SINGULAR MODULES FOR AFFINE LIE ALGEBRAS, AND APPLICATIONS TO IRREGULAR WZNW CONFORMAL BLOCKS
Résumé
We give a mathematical definition of irregular conformal blocks in the genus-zero WZNW model for any simple Lie algebra, using coinvariants of modules for affine Lie algebras whose parameters match up with those of moduli spaces of irregular meromorphic connections: the open de Rham spaces. The Segal-Sugawara representation of the Virasoro algebra is used to show that the spaces of irregular conformal blocks assemble into a flat vector bundle over the space of isomonodromy times à la Klarès, and we provide a universal version of the resulting flat connection generalising the irregular KZ connection of Reshetikhin and the dynamical KZ connection of Felder-Markov-Tarasov-Varchenko.
Origine | Fichiers produits par l'(les) auteur(s) |
---|