SINGULAR MODULES FOR AFFINE LIE ALGEBRAS, AND APPLICATIONS TO IRREGULAR WZNW CONFORMAL BLOCKS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

SINGULAR MODULES FOR AFFINE LIE ALGEBRAS, AND APPLICATIONS TO IRREGULAR WZNW CONFORMAL BLOCKS

Résumé

We give a mathematical definition of irregular conformal blocks in the genus-zero WZNW model for any simple Lie algebra, using coinvariants of modules for affine Lie algebras whose parameters match up with those of moduli spaces of irregular meromorphic connections: the open de Rham spaces. The Segal-Sugawara representation of the Virasoro algebra is used to show that the spaces of irregular conformal blocks assemble into a flat vector bundle over the space of isomonodromy times à la Klarès, and we provide a universal version of the resulting flat connection generalising the irregular KZ connection of Reshetikhin and the dynamical KZ connection of Felder-Markov-Tarasov-Varchenko.
Fichier principal
Vignette du fichier
revised_paper.pdf (476.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03748599 , version 1 (09-08-2022)
hal-03748599 , version 2 (12-06-2024)

Identifiants

  • HAL Id : hal-03748599 , version 1

Citer

Giovanni Felder, Gabriele Rembado. SINGULAR MODULES FOR AFFINE LIE ALGEBRAS, AND APPLICATIONS TO IRREGULAR WZNW CONFORMAL BLOCKS. 2022. ⟨hal-03748599v1⟩
57 Consultations
59 Téléchargements

Partager

More