibility representation.

from the entrance. In our work, we characterizes component accessibility as
a constraint during the optimization process. The more constraints, the more
the design space is divided into separate zones. Also, the lager the capacity
index, the harder it is to find feasible configurations. The layout problem is
then more complex and effective constraint evaluation must be implemented to
reduce the computational time. Thus, the optimization based on constructive
approach is proposed addressing the accessibility optimization difficulties.

Algorithm 1 Optimization framework
1: While stop condition not met
2: Given current state X = (c,p)
3: For each component ci = (si, vij) with configuration pi, ci ∈ c, pi ∈ p
4: Space selection based on strategy
5: Component placement subject to accessibility analysis
6: Space generation
7: Evaluate objective functions F = (f1(X), f2(X))
8: Neighbor generation Xnew ←− SA
9: Similarity analysis

Constructive
placement

This section explains the optimization framework, including the main ele-
ments of the constructive placement, simulated annealing and similarity anal-
ysis, described in Algorithm 1: a constructive placement algorithm, to place
component ci ∈ c following placement sequence c = (c1, ..., cn): firstly, se-
lects the available space for component placement, then places the compo-
nent within the area according to configuration sequence p = (p1, ..., pn) and
determine the configuration among the accessibility satisfied candidates, fi-
nally updates space generation; a simulated annealing algorithm, to evaluate
two layout designs constructed from two sequences F = (f1(X), f2(X)) and
F = (f1(Xnew), f2(Xnew)), determines which combination is better, denoted
as current state X = (c,p), then generates new sequences Xnew improving
objectives; a similarity analysis is followed after optimization to evaluate how
similar the layout designs are and help designer to select the most favorable so-
lution. The optimization algorithm circumvents the difficulty arising from the
designed constraints. In particular, the constructive placement is introduced
to decrease the computational complexity in the optimization.



Multi-objective optimization of layout with functional constraints 11

4.1 Space generation

Constructive placement algorithm is inspired from Lai and Chan (1997). The
former algorithm was developed for the cutting problem and the virtual com-
ponents are not considered. To account for virtual spaces, we propose a novel
constructive placement algorithm. It places the components with respect to
the constraints and ensures the search for feasible solutions. The space around
the placed components will be divided into available spaces. The available rect-
angular space is defined by the coordinates of lower left corner, the dimensions
along the axes where a = (xa, ya, wa, ha). The complete space generation be-
tween the component space and available space generates four candidate avail-
able spaces, named aL = (xaL

, yaL
, waL

, haL
), aR = (xaR

, yaR
, waR

, haR
), aT =

(xaT
, yaT

, waT
, haT

) and aB = (xaB
, yaB

, waB
, haB

), as shown in Fig. 6(a). In
contrast, if the component space and available space partially intersect, some
candidate available space may not exist, for example in Fig. 6(b), the right
side location xR1

of component s1 is not included in the available space, so
the aR does not exist. As mentioned before, the overlap of solid components is

(a) (b)

Fig. 6 Space generation (a) Complete included case, (b) Partial intersected case.

forbidden while the overlap of virtual components is allowed. To place compo-
nents in the feasible regions, a tracks the available space generation of placed
solid components while a′ records the available space generation of placed
solid and virtual components. And we have a = {a1, ..., am},a′ = {a1, ..., ak}.
The relationship between available spaces can be formulated as:

∀i ∈ [1, k],∃j ∈ [1,m], ai ⊑ aj (7)

m and k represent the number of spaces in a and a′. New virtual components
will be placed in a to benefit overlap between virtual components, while new
solid components will be placed in a′ to guarantee non-overlap of solid compo-
nents. After a component is placed, the space generation replaces the available
space that intersects the component space with candidate available spaces. In
addition, before adding candidate available spaces to the space list, it should
remove the available space if it is included in any candidate available space,
and filter out the candidate available space if it is included in any available
space. The update aims to release storage space.



12 Xiaoxiao Song1 et al.

(a) (b)

(c) (d)

Fig. 7 Component placement and space generation (a) Space generation of a, (b) Space
generation of a′, (c) Tree representation of a, (d) Tree representation of a′.

Fig. 7 illustrates one space generation example. At first, the available space
in a and a′ is initialized to the container size, a0 = [0, 0,W,H]. Once the solid
component s1 is placed, a0 will be divided into new available spaces {a1, a2}.
The space generation is shown using a slicing tree representation in Fig. 7(c).
Besides, the virtual component v11 placed in a1 generates new available spaces
{a3, a4, a5} in Fig. 7(d). The novel space generation integrates the available
space generation of the placed solid and virtual components. Placing the new
components in available spaces ensures the search for feasible solutions that
satisfy the geometrical constraints.

4.2 Space selection

To place a component ci, it should decide which available space will be used.
The component configuration is decided by the selected space in lists a and a′.
The successive placement process can be treated as a combination problem.
Thus, an effective space selection rule is essential for a constructive placement.
In this paper, three space selection strategies are proposed and compared in
experimental tests.

1. Strategy 1: Check all the combinations of spaces (ai, aj), ai ∈ a′ and
aj ∈ a.

2. Strategy 2: Select one combination of spaces (ai, aj), ai ∈ a′, aj ∈ a sat-
isfying Eq. 7, ai is the smallest sized space. The selection aims to success-
fully finish the construction process with less computational effort, namely
space-filling strategy.

3. Strategy 3: Select one combination of spaces (ai, aj), ai ∈ a′, aj ∈ a
satisfying Eq. 7, ai is the largest sized space.



Multi-objective optimization of layout with functional constraints 13

4.3 Component placement

For a component ci, it has four rotation configurations. The placement is
performed only for available space in which the component fits, and there
will be two possibilities according to the selection of the available space in
a′ and a. If the selected space ai ∈ a′ and aj ∈ a are coincide, then the
component will be placed in the corners of selected space with four rotations.
It ensures less margin space is generated and the non-overlap constraint is
satisfied automatically. The feasible configurations are numbered from 1 to 16
as shown in Fig. 8, and we have the configuration sequence pi = (1, 2, ..., 16).
Otherwise, the solid component will be placed in the corners of ai, and the
configurations in Fig. 8(b), (c) becomes the placements as shown in Fig. 9,
where certain configurations will be adjusted according to the selected space
aj . One example is given in Fig. 10, instead of placing c2 in the corner in
Fig. 10(a), the position is refined to avoid overlapping with c1 in Fig. 10(b).

(a) (b) (c) (d)

Fig. 8 Placement examples ai and aj are coincide.

(a) (b)

Fig. 9 Placement examples ai and aj are not coincide.

(a) (b)

Fig. 10 Placement adjustment.



14 Xiaoxiao Song1 et al.

Assume that the current available spaces are kept in a and a′. To place
component ci, the accessibility analysis in applied as summarized in Algo-
rithm 2. The accessibility analysis builds the connection tree using spaces in

Algorithm 2 Accessibility analysis
1: Initialize the door space ad.
2: Generate connection tree of available space list a = {a1, ..., ai, ..., aj , .., am}.
3: Find path for each placed virtual component.

a that generated by solid components. The root is ad and the nodes are the
connected space ai, aj in a. The connection is measured by intersection space:

max(0,min(xRai
, xRaj

)−max(xLai
, xLaj

)) ≥ wr (8)

max(0,min(yTai
, yTaj

)−max(yBai
, yBaj

)) ≥ hr (9)

where the rectangle size (wr, hr) represents the accessible space required by
the user. The connection is evaluated at each level of the tree. Once the tree
generation is finished, check if there is one path for each placed virtual com-
ponent (accessible from the door through available space; ignore the indirect
connection between components). Assuming component ci = (si, vij) is acces-
sible from the entrance, there is at least one path for the human to reach the
component. The path starts from the door space ad and ends at the virtual
space of the component vij . For the placed virtual component vij , find the cor-
responding space av where it placed inside. If there is a path start=ad, end=av,
path=[ad, . . . , av], then the component is accessible; otherwise, the compo-
nent’s configuration is not acceptable. One example is presented in Fig. 11,
the placement of v11 occupies a1, and there is one path=[ad, a2, a1].

Fig. 11 Connection path [ad, a2, a1].

Fig. 12 illustrates the procedure of accessibility analysis. The placements
of (c1, c2, c3, c4) in Fig. 12(a) generate available spaces a = {a1, a2, a3, a4, a5}
in Fig. 12(b) in colors. The connection tree in Fig. 12(c) is generated based on
the Eq. 8 and Eq. 9, where tree={ad : [a1], a1 : [a2, a3, a5], a2 : [a4], a4 : [], a3 :
[], a5 : []}. And there exists at least one connection path for the placed virtual
components:

– v11: path=[ad, a1, a2]



Multi-objective optimization of layout with functional constraints 15

(a) (b) (c)

(d) (e) (f)

Fig. 12 Accessibility analysis (a) Placement of components ci = (si, vij), i ∈ (1, 2, 3, 4),
(b) Space generation a of (s1, s2, s3, s4), (c) Connection tree a generated by (s1, s2, s3, s4),
(d) Placement of components ci = (si, vij), i ∈ (1, 2, 3, 4, 5), (e) Space generation a of
(s1, s2, s3, s4, s5), (f) Connection tree a generated by (s1, s2, s3, s4, s5).

– v21: path=[ad, a1, a2, a4]
– v31: path=[ad, a1]
– v41: path=[ad, a1, a3]

So the placed components are accessible and the current layout configuration
is feasible. If the placement continues and the component c5 is placed as shown
in Fig. 12(d), then the space generation updates as in Fig. 12(e) and the con-
nection tree becomes tree={ad : [a1, a6], a1 : [a2′ , a3, a5], a6 : [a5], a2′ : [], a3 :
[], a5 : []} as shown in Fig. 12(f). There is a connection path for solid compo-
nents s3, s4 while s1, s2 can not be accessible anymore. So the configuration
does not satisfy the accessible requirement. The placement of c5 will not be
accepted as a feasible solution.

Indeed, the placement of component ci may have more than one feasi-
ble configurations satisfying the geometrical and functional constraints. We
need the criteria to select which configuration is used for the space genera-
tion. For the high-capacity layout problem, maximizing the space utilization
to find feasible designs always has the highest priority. However, we notice that
maximizing the overlap of virtual spaces sometimes conflicts with accessibility
requirements. If the overlap maximization is too aggressive than other objec-
tives, then the final solutions will converge to part of the feasible region. To
balance the feasibility and the diversity, we classify the configurations based on
the container boundary then select configuration according to the overlap max-
imization rule. A detailed explanation of component placement is summarized
in Algorithm 3. In step 1, we select space and place the component to have
the geometrically feasible configurations pig. Then the component placement



16 Xiaoxiao Song1 et al.

is determined by the boundary classification in step 2, accessibility verification
in step 3 and overlap maximization in step 4.

Algorithm 3 Component placement
1: Place component ci following the placement sequence c. With the selected available

space (ai, aj), ai ∈ a′, aj ∈ a according to the space selection strategy, go through the
configuration sequence pi to find all the feasible configurations that satisfy the geometric
constraints, denoted as pig = (i1, i2, ..., ir), r ≤ 16.

2: Classify the configurations in pig . If the configuration is on the boundary, keep it in
the first level pib1 , otherwise, keep it in the list pib2 . And the feasible configurations
becomes pib = (j1, ..., jl︸ ︷︷ ︸

pib1

, jl+1, ..., jr︸ ︷︷ ︸
pib2

).

3: Check the accessibility requirement of the obtained configurations and filter
out the unsatisfied candidates. The final feasible configurations list is pia =
(k1, ..., kh︸ ︷︷ ︸

pia1

, kh+1, ..., kq︸ ︷︷ ︸
pia2

), q ≤ r ≤ 16.

4: If there are more than one feasible configurations in pia1 , sort the configuration list
by computing the available space area in descending order. The first with maximum
available space in pia1 will be selected as the prior choice; otherwise, select the first
configuration with maximum available space in pia2 .

4.4 Simulated annealing algorithm

With the placement sequences c and configuration sequences p, the placement
algorithm can constructively build a layout. Moreover, the proposed algorithm
uses the discrete formulation and the complexity is computed according to the
combination possibilities N . The complexity N relates to the number of spaces
in a,a′. For the selected available space (ai, aj), i ∈ [1, k], j ∈ [1,m], there are
at most 16 feasible solutions pia = (k1, ..., kq), q ≤ 16. If we check all combi-
nations of available spaces in strategy 1, the combination complexity for one
component equals N = q ∗ m ∗ k. In strategy 2 and 3, check one selected
available space, then the complexity becomes N = q. The complexity of strat-
egy 1 can be highly increased if the number of available spaces is quite large.
Furthermore, as the number of components increases, the computational time
to explore the sequence space using an exhaustive search approach increases
exponentially. Hence, it is necessary to develop a meta-heuristic method to
effectively search the feasible space.

Simulated annealing is a stochastic neighborhood search approach for global
optimization and has been widely implemented in various combinatorial prob-
lems. The combinatorial optimization aims to find the optimal sequencing
or permutation of multiple discrete terms. It originated from the concept in
physics explaining the annealing of a solid until finding the minimal energy.
Similar to the physical process, the annealing process generates a new solution
in the neighborhood at each iteration. It allows to replace the current solution



Multi-objective optimization of layout with functional constraints 17

with a worse neighborhood solution. The probability decreases along with the
temperature, enabling hill-climbing.

In previous work, we proposed a nondomination-based simulated annealing
to solve multi-objective problems and proved its good performance (Song et al.,
2021a). So it is used to improve the placement and configuration sequences
here. An external archive is used to keep non-dominated solutions during the
optimization. And new sequences are generated by a swap operator. In the
swap procedure of the placement sequence, σ is related to temperature t:

σ = n ∗ exp(−1/t) (10)

The integer parameter σ ∈ [1, n], n is the number of components, determines
the process of neighbor generation. With high temperature and big σ, any
two elements of the sequence can be exchanged; with low temperature and
small σ, only the last few elements could be exchanged. The mechanism
is the same in the configuration sequence. Given a state X, a layout with
F (X) = (f1(X), f2(X)) is generated using the constructive placement. Multi-
objective optimization aims at finding multiple non-dominated points. In SA,
we consider the new state Xnew as a better solution based on the nondomi-
nation relationship between F (Xnew) and F (X). Assuming that all objective
functions are minimized, the domination can be expressed as:{

∀i ∈ [1, 2] fi(Xnew) ≤ fi(X)
∃j ∈ [1, 2] fj(Xnew) < fj(X)

(11)

In fact, F (Xnew) dominates F (X) if F (Xnew) is no worse than F (X) for all
objectives and F (Xnew) is better than F (X) for at least one objective. Then
definitely Xnew is a better solution. However, accepting a poor solution en-
ables uphill moves sometimes, which is one of the cores of simulated annealing
algorithm. The new state Xnew will replace the current state X if one of the
conditions is satisfied:

1. F (Xnew) dominates F (X).
2. F (X) dominates F (Xnew) and rand(0, 1) < exp(−(F (Xnew)−F (X))/t)

3. F (Xnew) and F (X) are non-dominated solutions, and F (Xnew) is not dom-
inated by any solution in the archive; or F (Xnew) is not far from the ob-
tained Pareto-front.

The annealing process determines how many temperature decreases are per-
formed in the outer loop and the iterations per temperature. New solutions
will be generated and compared in the inner loop. The temperature t is initial-
ized as t = ts and reduced with the cooling rate r in the outer loop, t = t ∗ r.
The optimization searches for the better solution until it reaches the maximum
iteration number L.

4.5 Similarity analysis

The proposed optimization addresses the difficulties of constraints and searches
for feasible solutions effectively. In traditional multi-objective optimization,



18 Xiaoxiao Song1 et al.

optimization techniques can be evaluated by the convergence and diversity,
that is, the comparison of the desired and obtained solutions. However, the
layout problem optimization is special:

– Some requirements are difficult to model mathematically, therefore, they
are typically simplified or ignored in optimization models.

– The multi-objective optimizer searches for trade-off solutions in both ob-
jectives. The optimal solution is subjectively selected by the designer.

– The final decision-making evaluates not only the performance in the ob-
jective space, but also the quality in the design space. However, there are
fewer performance indicators for diversity evaluation in the design space.

Thus, layout optimization aims to search for diverse solutions with good ob-
jective values. The designer can choose among solutions to achieve the best
compromise between optimization objectives. Therefore, we will keep all the
feasible solutions in memory and evaluate similarities among them. Main-
taining the diversity of solutions is important to guarantee interaction after
optimization.

The similarity analysis is performed on the obtained solutions. In general,
two layout designs are similar if they have similar configurations of certain
components. To simplify a layout design, the relative position scheme is intro-
duced to replace the original layout with a n-by-n matrix M in Eq. 12. Each
binary element is a pairwise comparison of components (ci, cj). The binary
variable defines the relative position of the components and ensures symmet-
rical configuration detection.

M =


00 01 · · · 10
10 00 · · · 01
...

...
...

...
11 · · · · · · 00

 (12)

In a pairwise comparison of components (ci, cj), there are four possible relative
positions I, II, III, IV of component cj with respect to the reference compo-
nent ci, as shown in Fig. 13(a), it is determined according to the location of
centroid, expressed as:

αxij = xci − xcj (13)

αyij
= yci − ycj (14)

If i = j, we use the container as the reference component. The comparison is
determined as follows:

1. I: αxij ≤ 0 and αyij ≤ 0, Mij = 00. c3 is in the region I of reference
component c4 in Fig. 13(b), M34 = 00

2. II: αxij
> 0 and αyij

≤ 0, Mij = 10. c1 is in the region II of reference
component c4 in Fig. 13(b), M14 = 10

3. III: αxij
> 0 and αyij

> 0, Mij = 11. c2 is in the region III of reference
component c4 in Fig. 13(b), M24 = 11



Multi-objective optimization of layout with functional constraints 19

(a) (b)

Fig. 13 Relative position (a) Definition, (b) Representation.

4. IV : αxij ≤ 0 and αyij > 0, Mij = 01. c5 is in the region IV of reference
component c4 in Fig. 13(b), M54 = 01

To evaluate the similarities among the relative position schemes, calculate
an element-wise difference for each pair of the matrices M . The similarity
value is expressed as the percentage of all elements that are the same. The
similarity is between 0 to 1. The larger the value, the higher the similarity.
For symmetrical configuration detection, convert αxij

= 1− αxij
to check the

bilateral symmetry, and αyij
= 1− αyij

to check the longitudinal symmetry.

5 Experiment result

In this section, first, three different layout examples are formulated to as-
sess the developed constructive placement. Then the proposed optimization
approach and the comparative algorithms are applied to solve the practical
shelter problem provided by Thales. The algorithms were coded using Object-
Oriented Programming language in Python.

5.1 Constructive placement strategy comparison

Constructive placement is designed to circumvent the difficulty arising from
constraints. With a given number of iterations, the more feasible solutions it
finds, the better the performance. Here, we use three layout examples to test
the different strategies in the constructive placement. The strategy is proposed
to place component in appropriate space with respect to the constraints. The
strategy involves two aspects of configuration sequence and space selection.
The test examples properties are summarized in Table 2, including the num-
ber, the density and capacity, the size of the components, and the functional
constraints.

5.1.1 Test 1 – Equal-sized component in Fig. 14(a)

The equal-sized component can eliminate the effect of different placement se-
quences. The problem is concerned with placing 18 equal-sized components



20 Xiaoxiao Song1 et al.

Table 2 Properties of test examples.

Test 1 Test 2 Test 3
Number of components 18 11 9
Density of solid components 0.54 0.47 0.38
Density of virtual components 0.54 0.66 0.65
Density of solid and virtual components 1.08 1.13 1.03
Capacity 0.81 0.75 0.77
Equal size Yes No No
Accessibility No Yes Yes
Number of components
edge on the wall

0 0 2

(a) Test 1 (b) Test 2 (c) Test 3

Fig. 14 Test examples.

into a container, width is 4000 mm, and height is 2000 mm, respecting geomet-
rical constraints. The virtual component, symbolized by the dotted rectangle,
has the same size as the solid component. And the dimensions are given in
Table 3.

Table 3 Data in Test 1.

Item Dim/w (mm) Dim/h (mm)
1-18.type 1 components 600 400

5.1.2 Test 2 – Unequal-sized component in Fig. 14(b)

The unequal-sized component is more common and realistic. The problem in-
volves accessibility requirements and geometrical constraints. It has four types
of components: type 1, type 2, type 4 components, each with 1-equal size vir-
tual component, and type 3 component with 2-equal size virtual components.
The door, fixed to the lower left corner of the container, is modeled as the
virtual component. The container size is the same as in Test 1. The detailed
dimensions of components are given in Table 4.

5.1.3 Test 3 – Big-sized component in Fig. 14(c)

The big-sized component introduces the size difference issue into test instances.
The container is rectangular with a width of 5945 mm and a height of 2286
mm. The big-sized component, namely type 1 component, has three virtual



Multi-objective optimization of layout with functional constraints 21

Table 4 Data in Test 2.

Item Dim/w (mm) Dim/h (mm)
1-3.type 1 components 600 400
4-6.type 2 components 1000 800
7-9.type 3 components 200 200
10.type 4 components 1200 400
11.door 1200 1200

components: two virtual components with a width of 2469 mm and a height
of 600 mm, one virtual component with a width of 800 mm and a height of
841 mm, and occupies almost half of the container space as shown in Fig. 15.
Except for geometrical constraints, additional constraints include edge on the

Fig. 15 Big-sized component representation.

wall, alignment, and accessibility of components. The alignment specifies that
type 2 component must attach to the right side of type 1 component. In
addition, type 6 and type 7 components must place against one wall of the
container, this requirement can be found in the air conditioner or other window
like component. The door, fixed to the upper left corner of the container, is
modeled as the virtual component. The other components, each with a virtual
component attached, have the same width as the solid component and the
height of 600 mm. The dimensions are given in Table 5.

Table 5 Data in Test 3.

Item Dim/w (mm) Dim/h (mm)
1.type 1 component 2469 841
2.type 2 component 860 1100
3.type 3 component 650 650
4.type 4 component 600 600
5.type 5 component 2320 350
6.type 6 component 800 406
7.type 7 component 1330 283
8.type 8 component 600 300
9.door 1060 1060

The strategy comparison results are summarized in Table 6 where the num-
ber of solutions is obtained with a given number of iterations. Three space
selection strategies are compared with/without configuration permutations. If
we do not permute the configuration sequence, then the configuration sequence
is fixed. In Test 1, if there is no configuration permutation, the constructive



22 Xiaoxiao Song1 et al.

Table 6 Component placement strategy comparison.

Number of solutions Test 1 Test 2 Test 3

Fix configuration sequence
Space selection strategy 1 1/100 2/100 24/600
Space selection strategy 2 1/100 37/100 21/600
Space selection strategy 3 1/100 5/100 2/600

Permute configuration sequence
Space selection strategy 1 22/100 5/100 51/600
Space selection strategy 2 26/100 40/100 50/600
Space selection strategy 3 13/100 6/100 18/600

placement will find one feasible solution with poor diversity. In order to over-
come the limitation, the configuration permutation is included in the construc-
tive process, and we can see that the number of solutions is improved dozens
of times. In Test 2, both geometrical and functional constraints are considered.
Because of the unequal-sized component, three strategies with fixed configura-
tion sequence can find more than one feasible solution. It is worth noting that
it results from the placement sequence but not the configuration permutation.
Besides, it turns out that the performance of strategy 1 will decrease if there
is accessibility requirement. Furthermore, strategy 2 starts with the smallest
size of the available space and fills the container space gradually. It helps the
placement to finish the constructive process. In Test 3, the number of feasible
solutions in strategy 1 and 2 are at the same level. However, since strategy
1 goes through all of the combinations of the available space, it is tedious
compared to strategy 2. After the comparison, we can conclude that

– The permutation of configuration sequence is necessary for diversity in the
design space, especially in the case of equal-sized component.

– Considering the search ability under constraints, strategy 2 is much better
than strategy 3. The edge constraints can improve the performance of
strategy 1 but it is time-consuming. Strategy 2 conducts the placement
effectively and achieves similar or better results compared to the others.

5.2 Practical example

Based on the above analysis, strategy 2 with configuration permutation is ef-
fective in generating feasible solutions and proved to be the best placement
strategy for developing the multi-objective optimization algorithm. The pro-
posed layout model represents an unexplored layout feature, namely accessi-
bility, compared to current research. Thus, none of the existing layout opti-
mization methods are applicable. However, we would like to demonstrate the
feasible difficulty of the layout optimization using the Sequential Least Squares
Programming (SLSQP) and the non-dominated sorting genetic algorithm (NS-
GAII) in a practical shelter layout example. In contrast, the proposed opti-
mization algorithm resolves the layout problem efficiently and achieves highly
preferable results.

The layout problem studied here, as shown in Fig. 16, is a three-dimensional
shelter with three different spaces, named storage zone, technical zone and



Multi-objective optimization of layout with functional constraints 23

operator zone. Light and mobile shelter with on-board equipment provides
complete protection for personnel and against battlefield aggression. Its versa-
tility means a variety of armed forces can use the shelter. For our first study,

Fig. 16 3D representation.

Fig. 17 2D configuration model.

we simplify the shelter into two-dimensional because the components are full
height, as shown in Fig. 17. Consequently, the evaluation of constraints is more
easily realized. The data of the container is given in Table 7.

Table 7 Data of container in 2D model.

Item Dim/W (mm) Dim/H (mm)
container 5930 2306
storage zone 703 2306
technical zone 3400 2306
operator zone 1717 2306

Moreover, each component is represented by a rectangle. A set of virtual
components attached to components (light color) represent accessibility spaces.



24 Xiaoxiao Song1 et al.

Table 8 Data of components in storage zone.

Item Dim/w (mm) Dim/h (mm) Mass/m (kg)

1.air-conditioning host 435 983 180
2.storage 700 1000 150

Table 9 Data of components in technical zone.

Item Dim/w (mm) Dim/h (mm) Mass/m (kg)

3.cabinet 600 600 420
4.cabinet 600 600 420
5.cabinet 600 600 420
6.cabinet 600 600 274
7.desk 277 550 10
8.desk 550 277 34
9.desk 277 550 10
10.electrical box 400 203 48
11.air conditioner 795 353 70
12.energy box 600 800 500
13.ventilation 575 680 72
14.door 1000 5 120

Table 10 Data of components in operator zone.

Item Dim/w (mm) Dim/h (mm) Mass/m (kg)

15.electrical box 300 600 54
16.air conditioner 353 795 54
17.desk 600 800 54
18.desk 600 800 54
19.console 600 580 420
20.door 1000 5 120

For example, virtual spaces of the cabinet guarantee interaction and correct
usability. Dimensions described in Table 8, Table 9 and Table 10 match the
configuration in Fig. 17. The size of the virtual component, either equal to the
size of the attached solid component, or set to 600 mm, represents the size
of the accessible space. Except for the accessibility constraint, there are other
functional constraints of the application:

1. The cabinets are placed in an allowed space, the 70 mm virtual space is
used to avoid full attachment to the wall and is also dedicated the shock
absorbers freedom.

2. The desk 8 is grouped with a cloison, the cloison is a window-like compo-
nent that has to be attached to the external wall of the shelter.

3. The desk 7 and desk 9 can be fully folded and can overlap with all virtual
spaces. However, the overlap of desks is forbidden considering the possi-
bility of two people working simultaneously. So they are temporary solid
components.



Multi-objective optimization of layout with functional constraints 25

4. The electrical boxes and the air conditioners have to be placed against the
wall.

5. The ventilation maintains from the outside, therefore has to be on the back
wall and no rotation is allowed.

6. The doors are accessible from the exterior and the virtual space is used for
a door opening from outside.

Here we consider the technical zone in the shelter problem as the single con-
tainer optimization problem. The technical zone’s capacity equals 0.82, which
is the most complex layout compared to the test examples with functional
constraints. The distance between cabinet 3, cabinet 4, cabinet 5 and energy
box 12 should be maximized. For simplicity, we list the activity relationship
of these four components in Table 11. So the two objectives are defined as:
minimizing layout balance (objective 1) and maximizing distance (objective
2).

Table 11 Activity factor.

Item 3.cabinet 4.cabinet 5.cabinet 12.energy box
3.cabinet 0 0 0 -1
4.cabinet 0 0 0 -1
5.cabinet 0 0 0 -1
12.energy box -1 -1 -1 0

– Optimization using SLSQP. The continuous optimization is based on Se-
quential Least Squares Programming (SLSQP), which can handle equality
and inequality constraints. The two objectives of the layout problem are
combined into a single objective with the same weight to the local opti-
mization. We have implemented this algorithm using minimize function
available in Python with 10000 iterations. Since it is local optimization, it
is fast to find the solution as shown in Fig. 18(a). However, it is difficult
to jump out of the current search region and get stuck in the infeasible
region as shown in Fig. 18(b). In other words, the final solution highly de-
pends on the initial solution. Setting different initial configurations through
interaction seems to work, but it is not realistic.

(a) (b)

Fig. 18 SLSQP optimization result.



26 Xiaoxiao Song1 et al.

– Optimization using NSGAII. Genetic algorithm is the most popular nature-
inspired evolutionary algorithm. It improves the solution through crossover
and mutation operators and survival selection. NSGAII is implemented
based on non-dominated sorting technique in multi-objective optimization.
We have implemented this algorithm using the Pymoo available in Python.
The population size is taken as 100, the number of generation equals to
100. The simulated binary crossover probability is 0.9 and polynomial mu-
tation probability is 1/n, where n is the number of decision variables. Since
it is a population-based algorithm, the evolution evolved with generation.
However, the layout problem studied here is quite complex with high ca-
pacity. So the algorithm may generate many infeasible solutions where the
non-overlap constraint cannot be satisfied. Even if different operators are
used for new individuals generation, the non-overlap satisfied individuals
are still very sparse. Finally, the optimization has a high possibility to con-
verge into a small niche of the solution space. This phenomenon can be
seen in Fig. 19, and the Pareto-front is generated by the local movement
of components in one type of layout design.

Fig. 19 NSGAII result.

Based on the above analysis, it proves that applying the continuous optimiza-
tion algorithm has limited performance. Moreover, there is no method that is
much better than the other. The constructive placement makes the search for
feasible solutions easier but the combination complexity remains high. There-
fore, it is better to guide the search for constructive placement. As far as
we know, simulated annealing is more lightweight on a large scale or a large
number of iterations than genetic algorithm. So we use simulated annealing to
optimize the configuration sequences and the placement sequences, and apply



Multi-objective optimization of layout with functional constraints 27

constructive placement generate feasible solutions. The initial temperature ts
is initialized according to the algorithm in Ben-Ameur (2004) where ts = 100.
Set the cooling rate r = 0.9 and the total number of iterations L = 4000 to
perform the annealing process.

The optimization algorithm outputs the configurations of the layout un-
der the technical zone area, which is the most complex area in this shelter,
through limited iterations. The algorithm searches for solutions by consider-
ing the geometrical and functional constraints and objectives of the problem
formulation. The optimization algorithm generated 337 feasible solutions, as
shown in Fig. 20. We can see that the exploration region distributed in objec-

Fig. 20 Display of solutions in objective space.

tive space is no longer a niche. Besides, the proposed algorithm can generate
more choices for designers. At the same time, it can find better solutions in
both objectives compared to the initial solution. For example, the solution re-
alizes the best compromise between optimization objectives. Fig. 21 presents
the initial solution , and an optimal solution that realizes the maximum value
of objective 2. It can be seen that there is a significant difference between the
optimal layout solution and the initial solution. Table 12 illustrates that the

Table 12 Optimal solution and initial solution.

Objective Initial solution Optimal solution
objective 1/mm(minimization) 74.3 47.4
objective 2/mm(maximization) 7164.6 8003.9

optimal solution can achieve much better objective values compared to the



28 Xiaoxiao Song1 et al.

(a) Initial solution (b) Optimal solution

Fig. 21 Solution in design space.

initial one. Indeed, the initial configuration created by the engineers of Thales
was generated from geometrical aspects. The experimental results prove that
the proposed algorithm is effective in solving the layout problems under func-
tional constraints.

5.3 Similarity analysis

It is proved that the optimization based on constructive approach can generate
high-qualified solutions that are well-distributed in objective space. However,
the diversity in design space is also important. Therefore, we now analyze the
similarities among the obtained feasible solutions. To simplify the demonstra-
tion, we first apply non-dominated sorting to select solutions in the rank range
[1, 13] and the number of solutions reduced to 130. Then we randomly select
six solutions as shown in Fig. 22. The corresponding configurations are given
in Fig. 23 and each solution is a new variant compared to the other (at least
one different component configuration).

The similarity indicators for paired layout designs formulate a similarity
symmetric matrix, represented in Fig. 24(a). By comparison, designs 4 and
5 have higher similarity values compared to design 0. Considering the differ-
ent variants, it is necessary to identify the difference and cluster similar sets.
Considering the undetermined number of clusters, the similarity matrix is an-
alyzed using hierarchy cluster algorithm Müllner (2011). The algorithm uses
a distance matrix to merge similar solutions consecutively and builds nested
clusters until there is only one cluster left. The hierarchical similarity rela-
tionship of the selected designs is presented in Fig. 24(b). It can detect the
geometrical differences between configurations and identify similar groups. For
example, the similar designs 4 and 5 are assigned into one group, whereas de-
signs 0 and 2 are grouped into another cluster. The visualization tool can
provide information on the hierarchical similarity of designs, helping users to
quickly select the preferred solution.

After preliminary experiments, we now apply the similarity analysis to
ranked solutions, and clustering results are shown in Fig. 25. If we set the
threshold to define the clusters, we can have the different grouped solutions,
as shown in Fig. 26, the same grouped solutions have the same color. It is
proved that, close points in objective space can have different configurations



Multi-objective optimization of layout with functional constraints 29

Fig. 22 Display of ranked solutions.

Fig. 23 Display of selected configurations.

in design space and vice versa. In the layout optimization, configurations affect
the system performance directly. The similarity analysis makes the solution
selection more reliable.



30 Xiaoxiao Song1 et al.

(a) Similarity matrix (b) Hierarchical cluster dendrogram

Fig. 24 Similarity analysis.

Fig. 25 Display of cluster dendrogram.

6 Conclusion

This paper presents an optimization based on constructive approach to solve
the novel multi-objective layout problem model. The model, taking into ac-
count the virtual components and the accessibility to components, requires an
effective optimization algorithm for addressing the feasible difficulty. Two ob-
jectives, namely layout balance and activities, are considered. The continuous
optimizer may get stuck and fail to jump out of (in-)feasible search region. In-
stead, a multi-objective optimization method integrates accessibility analysis
with simulated annealing is developed.

The accessibility analysis is conducted by the constructive placement. The
placement, not only integrates space generation of solid and virtual compo-
nents guaranteeing non-overlap of components, but also introduces the idea
of connection path ensuring accessibility of components. Layout solution is



Multi-objective optimization of layout with functional constraints 31

Fig. 26 Display of cluster in objective space.

constructed sequentially, which is a combination process. Simulated anneal-
ing search technique explores combinations of component configurations and
optimizes both objectives simultaneously. The strategy comparisons confirm
that the space-filling strategy can effectively generate feasible solutions and
reduce computational efforts. The experimentation proves that the proposed
optimization is effective in ensuring accessibility and finding high-qualified so-
lutions compared to the existing algorithms. Moreover, the similarity analysis
demonstrates good diversity of the obtained layout set, which can be applied
as an interactive tool.

The developed optimization method uses the space generation of rectangu-
lar shapes. Further research could adapt the available space generation to the
free-form component. Besides, the proposed layout problem model assumes
having one container space. However, it could be interesting if the space di-
vision, i.e., the partition in the shelter problem, is formulated as one variable
to ensure the automatic layout design during the optimization process. After-
ward, we will investigate the multi-container layout problems.

Acknowledgements This work was supported by China Scholarship Council. The authors
would like to acknowledge Thales for the application study.

Conflict of interest

The authors declare that they have no conflict of interest.



32 Xiaoxiao Song1 et al.

References

Allahyari MZ, Azab A (2018) Mathematical modeling and multi-start search
simulated annealing for unequal-area facility layout problem. Expert Syst
Appl 91:46–62, DOI https://doi.org/10.1016/j.eswa.2017.07.049

Baykasoğlu A, Gindy NN (2001) A simulated annealing algorithm for dynamic
layout problem. Comput & Oper Res 28(14):1403–1426, DOI https://doi.
org/10.1016/S0305-0548(00)00049-6

Ben-Ameur W (2004) Computing the initial temperature of simulated an-
nealing. Comput Optim Appl 29:369–385, DOI https://doi.org/10.1023/B:
COAP.0000044187.23143.bd

Bénabès J, Bennis F, Poirson E, Ravaut Y (2010) Accessibility in Layout Op-
timization. In: 2nd International Conference On Engineering Optimization,
Lisbonne, Portugal

Bénabès J, Poirson E, Bennis F, Ravaut Y (2011) Interactive modular opti-
mization strategy for layout problems. In: Proceedings of the ASME 2011
International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, Washington, DC, United States, pp
553–562, DOI http://doi.org/10.1115/DETC2011-47925

Bénabès J, Guédas B, Poirson E, Bennis F (2012) Indicator of feasibility for
layout problems. In: Proceedings of the ASME 2012 International Design
Engineering Technical Conferences and Computers and Information in En-
gineering Conference, Chicago, Illinois, United States, pp 727–734, DOI
http://doi.org/10.1115/DETC2012-70640

Cagan J, Mitchell WJ (1993) Optimally directed shape generation by shape
annealing. Environ Plan B: Plan Des 20(1):5–12, DOI https://doi.org/10.
1068/b200005

Cagan J, Degentesh D, Yin S (1998) A simulated annealing-based algo-
rithm using hierarchical models for general three-dimensional component
layout. Computer-Aided Des 30(10):781–790, DOI https://doi.org/10.1016/
S0010-4485(98)00036-0

Cagan J, Shimada K, Yin S (2002) A survey of computational approaches
to three-dimensional layout problems. Computer-Aided Des 34(8):597–611,
DOI https://doi.org/10.1016/S0010-4485(01)00109-9

Chraibi A, Kharraja S, Osman IH, El-Beqqali O (2016) A particle swarm
algorithm for solving the multi-objective operating theater layout prob-
lem. IFAC-PapersOnLine 49(12):1169–1174, DOI https://doi.org/10.1016/
j.ifacol.2016.07.663

Cuco A, Sousa F, Vlassov V, Silva Neto A (2011) Multi-objective design
optimization of a new space radiator. Optim Eng 12:393–406, DOI https:
//doi.org/10.1007/s11081-011-9142-6

Cuco A, Sousa F, Silva Neto A (2014) A multi-objective methodology for
spacecraft equipment layouts. Optim Eng 16, DOI https://doi.org/10.1007/
s11081-014-9252-z

Du Pont BL, Cagan J (2012) An Extended Pattern Search Approach to Wind
Farm Layout Optimization. J Mech Des 134(8), DOI https://doi.org/10.



Multi-objective optimization of layout with functional constraints 33

1115/1.4006997
Fossati G, Miguel L, Paucar Casas W (2019) Multi-objective optimization of
the suspension system parameters of a full vehicle model. Optim Eng 20,
DOI https://doi.org/10.1007/s11081-018-9403-8

Gao X, Hu X, Feng X, Feng W, Hu Y, Tang X (2019) Layout optimiza-
tion design of power iot chips. In: 2019 IEEE 4th Advanced Information
Technology, Electronic and Automation Control Conference (IAEAC), pp
1620–1624, DOI https://doi.org/10.1109/IAEAC47372.2019.8998045

Garcia-Hernandez L, Palomo-Romero J, Salas-Morera L, Arauzo-Azofra A,
Pierreval H (2015) A novel hybrid evolutionary approach for capturing deci-
sion maker knowledge into the unequal area facility layout problem. Expert
Syst Appl 42(10):4697–4708, DOI https://doi.org/10.1016/j.eswa.2015.01.
037

Ghassemi Tari F, Neghabi H (2015) A new linear adjacency approach for
facility layout problem with unequal area departments. J Manuf Syst 37:93–
103, DOI https://doi.org/10.1016/j.jmsy.2015.09.003

Gonçalves JF, Resende MG (2015) A biased random-key genetic algorithm
for the unequal area facility layout problem. Eur J Oper Res 246:86–107,
DOI https://doi.org/10.1016/j.ejor.2015.04.029

Grignon PM, Fadel GM (2004) A GA Based Configuration Design Optimiza-
tion Method . J Mech Des 126(1):6–15, DOI https://doi.org/10.1115/1.
1637656

Guarneri P, Dandurand BC, Fadel GM, Wiecek MM (2013) Bilevel multiob-
jective optimization of vehicle layout. In: Proceedings of the 10th World
Congress on Structural and Multidisciplinary Optimization, p 19–24

Halawa F, Chalil Madathil S, Khasawneh MT (2021a) Integrated framework
of process mining and simulation–optimization for pod structured clinical
layout design. Expert Syst Appl 185:115696, DOI https://doi.org/10.1016/
j.eswa.2021.115696

Halawa F, Madathil SC, Khasawneh MT (2021b) Multi-objective unequal
area pod-structured healthcare facility layout problem with daylight re-
quirements. Comput Ind Eng 162:107722, DOI https://doi.org/10.1016/j.
cie.2021.107722

Hasda R, Bhattacharjya R, Bennis F (2016) Modified genetic algorithms for
solving facility layout problems. Int J Interact Des Manuf 11:713–725, DOI
https://doi.org/10.1007/s12008-016-0362-z

Hosseini nasab H, Fereidouni S, Ghomi S, Fakhrzad M (2018) Classifica-
tion of facility layout problems: a review study. Int J Adv Manuf Technol
94:957–977, DOI https://doi.org/10.1007/s00170-017-0895-8

Huo J, Liu J, Gao H (2021) An nsga-ii algorithm with adaptive local search
for a new double-row model solution to a multi-floor hospital facility layout
problem. Appl Sci 11(4):1758, DOI https://doi.org/10.3390/app11041758

Kang S, Chae J (2017) Harmony search for the layout design of an unequal
area facility. Expert Syst Appl 79:269–281, DOI https://doi.org/10.1016/j.
eswa.2017.02.047



34 Xiaoxiao Song1 et al.

Lai K, Chan JW (1997) Developing a simulated annealing algorithm for the
cutting stock problem. Comput Ind Eng 32(1):115–127, DOI https://doi.
org/10.1016/S0360-8352(96)00205-7

Li X, Zhao Z, Zhang K (2014) A genetic algorithm for the three-dimensional
bin packing problem with heterogeneous bins. In: Industrial and Systems
Engineering Research Conference, pp 2039–2048

Lin Z, Yingjie Z (2019) Solving the facility layout problem with genetic algo-
rithm. In: 2019 IEEE 6th International Conference on Industrial Engineering
and Applications (ICIEA), pp 164–168, DOI https://doi.org/10.1109/IEA.
2019.8715148

Masoudi N, Fadel G (2021) An Optimization Framework for the Design of Ca-
ble Harness Layouts in Planar Interconnected Systems. J Mech Des 144(1),
DOI https://doi.org/10.1115/1.4051685

Mazinani M, Abedzadeh M, Mohebali N (2012) Dynamic facility layout
problem based on flexible bay structure and solving by genetic algo-
rithm. Int J Adv Manuf Technol 65:929–943, DOI https://doi.org/10.1007/
s00170-012-4229-6

Miao Y, Fadel G, Gantovnik V (2008) Vehicle configuration design with a
packing genetic algorithm. Int J Heavy Vehicle Sys 15:433–448, DOI https:
//doi.org/10.1504/IJHVS.2008.022252

Michalek J, Choudhary R, Papalambros P (2002) Architectural layout de-
sign optimization. Eng Optim 34:461–484, DOI https://doi.org/10.1080/
03052150214016

Moradi N, Shadrokh S (2019) A simulated annealing optimization algorithm
for equal and un-equal area construction site layout problem. Int J Res p
89–104, DOI https://doi.org/10.22105/RIEJ.2019.169867.1073

Müllner D (2011) Modern hierarchical, agglomerative clustering algorithms.
1109.2378

Niroomand S, Hadi-Vencheh A, Şahin R, Vizvári B (2015) Modified migrating
birds optimization algorithm for closed loop layout with exact distances in
flexible manufacturing systems. Expert Syst Appl 42(19):6586–6597, DOI
https://doi.org/10.1016/j.eswa.2015.04.040

Ou-Yang C, Utamima A (2013) Hybrid estimation of distribution algorithm
for solving single row facility layout problem. Comput Ind Eng 66:95–103,
DOI https://doi.org/10.1016/j.cie.2013.05.018

RazaviAlavi S, AbouRizk S (2017) Site layout and construction plan optimiza-
tion using an integrated genetic algorithm simulation framework. J Comput
Civil Eng 31:04017011, DOI https://doi.org/10.1061/(ASCE)CP.1943-5487.
0000653

Ripon KSN, Glette K, Khan KN, Hovin M, Torresen J (2013) Adaptive vari-
able neighborhood search for solving multi-objective facility layout prob-
lems with unequal area facilities. Swarm Evolut Comput 8:1–12, DOI
https://doi.org/10.1016/j.swevo.2012.07.003

Saraswat A, Venkatadri U, Castillo I (2015) A framework for multi-objective
facility layout design. Comput Ind Eng 90:167–176, DOI https://doi.org/
10.1016/j.cie.2015.09.006

1109.2378


Multi-objective optimization of layout with functional constraints 35

Seo J, Jung J, Kim S, Shin Y (2017) Pin accessibility-driven cell layout re-
design and placement optimization. In: Proceedings of the 54th Annual De-
sign Automation Conference, pp 1–6, DOI https://doi.org/10.1145/3061639.
3062302

Shayan E, Chittilappilly A (2004) Genetic algorithm for facilities layout prob-
lems based on slicing tree structure. Int J Prod Res 42:4055–4067, DOI
https://doi.org/10.1080/00207540410001716471

Singh SP, Sharma R (2008) Two-level modified simulated annealing based
approach for solving facility layout problem. INT J PROD RES 46:3563–
3582, DOI https://doi.org/10.1080/00207540601178557

Song X, Poirson E, Ravaut Y, Bennis F (2021a) Efficient multi-objective sim-
ulated annealing algorithm for interactive layout problems. Int J Interact
Des 15:441–451, DOI https://doi.org/10.1007/s12008-021-00773-1

Song X, Poirson E, Ravaut Y, Bennis F (2021b) Interactive design optimiza-
tion of layout problems. In: Advances in Production Management Systems.
Artificial Intelligence for Sustainable and Resilient Production Systems, pp
387–395, DOI https://doi.org/10.1007/978-3-030-85914-5 41

Szykman S, Cagan J (1997) Constrained Three-Dimensional Component Lay-
out Using Simulated Annealing. J Mech Des 119(1):28–35, DOI https:
//doi.org/10.1115/1.2828785

Tiwari S, Fadel G, Gantovnik V (2006) A survey of various encoding schemes
and associated placement algorithms applied to packing and layout prob-
lems. In: International Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference, vol Volume 1: 32nd
Design Automation Conference, Parts A and B, pp 609–618, DOI https:
//doi.org/10.1115/DETC2006-99271

Xiao Y, Seo Y, Seo M (2013) A two-step heuristic algorithm for layout de-
sign of unequal-sized facilities with input/output points. Int J Prod Res
51(14):4200–4222, DOI https://doi.org/10.1080/00207543.2012.752589

Xie W, Sahinidis NV (2008) A branch-and-bound algorithm for the continuous
facility layout problem. Comput Chem Eng 32(4):1016–1028, DOI https:
//doi.org/10.1016/j.compchemeng.2007.05.003

Zawidzki M, Szklarski J (2020) Multi-objective optimization of the floor plan
of a single story family house considering position and orientation. Adv Eng
Softw 141:102766, DOI https://doi.org/10.1016/j.advengsoft.2019.102766

Zheng H, Ren Y (2020) Architectural layout design through simulated an-
nealing algorithm. In: Proceedings of the 25th International Conference of
the Association for Computer-Aided Architectural Design Research in Asia
(CAADRIA), pp 275–284, DOI https://doi.org/10.52842/conf.caadria.2020.
1.275

Şahin R (2011) A simulated annealing algorithm for solving the bi-objective
facility layout problem. Expert Syst Appl 38(4):4460–4465, DOI https://
doi.org/10.1016/j.eswa.2010.09.117


	Introduction
	Related work
	Layout model
	Optimization approach
	Experiment result
	Conclusion

