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SINGULAR MODULES FOR AFFINE LIE ALGEBRAS, AND
APPLICATIONS TO IRREGULAR WZNW CONFORMAL BLOCKS

GIOVANNI FELDER AND GABRIELE REMBADO

Abstract. We give a mathematical definition of irregular conformal blocks in
the genus-zero WZNW model for any simple Lie algebra, using coinvariants
of modules for affine Lie algebras whose parameters match up with those of
moduli spaces of irregular meromorphic connections: the open de Rham spaces.
The Segal–Sugawara representation of the Virasoro algebra is used to show that
the spaces of irregular conformal blocks assemble into a flat vector bundle over
the space of isomonodromy times à la Klarès, and we provide a universal ver-
sion of the resulting flat connection generalising the irregular KZ connection
of Reshetikhin and the dynamical KZ connection of Felder–Markov–Tarasov–
Varchenko.
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Introduction and main results

In this paper we pursue the viewpoint that a natural mathematical formulation
of conformal field theory (CFT) lies within the geometry of moduli spaces of
meromorphic connections, and we take a step in this direction.

The prototype are the Knizhnik–Zamolodchikov equations (KZ) [33], in the
genus-zero Wess–Zumino–Novikov–Witten model (WZNW) for 2-dimensional
CFT [48, 49, 38]. They were originally introduced as the partial differential equa-
tions satisfied by n-point correlators, and mathematically they amount to a flat
connection on a vector bundle over the space of configurations of n-tuples of
points in the complex plane [16].

The construction of the flat connection relies on representation-theoretic con-
structions for affine Lie algebras, and on the Segal–Sugawara representation of
the Virasoro algebra on affine-Lie-algebra modules [34]. An alternative derivation
is possible via deformation quantisation of the Hamiltonian system controlling
isomonodromic deformations of Fuchsian systems on the Riemann sphere [41,
25], the Schlesinger system [43]. In particular the vector bundle where the KZ
connection is defined comes from the quantisation of moduli spaces of meromor-
phic connections with tame/regular singularities (simple poles).

In this paper we develop a representation-theoretic setup for any simple finite-
dimensional complex Lie algebra g, in order to go beyond the case of regular
singularities and allow for irregular/wild ones. We will thus define a family of
modules for g and for the affine Lie algebra ĝ associated to g, which we call “sin-
gular” modules, whose parameters match up with those of symplectic moduli
spaces of (possibly irregular) meromorphic connections on the sphere, generalis-
ing Verma modules.

Indeed the regular case will correspond to “tame” modules Vλ ⊆ V̂λ, which are
standard Verma modules for g ⊆ ĝ, whose defining representations depend on
characters b+ → C and b̂+ → C for Borel subalgebras b+ ⊆ b̂+—corresponding
to positive roots within the root system given by a Cartan subalgebra h ⊆ b+.
Such characters are encoded by linear maps λ ∈ h∨, which in turn match up with
local normal forms for (germs of) meromorphic connections around a simple
pole via the natural residue-pairing Lgdz⊗ Lg → C, where Lg = g⊗ C((z)) is
the (formal) loop algebra of g. Moreover, if G is the connected simply-connected
Lie group integrating g, then the G-action on the coadjoint G-orbit O ⊆ g∨ of
the character corresponds to a gauge action on meromorphic connections on a
trivial principal G-bundle, and repeating this construction at n > 1 marked points
on the sphere provides a finite-dimensional description of the moduli space of
isomorphism classes of logarithmic connections with prescribed positions of the
poles and residues, living on holomorphically trivial bundles: this is the open
part M∗dR ⊆ MdR of the de Rham space, that enters into the nonabelian Hodge
correspondence on complex curves. The full de Rham space MdR is obtained by
removing the requirement that the bundle be holomorphically trivial (rather just
topologically trivial [6, Rem. 2.1]).

Hence classically there is a complex symplectic reduction of a product of coad-

joint G-orbits Oi ⊆ g∨, the moduli space M∗dR =
(∏

i Oi

)
�0 G, whose quantum

counterpart is the vector space H = Hg of g-coinvariants of the tensor product
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H =
⊗
i Vλi of tame modules: the space of WZNW conformal blocks. Variations

of this construction use dual modules, or integrable highest-weight modules at
specific levels; others use g-invariants instead of coinvariants, but in any case one
very important feature are deformations.

Namely as the positions of the simple poles vary the moduli spaces assemble
into a symplectic fibre bundle M̃∗dR → Confn(C) over the space Confn(C) ⊆ Cn

of configurations of the noncoalescing simple poles, equipped with a flat sym-
plectic (nonlinear) Ehresmann connection: the isomonodromy connection [27], de-
fined here by the integrable Schlesinger system [43]. Leaves of this connection
are isomonodromic families of meromorphic connections, viz. connections shar-
ing the same monodromy data,1 hence classically we find a flat symplectic fibre
bundle. On the quantum side one thus looks for a (linear) flat connection on the
conformal block bundle, to yield identifications of different fibres up to the braid-
ing of the marked points, analogously to the symplectomorphisms defined by the
nonlinear isomonodromy connection. This natural flat connection is precisely the
KZ connection, which is intrinsically defined via the slot-wise action of the Sug-
awara operator L−1 ∈ Û

(
ĝ
)

on the tensor product Ĥ =
⊗
i V̂λi of tame modules

for the affine Lie algebra. The action is compatible with that of the Lie algebra of
g-valued meromorphic functions on the punctured sphere, hence induces a well
defined connection on the bundle of coinvariants, which finally is identified with
the bundle of conformal blocks.

This is the picture that we wish to generalise on the side of the representation
theory of affine Lie algebras. Namely to define generalisations of Verma modules
we look at the symplectic geometry of moduli spaces of irregular meromorphic
connections, which has been studied in much greater generality: for arbitrary
genus, complex reductive structure groups, arbitrary polar divisor, twisted irreg-
ular types and resonant residues, all in intrinsic terms allowing for the definition
of symplectic local systems [6, 7, 8, 12, 14], entering the wild nonabelian Hodge
correspondence on complex curves [5] (we concern ourselves here with the case of
genus zero, of a simple complex group, and untwisted irregular types; see [10, 13]
for terminology and motivation).

Hence the open de Rham spaces M∗dR are still defined. Importantly one now
considers isomorphism classes of connections with higher-order poles, which
have local moduli parametrising the whole of the principal part—beyond the
residue term. This may be formalised in terms of “deeper” coadjoint orbits of the
dual Lie algebra g∨p , where

gp = gJzK
/
zpgJzK '

p−1⊕
i=0

g⊗ zi ,

which is a Lie algebra of truncated g-currents, holomorphic at z = 0. Indeed the
residue-pairing matches gp up with a space of meromorphic g-valued 1-forms,
which we see as principal parts of (germs of) meromorphic connections on a
trivial principal G-bundle at a wild singularity, and the upshot is that one still

has the description M∗dR =
(∏

i Oi

)
�0 G: now however one considers coadjoint

1The same G-conjugacy class of monodromy representation of the fundamental group of the
punctured sphere, with the poles removed
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Gp-orbit Oi ⊆ g∨p , where Gp = G
(
CJzK

/
zpCJzK

)
is the group of (p− 1)-jets of

bundle automorphisms of the trivial principal G-bundle on a (formal) disc. The
diagonal G-action corresponds to a change of global trivialisation of the bundle,
as in the tame case (see the proof of [6, Prop. 2.1]).

Hence we will define modules W(p)
χ ⊆ Ŵ(p)

χ (at depth p > 1) for gp and ĝ re-
spectively, whose defining representations depend on elements of h∨p ⊆ g∨p in the
form of the characters for a Lie subalgebra generalising the positive Borels, and
so that for p = 1 they reduce to the usual tame modules (else they are “wild”).
This is done in Def. 1.1, which is a variations of similar definitions considered
elsewhere, and which is the best suited to our viewpoint on the spaces M∗dR.
For example (9) has a more general scope than the ”confluent Verma modules“
of [37], since we allow for an arbitrary simple Lie algebra and for arbitrary irreg-
ular singularities (of arbitrary Poincaré rank). Also we do not work in Liouville
theory, i.e. we do not consider modules for the Virasoro algebra as in [36]. Our
approach is closer to the ”level subalgebra“ of [17], or rather to one of its ”more
reasonable“ variants (see Rem. 4 of op. cit.); the other variant is used in [18, § 2.8]:
in this setup the natural pairing (13) matches the parameter of the modules with
half of principal parts of irregular meromorphic connections, contrary to (9)2—
which is one of the motivations behind Def. 1.1 (see also § 12). In addition to
the parameters of the modules (9) matching up with those of the open de Rham
spaces, the other two important differences with [18] is that we work at noncriti-
cal level to define flat connections on a bundle of irregular conformal blocks, and
that our gp-modules are highest-weight—leading to finite-dimensional spaces of
coinvariants.

The singular modules enjoy several natural generalisations of the standard
properties of tame modules, some of which we gather here. We will refer to
”affine“ modules when ĝ is involved, and to ”finite“ modules when gp is.

Theorem 1.
• The singular modules admit explicit PBW-generators (Cor. 3.1 and Cor. 3.2).
• The singular modules are smooth (Lem. 3.2).3

• The singular modules are h-semisimple (Prop. 3.1), and the finite singular mod-
ules have finite-dimensional h-weight spaces (Prop. 3.2).

• The finite singular modules are highest-weight gp-modules (Lem. 3.4).
• The singular modules are cyclically generated by a common eigenvector for the

Sugawara operators { Ln }n>p−1 (Prop. 5.1), which is an ”irregular vector of
order p− 1“ [24].

We also give a formula for the (finite) dimension of h-weight spaces of finite
modules, generalising the usual Weyl characters of Verma modules, in (25). The
combinatorial complexity still lies in the positive root lattice, so in the archetypal
case of g = sl(2, C) there is a simple solution (see (27)).

2The viewpoint of op. cit. on meromorphic connections is different: at critical level κ = −h∨

one identifies quotients of the ”universal Gaudin algebra“ with algebras of functions on spaces of
opers with prescribed singularities for the Langlands dual group LG of G, with a view towards the
geometric Langlands correspondence for loop groups [21].

3Recall a gJzK-module is smooth if every vector is annihilated by zNgJzK ⊆ gJzK for N� 0.
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After establishing these properties we consider tensor products of singular
modules labeled by marked points on the Riemann sphere, and study their space
H of coinvariants for the action of g-valued meromorphic functions with poles at
the marked points. Introducing generalisations of the standard filtrations/gradings
of tame modules we prove the following.

Theorem 2.

• The space H is canonically identified with the space of g-coinvariants for the
tensor product of finite modules (Props. 7.1, 7.2 and 8.1).

• The space H is finite-dimensional if one module is tame (Cor. 7.1).

To ensure nontriviality of the space of coinvariants we explore two options:
either replacing one of the modules at the marked points with its associated
contragredient representation (see Prop. 8.2), or restricting the action of ratio-
nal function to the subalgebra of those which vanish at an unmarked point (see
Rem. 7.1).

Finally we consider deformations of the marked points, i.e. variations of the
tame isomonodromy times. This is not the full set of isomonodromy times, as in
the most general setup one may also vary the irregular types and give nonlinear
differential equations for the invariance of Stokes data along the deformation,
generalising conjugacy classes of monodromy representations (and generalising
the isomonodromy times of [32], but also going beyond the ”generic“ case of [29]).
We briefly discuss one natural setup to introduce a space of irregular isomon-
odromy times in § 6.4, and we plan to pursue its quantum version in future
work, which should be more closely related to to [17, 18] (cf. the outlook section
just before § A).

Thus we allow for variations of marked points at finite distance on the sphere;
then we use the Sugawara operators to define a flat connection on the trivial
vector bundle whose fibre is the tensor product of affine singular modules, and
show this is compatible with the action of rational functions on the punctured
sphere (with the same proof of the tame case). Hence the spaces of coinvariants
assemble into a flat vector bundle over the space of tame isomonodromy times,
so in particular their dimension is a deformation-invariant—when finite.

Using the above results it is possible to give descriptions of the flat connections
on the space H of coinvariants. Considering all possible cases of our setup we
recover as expected:

(1) the KZ connection [33] (§ 9.2.1);
(2) a variation of the Cartan term of the dynamical KZ connection [19] (§ 9.2.2),

and the very same Cartan term with a slightly different setup (§ 12);
(3) the general case of [41] (§ 9.2.3), which generalises the KZ connection;
(4) a generalisation of op. cit. with nontrivial action on the module at infinity

(§ 9.2.4).

In particular the semiclassical limit of the flat connections indeed yields isomon-
odromy systems for irregular meromorphic connections on the sphere, as wanted.

Note the last two items in principle descend from a more general setup, where
the point at infinity is not fixed, provided one can show how horizontal sections
transform under the pull-back diagonal PSL(2, C)-action. Going in this direction,
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in § 11 we prove that horizontal sections of the bundle of coinvariants are nat-
urally equivariant under the action of the subgroup of affine transformations of
the complex plane, with the explicit transformation (64).

Finally we abstract the formulæ for the reduced connections on the space of
coinvariants in order to define a family of universal connection: these are connec-
tions ∇p on the trivial vector bundle with fibre U(gp)⊗n for p > 1, over the space
of tame isomonodromy times, which induce the above connections on H by tak-
ing representations.4 Since all induced connections are flat and well defined on
g-coinvariants, it is natural to conjecture that the same holds for the universal
connections before taking representations.

Theorem 3 (Thms. 10.1 and 10.2, and Prop. 10.1). The connection ∇p is flat, and
descends to a connection on g-coinvariants of the tensor power U(gp)⊗n.

These results show the singular modules provide a solid mathematical notion
of irregular conformal blocks in the genus-zero WNZW model [24, 50], for any
simple Lie algebra (with straightforward technical extension to the semisimple
case).

Recall irregular conformal blocks are central objects in the recent literature
on the asymptotically-free extension of the Alday–Gaiotto–Tachikawa correspon-
dence (AGT) [1, 22], which however is formulated in Liouville theory (i.e. mathe-
matically it deals with the representation theory of Virasoro algebras, rather then
affine Lie algebras). Irregular extensions in Liouville theory have been obtained
within the formalism of Whittaker modules, e.g. [20, 36]; in principle it should be
possible to relate the latter with our construction for g = sl(2, C), in view of the
duality between Liouville theory and the H+

3 -WZNW model [42] (then in turn
our construction should generalise [23] beyond sl(2, C), which is compatible with
the duality [42]).

Layout of the paper

In § 1 we consider a depth p > 1 to introduce singular Lie algebras S(p) ⊆ ĝ,
singular characters χ : S(p) → C, and affine/finite induced singular modules
W

(p)
χ ⊆ Ŵχ.
In § 2 we explicitly match up the data (p,χ) with the local moduli for the

isomorphism class of (the germ of) an irregular meromorphic connection.
In § 3 we introduce countable PBW-bases BW ⊆W of the finite singular mod-

ules, as well as gradings and filtrations on the finite and affine singular modules:
notably gradings F+

• and F̂±• for the degree in the variable ”z“, their associated
filtrations, and then h-weight gradings.

In § 4 we introduce left-module structures on (restricted) dual vector spaces
Ŵ∗ �W∗.

In § 5 we introduce the Sugawara operators Ln for n ∈ Z, and prove that the
cyclic vector w ∈ W ⊆ Ŵ is a common eigenvector for Ln with n > p− 1. This
concludes proving the properties of Thm. 1.

4Note the connection of [41] is given in universal terms: gp-modules and coinvariants are not
discussed, nor are the irregular types of irregular meromorphic connections.
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In § 6 we define the spaces of irregular conformal blocks H . They are quotients
of tensor products H ⊆ Ĥ of finite/affine singular modules labeled by marked
points on the Riemann sphere with respect to the action of g-valued meromorphic
functions (and we globalise the action introducing suitable sheaves over the space
of tame isomonodromy times).

In §§ 7 and 8 we study coinvariants, and we prove Thm. 2 using the material
of §§ 3 and 4.

In § 9 we introduce the flat connection on the bundle of irregular conformal
blocks, using the Sugawara operator L−1 and fixing the point at infinity. In § 9.2
we give explicit formulæ for the reduced connection.

In § 10 we introduce the universal connection ∇p at depth p > 1, on the trivial
vector bundle with fibre U(gp)⊗n over the (restricted) space of tame isomon-
odromy times, and we prove Thm. 3.

In § 11 we introduce the action of Möbius transformations on horizontal sec-
tions of the bundle of irregular conformal blocks, and establish equivariance un-
der affine transformations.

Finaly in § 12 we slightly modify the setup of § 1 to generalise the dynamical
KZ connection, i.e. [19, Eq. 3].

Lengthy computations are gathered in the appendix A.

Notation/conventions

Unless otherwise specified affine spaces, vector spaces, vector bundles, asso-
ciative/Lie algebras and tensor products are defined over C.

The end of a remark is signaled by a “4”.

Duals. The (algebraic) dual of a vector space W is written W∨ = Hom(W, C),
and the natural pairing W∨ ⊗W → C is α ⊗ w 7→ 〈α,w〉. If I is a set and
W =

⊕
i Fi(W) an I-graded vector space then the restricted/graded dual of (W,F•)

is the I-graded vector space W∗ :=
⊕
i∈I Fi(W)∨ ⊆

∏
i∈I Fi(W)∨ 'W∨.

Gradings and filtrations. If (I,6) is a totally ordered set and W =
⊕
i∈I Fi(W)

an I-graded vector space, the associated I-filtration on W is defined by the sub-
spaces F6i :=

⊕
j6i Fj(W).

If I and J are sets andWj =
⊕
i∈I F

(j)
i (Wj) a J-family of I-graded vector spaces,

the tensor product IJ-grading on W =
⊗
j∈JWj is defined by the subspaces

Fi :=

(⊗
j∈J

F
(j)
i(j)

)
, for i : J→ I .

If further (I,6) is a totally ordered Z-module then the tensor product I-filtration
on W is defined by the subspaces

F6i :=
⊕

∑
j∈J i(j)6i

Fi , for i ∈ I .

Lie-algebraic constructions. Let L be a Lie algebra. The abelianisation of L is the
abelian Lie algebra Lab := L

/[
L,L
]
, and the opposite of L is the Lie algebra Lop on

the same vector space, with bracket
[
X, Y

]
Lop :=

[
Y,X

]
L

for X, Y ∈ L.
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If p > 1 is an integer and “z” a variable then the associate Lie algebra of depth
p is

Lp := LJzK
/
zpLJzK ' L⊗

(
CJzK

/
zpCJzK

)
,

coming with a projection Lp � L1 = L. There is then a canonical vector space
isomorphism Lp '

⊕p−1
i=0 L⊗ z

i, which can be upgraded to an isomorphism of
Lie algebras if one defines a Lie bracket on the direct sum by truncating terms of
degree greater than p− 1.

If W is a left L-module then the space of L-coinvariants is WL :=W
/
LW, where

LW :=
∑
X∈L XW ⊆W—in particular Lab is the space of adL-coinvariants.

1. Setup

Let g be a finite-dimensional simple Lie algebra, and h ⊆ g a Cartan subalge-
bra. Let then R+ ⊆ R ⊆ h∨ be a choice of positive roots within the root system
R = R

(
g, h
)
, and R− := −R+ the subset of negative roots. Then there is a triangu-

lar decomposition g = n− ⊕ h⊕ n+, where n± is the maximal positive/negative
nilpotent subalgebra defined by the subset of positive/negative roots:

n± :=
⊕
α∈R±

gα , gα :=
{
X ∈ g

∣∣∣ (adH−α(H)
)
X = 0 for H ∈ h

}
.

Equip g with the minimal nondegenerate adg-invariant symmetric bilinear
form (· | ·) : g⊗ g → C—so the highest root has length

√
2. Consider then the

(formal) loop algebra Lg = g((z)) := g⊗C((z)), and let ĝ(·|·) = ĝ ' Lg⊕CK be the
associated affine Lie algebra. The Lie bracket of ĝ is defined by K ∈ Z(ĝ) and[
X⊗ f, Y ⊗ g

]
ĝ
=
[
X, Y

]
g
⊗ fg+ c(X⊗ f, Y ⊗ g)K , for f,g ∈ C((z)), X, Y ∈ g , (1)

where c : Lg∧Lg→ C is the Lie-algebra cocycle defined by

c(X⊗ f, Y ⊗ g) := (X | Y) ·Resz=0(gdf) , (2)

and where in turn Resz=0
(
ω
)
:= f−1 for ω =

∑
i fizi dz ∈ C((z))dz.

Then there is an analogous decomposition ĝ = n̂− ⊕ ĥ⊕ n̂+, where

n̂+ := (n+ ⊗ 1)⊕ zgJzK , n̂− := z−1g
[
z−1]⊕ (n− ⊗ 1) , ĥ := (h⊗ 1)⊕CK .

Finally let b± := h⊕ n± be the positive/negative Borel subalgebras associated
to the sets of positive/negative roots, and b̂± := (b± ⊗ 1)⊕ zgJzK⊕CK.

Hereafter we drop the “⊗1“ from the notation for vector subspaces of the
constant part g ⊆ Lg, and the subscripts from the Lie brackets.

Remark. The dual Coxeter number h∨ of the quadratic Lie algebra
(
g, (· | ·)

)
is

half of the eigenvalue for the adjoint action of the standard quadratic tensor on
g [30].

More precisely let (Xk)k be a basis of g, (Xk)k the (· | ·)-dual basis, and define

Ω :=
∑
k

Xk ⊗Xk ∈ g⊗2 ,

i.e. intrinsically the element corresponding to Idg ∈ g⊗ g∨ in the duality g∨ ' g
induced by (· | ·). The projection of Ω to the universal enveloping algebra is the
quadratic Casimir

C =
∑
K

XkX
k ∈ U(g) , (3)
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which is a central element—by the invariance of (· | ·). The adjoint action of C on
g is thus a homothety, and we define h∨ by

adC X =
∑
k

[
Xk, [Xk,X]

]
= 2h∨X , for X ∈ g .

We will also need a generalisation of the standard quadratic tensor Ω. For
m, l ∈ Z define

Ωml :=
∑
k

Xkz
m ⊗Xkzl ∈ Lg⊗2 , (4)

with the shorthand notation Xzi = X⊗ zi for X ∈ g and i ∈ Z. Then the identity
[C,X] =

∑
k

[
XkX

k,X
]
= 0, valid for all X ∈ g, also implies∑

k

Xkz
m ·
[
Xk,X

]
zl +

[
Xk,X

]
zm ·Xkzl = 0 , for m, l ∈ Z>0 . (5)

4

1.1. Singular modules. For an integer p > 1 consider the singular Lie subalgebra
S(p) ⊆ b̂+ (of depth p), defined by

S(p) := b+JzK+ zpgJzK⊕CK , (6)

so that S(1) = b̂+.

Lemma 1.1. There is an identification of abelian Lie algebras

S
(p)
ab ' hp ⊕CK . (7)

Proof. We can define a linear surjection π : S(p) � hp ⊕CK with kernel[
S(p),S(p)

]
= n+JzK+ zpgJzK , (8)

by setting
p−1∑
i=0

(Hi +Xi)⊗ zi + zpf+ aK 7−→
p−1∑
i=0

Hi ⊗ zi + aK ,

where f ∈ gJzK, a ∈ C, Hi ∈ h, and Xi ∈ n+ for i ∈ { 0, . . . ,p− 1 }. �

Characters of (6) are coded by linear maps S
(p)
ab → C, i.e. by elements of h∨p

plus the choice of a level κ ∈ C for the central element—using (7). We split the
notation: for p = 1 write λ ∈ h∨ the linear map, and for p > 2 write it (λ,q) ∈ h∨p ,

where q = (a1, . . . ,ap−1) ∈
(
hp
/
h
)∨ '⊕p−1

i=1
(
h⊗ zi

)∨.
We will refer to χ = χ(λ,q, κ) : S(p) → C as a singular character (of depth p),

and we denote Cχ the 1-dimensional left U
(
S(p)

)
-module defined by it. We also

refer to λ as the tame part of the singular character, and to q as the wild part.

Remark. This hints to the dictionary with irregular meromorphic connections on
the Riemann sphere: λ corresponds to a semisimple formal residue at a sim-
ple pole (a tame/regular singularity), and q to an untwisted irregular type at a
higher-order pole (a wild/irregular singularity), see § 2.

We will use the uniform notation λ = a0 when this distinction is not relevant.
4

Definition 1.1 (Affine singular modules).
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• The affine singular module (of depth p) for the singular character χ is

Ŵ = Ŵ
(p)
χ := Ind

U
(
ĝ
)

U
(
S(p)

)Cχ = U
(
ĝ
)
⊗
U
(
S(p)

) Cχ . (9)

• We write V̂ = V̂χ := Ŵ
(1)
χ , and call it the tame affine module for the

character χ = χ(λ, κ) : b̂+ → C.

The latter item is the standard definition of an affine Verma module, and by
definition these are level-κ modules.5

Now denote w = [1⊗ 1] ∈ Ŵ the cyclic vector; then using (7) and (8) yields

zpgJzKw = (0) = n+JzKw ,

Hziw = 〈ai,Hzi〉w , for H ∈ h, i ∈ { 0, . . . ,p− 1 } ,
(10)

plus Kw = κw. This generalises the relations satisfied by the highest-weight
vector in a tame module.

Consider now the subspace Ŵ− := U
(
g
[
z−1])w ⊆ Ŵ. Because of (10) it equals

Ŵ− = U
(
n̂−
)
w, so it is naturally a left U

(
n̂−
)
-module with cyclic vector w—

and it is canonically isomorphic to U
(
n̂−
)

as vector space. Further matching
up cyclic vectors yields an isomorphism Ŵ− ' V̂ of left U

(
g
[
z−1])-modules,

regardless of p > 1 and q ∈
(
hp
/
h
)∨. Note we implicitly use a C-basis of

U
(
ĝ
)

as provided by the Poincaré–Birkhoff–Witt theorem (PBW) for countable-
dimensional Lie algebras.

Consider then the subspace W := U
(
gJzK

)
w ⊆ Ŵ, which is naturally a left

U
(
gJzK

)
-module and which will play a more important role. An inductive proof

on the length of monomials—with base (10)—shows that zpgJzKW = (0), so the
gJzK-action factorises through the finite-dimensional quotient gJzK � gp and we
naturally have a left U(gp)-module. Further W = U

(
n−p
)
w since b+pw = Cw, so

in particular W ' U(n−p ) as vector spaces, independently of χ.

Remark. Here we use the triangular decomposition gp = n−p ⊕ hp ⊕ n+p and the
inclusion b+p = n+p ⊕ hp ⊆ gp. 4

One has n+p =
[
b+p , b+p

]
and

(
b+p
)

ab ' hp, so by (10) there is a canonical identi-
fication

W ' IndU(gp)

U(b+p )
Cχ = U(gp)⊗U(b+p )

Cχ , (11)

where we keep the notation χ : b+p → C for the character defined by (λ,q) ∈ h∨p—
the level κ is lost.

Definition 1.2 (Finite singular modules).

• We call W = W
(p)
χ ⊆ Ŵ the finite singular module (of depth p) for the

singular character χ.
• We write V = Vχ = W

(1)
χ , and call it the tame finite singular module for

the character χ = χ(λ) : b+ → C.

5Beware a ”regular“ Verma modules is a Verma module defined by a dominant weight λ ∈ h. This
is why we prefer using ”tame“.
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The latter item is the standard definition of a finite Verma module. Analo-
gously to the above, the finite tame module is canonically embedded as a U(g)-
submodule, namely as the subspace Ŵ− ∩W = U(g)w ⊆W.

On the whole there is an identification of left U
(
n̂−
)
-modules

Ŵ ' U
(
n̂−
)
⊗U(n−) U(n

−
p ) , (12)

independent of χ.

1.2. Algebricity. The structure of Ŵ as left-module is controlled by algebraic
elements, not by arbitrary formal power series.

More precisely define Lgalg = g
[
z±1] := g⊗ C

[
z±1], and then ĝalg � Lgalg

using the restriction of the cocycle (2). These are the algebraic loop algebra and
the algebraic affine Lie algebra of g, respectively. Replacing “gJzK” by “g[z]” in (9)
then yields left U

(
ĝalg
)
-modules, temporarily denoted Ŵalg, generated by a cyclic

vector walg ∈ Ŵalg.
On the other hand the modules Ŵ are left U

(
ĝalg
)
-modules via the inclusion

U
(
ĝalg
)
↪→ U

(
ĝ
)
, and composing with the canonical projection

U
(
ĝ
)
� Ŵ ' U

(
ĝ
)/

Ann
U
(
ĝ
)(w)

yields a linear map ι : U
(
ĝalg
)
→ Ŵ.

Lemma 1.2. The map ι induces an isomorphism Ŵalg ' Ŵ of left U
(
ĝalg
)
-modules.

Proof. By (10) the map ι is surjective, since Ŵ is generated by the cyclic vector
over U

(
Lgalg

)
. Its kernel is

Ker(ι) = Ann
U
(
ĝ
)(w)∩U(ĝalg

)
= Ann

U
(
ĝalg

)(walg) .

�

Hence the action of meromorphic g-valued functions on the singular modules
is given by Laurent polynomials only. We will drop the subscript “alg” from all
notations.

2. Relation with (irregular) meromorphic connections

There are canonical vector space isomorphisms
(
g⊗ zi

)∨ ' g⊗ z−(i+1) dz, for
i ∈ Z. They are induced from the nondegenerate LG-invariant residue-pairing

Lgdz×Lg −→ C, (X⊗ω, Y ⊗ g) 7−→ (X | Y) ·Resz=0(gω) , (13)

where Lgdz := g ⊗ C((z))dz, G is a connected simply-connected (simple) Lie
group with Lie algebra g, and LG the associated loop group.

Thus after fixing a level κ ∈ C the families of singular modules (9) and (11) are
both naturally parametrised by elements

A = dQ+Λ
dz
z
∈ z−1h

[
z−1]dz . (14)
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Namely the residue term Λz−1 dz ∈ h ⊗ z−1 dz corresponds to the tame part
λ ∈ h∨ of a singular character, and the irregular type

Q =

p−1∑
i=1

Ai
zi
∈ h((z))

/
hJzK , with Ai ∈ h for all i ,

is such that d(Aiz−i) = −iAiz
−i−1 dz ∈ h⊗ z−i−1 dz corresponds to the wild

part ai ∈
(
h ⊗ zi

)∨. The meromorphic 1-forms (14) should be thought of as
principal parts of germs of meromorphic connections at a point on a Riemann
surface (with semisimple formal residue and untwisted irregular type; here we
are considering “very good” orbits in the terminology of [13]).

As mentioned in the introduction, the crucial facts are:
(1) gp = Lie(Gp), where Gp := G

(
CJzK

/
zpCJzK

)
is the group of (p− 1)-jets

of bundle automorphisms for the trivial principal G-bundle on a (formal)
disc;

(2) the level-zero complex symplectic reduction for the diagonal G-action—
on products of coadjoint Gp-orbits—yields a description of an open de
Rham space M∗dR, viz. a moduli spaces of isomorphism classes of irregular
meromorphic connections on a holomorphically trivial principal bundle
over the Riemann sphere (with prescribed positions of poles and irregular
types [8, § 5]; see [6] for G = GLm(C)).

Moreover the diagonal G-action will correspond to taking g-coinvariants for
the tensor product of finite singular modules, generalising the tame case (see §§ 7
and 8).

Remark 2.1 (Birkhoff groups/Lie algebras). Consider the subgroup Bp ⊆ Gp of
elements with constant term 1. Then G acts on Bp by conjugation, and there are
natural identification Gp ' Gn Bp and gp ' gn bp, where bp = Lie(Bp).6 This
yields a vector space decomposition g∨p ' g∨⊕ b∨p : in the duality (13) the former
summand corresponds to formal residues with zero irregular types, and the latter
to irregular types with zero residue (so in particular q ∈ b∨p ). 4

3. Bases, gradings and filtrations

Denote Π = { θi }i ⊆ R+ the set of simple roots, and choose an order R+ =
(α1, . . . ,αs) for the set of positive roots. If r := rk(g) we may assume θi = αi
for i ∈ { 1, . . . , r }. Let then (Fα)α∈R+ and (Eα)α∈R+ be bases of n− and n+ with
(Fα,Eα) ∈ g−α ⊕ gα, and such that (Fα,Hα := [Eα, Fα],Eα) is an sl2-triple. (We
may at times write E−α := Fα for the sake of a uniform notation.)

In particular (Hθ)θ∈Π is a basis of h, and we get a (ordered) Cartan–Weyl basis
of g:

(X1, . . . ,X2s+r) := (Fα1 , . . . , Fαs ,Hθ1 , . . . ,Hθr ,Eα1 , . . . ,Eαs) . (15)

For a multi-index n ∈ Z2s+r
>0 define

Xn := X
n1
1 · · ·X

n2s+r
2s+r ∈ U(g) .

By the PBW theorem these monomials provide a C-basis of U(g).

6Beware to distinguish the positive/negative deeper Borel subalgebra b±p from the Birkhoff subal-
gebra bp.
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3.1. PBW-bases of singular modules. Let β = (βi)i>0 be a sequence of non-
negative integers with finite support, and consider another sequence with values
in the index set of the Cartan–Weyl basis (15), i.e. k = (ki)i>0 ∈ { 1, . . . , r+ 2s }Z>0 .
Then define

Xkz
β :=

∏
i∈β−1

(
Z>0

)Xkizβi ∈ U(Lgalg
)

.

Lemma 3.1 (PBW-basis of algebraic affine enveloping algebras).
A C-basis of U

(
Lgalg

)
is given by

B :=
{
Xk ′z

−β ′ ·Xn ·Xkzβ
}
k ′,β ′,n,k,β

, (16)

where β ′ is nonincreasing, β is nondecreasing, and k ′j 6 k ′j+1 (resp. kj 6 kj+1) if
βj = βj+1 (resp. β ′j = β

′
j+1).

This is one statement of the PBW theorem for the countable-dimensional Lie
algebra Lgalg = g⊗C

[
z±1]—we have monomials over a totally ordered basis.

Corollary 3.1 (PBW-basis of affine singular modules).
A C-basis of the affine singular module Ŵ can be extracted from

B
Ŵ

:=
{
Xk ′z

−β ′ ·Xn ·Xkzβw
}
k ′,β ′,n,k,β

, (17)

where β ′, k ′, n, k, and β are as above.

Proof. The family generates over C since U
(
Lgalg

)
w = Ŵ, and using Lem. 3.1. �

Remark. In (17) one may take β bounded above by p− 1, as zpgJzKw = (0). 4

Using this set of generators we can prove smoothness.

Lemma 3.2. The singular modules are smooth.

Proof. This is clear in the finite case, as zpgJzKW = (0).
In the affine case choose X ∈ g and an element ŵ = Xk ′z

−β ′XnXkz
βw of (17).

Then the vanishing XzNŵ = 0 holds for

N > p+
∑
i>0

β ′i ∈ Z>0 ,

and the conclusion follows since (17) is a set of generators. �

Lemma 3.3 (PBW-basis of depth-p finite enveloping algebras).
A C-basis of U

(
gp
)

is given by

B :=
{
Xn ·Xkzβ

}
n,k,β

, (18)

where n, k and β are as above, with the condition of Rem. 3.1. Moreover restricting to
Xi,Xkj ∈ n− for i ∈ { 1, . . . , 2s+ r } and j > 0 yields a C-basis of U(n−p ).

This is one statement of the PBW theorem for the finite-dimensional Lie alge-
bras gp and n−p .
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Corollary 3.2 (PBW-basis of finite singular modules).
A C-basis of the finite singular module W ⊆ Ŵ is given by

BW :=
{
Xn ·Xkzβw

}
n,k,β

, (19)

where all conditions of Lem. 3.3 apply.

Proof. The family generates since W = U(n−p )w, and using Lem. 3.3 (the generat-
ing part). But U(n−p ) has trivial intersection with the annihilator of w, hence the
family is free by Lem. 3.3 (the linear independence part). �

In particular W is a free rank-1 left U(n−p )-module.

3.2. Gradings for z-degree. We first define two positive Z-gradings on Ŵ.

Definition 3.1. Choose k ∈ Z. Then:
• the subspace F̂−

k = F̂−
k

(
Ŵ
)
⊆ Ŵ is the C-span of the vectors of (17) with∑

i β
′
i = k;

• the subspace F̂+
k = F̂+

k

(
Ŵ
)
⊆ Ŵ is the C-span of the vectors of (17) with∑

i βi = k.

By definition F̂−
0 =W, F̂+

0 = Ŵ−, and

g⊗ z−i
(
F̂−
k

)
= F̂−

k+i , for i > 0 . (20)

In particular
(
Ŵ, F̂−

•
)

is a Z-graded g
[
z−1]-module, where g

[
z−1] is a Z-graded

Lie algebra with grading defined by deg(g⊗ z−i) = i.
The other grading instead does not yield a graded module; but we can obtain

one inducing a (positive) grading on W ⊆ Ŵ.

Definition 3.2. For k ∈ Z set F+
k := F̂+

k ∩W.

It follows that F+
0 = U(g)w ⊆W, and

n− ⊗ zi
(
F+
k

)
⊆ F+

k+i , for k, i > 0 , (21)

so the space
(
W,F+

•
)

is a Z-graded n−JzK-module, where n−
q
zK is a Z-graded

Lie algebra with grading defined by deg(n− ⊗ zi) = i.

3.3. Filtrations. We consider the filtration F̂−
6• on Ŵ associated to the grading of

Def. 3.1 for the negative z-degree. It follows from (20) that

F̂−
6k+1 =

∑
m+l=k

g⊗ z−m−1(F̂−
l

)
, g⊗ zi

(
F̂−
6k

)
⊆ F̂−

6k , (22)

for k, i > 0.
Finally we consider on U(g)w = U(n−)w ⊆ W the natural filtration E6• in-

duced from that of U(n−), so that E60 = Cw. Note

n−
(
E6k

)
+ E6k = E6k+1 , (23)

and further n− acts nontrivially on the associated graded of
(
U(g)w,E6•

)
:

n−
(
gr(E)k

)
⊆ gr(E)k+1 , (24)

where as customary gr(E)k := E6k
/
E6k−1 for k ∈ Z>0—and E6−1 := (0).
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3.4. Weight gradings. For µ ∈ h∨ define

F̂µ
(
Ŵ
)
= F̂µ :=

{
ŵ ∈ Ŵ

∣∣∣ Hŵ = µ(H)ŵ for H ∈ h
}
⊆ Ŵ ,

and analogously Fµ(W) = Fµ :=W ∩ F̂µ ⊆W.

Proposition 3.1. The singular modules are h-semisimple, i.e.

Ŵ =
⊕
µ∈h∨

F̂µ , W =
⊕
µ∈h∨

Fµ .

Proof. This follows from the fact that all elements of (17) and (19) are h-weight
vectors, which in turn is proven recursively using the identities

H ·Xαziŵ = 〈µ+α,H〉Xαziŵ , H ·H ′ziŵ = 〈µ,H〉 ·H ′ziŵ ,

for α ∈ R, H,H ′ ∈ h, i ∈ Z and ŵ ∈ F̂µ. �

Remark. In the finite case one may define the hp-weight spaces, i.e. the subspaces
of vectors ŵ ∈ W such that Hziŵ = 〈µi,Hzi〉ŵ for µ = (µ0, . . . ,µp−1) ∈ h∨p .
However the very first recursion fails for p > 2: if H ∈ h is such that 〈α,H〉 6= 0
then

Hz ·X−αw = 〈a1,Hz〉X−αw− 〈α,H〉X−αz ·w 6∈ C(X−αw) ,
where w is the cyclic vector, so the finite singular modules are not hp-semisimple.

4

The proof of Prop. 3.1 implies all weights are contained inside λ+Q ⊆ h∨,
where Q := ZR is the root lattice.

Remark. Consider the z-linear extension of the adjoint action h → gl(g) on Lg.
Decomposing Lg =

⊕
α∈R Lgα ⊕ Lh we see Lg is naturally a h∨-graded Lie

algebra (with nontrivial weights still given by R∪ { 0 }), and the proof of Prop. 3.1
shows the singular modules are h∨-graded. 4

In the finite case one can go further recovering the standard notion of positivity.
Namely

(
h∨,�

)
is a poset by defining µ ′ � µ by µ − µ ′ ∈ Q+, where Q+ :=

Z>0R
+ ⊆ Q is the positive root lattice.

Lemma 3.4. One has Fλ = Cw and W =
⊕
µ�λ Fµ.

Proof. It follows from the fact that W is generated over U(n−p ) by a hp-weight
vector annihilated by n+p : it is a highest-weight gp-module. �

In particular (19) consists of weight vectors, and the line Cw ⊆ W has the
highest weight.

In view of Lem. 3.4 the weight spaces are naturally parametrised by elements
ν ∈ Q+, via Fν := Fλ−ν. Now for an element ν ∈ h∨ denote

MultR+(ν) :=

m = (mα)α ∈ ZR+

>0

∣∣∣∣∣∣
∑
α∈R+

mα ·α = ν

 ⊆ ZR+

>0 ,

so that the cardinality of MultR+(ν) is the finite number of ways of expressing
ν as a Z>0-linear combination of positive roots. In particular MultR+(0) = { 0 },
and MultR+(ν) = ∅ for ν 6∈ Q+.
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Finally for m ∈ ZR+

>0 denote

WCompp(m) :=

ϕ = (ϕα)α

∣∣∣∣∣∣ ϕα : { 0, . . . ,p− 1 }→ Z>0 ,
p−1∑
i=0

ϕα(i) = mα

 ,

which is the finite set of weak p-compositions of the integers mα > 0.7 In partic-
ular WComp1(m) is a singleton containing the element ϕ with ϕα(0) = mα for
all α ∈ R+.

Proposition 3.2. For ν ∈ h∨ one has

dim
(
Fν
)
=

∑
m∈MultR+(ν)

(
m+ p− 1

m

)
<∞ , (25)

where
(
m+p−1
m

)
:=
∏
α∈R+

(
mα+p−1
mα

)
.

Proof. Choose µ ∈ h∨ and set ν = λ − µ. Then for m ∈ MultR+(ν) and ϕ ∈
WCompp(m) consider the vector

wϕ :=

p−1∏
i=0

( ∏
α∈R+

(
X−αz

i
)ϕα(i)w) ∈ BW . (26)

The family {wϕ }ϕ ⊆ W is free since it consists of distinct elements extracted
from (19) (beware of the ordering in the product), and by construction wϕ ∈ Fν.

Conversely the vectors (26) exhaust (19), from which one can extract a basis of
Fν, so the conclusion follows from standard combinatorial identities. �

Thus Prop. 3.2 strengthen Lem. 3.4: the given sum is empty for ν 6∈ Q+,
and WCompp(0) is a singleton containing the element ϕ with ϕα(i) = 0 for
i ∈ { 0, . . . ,p− 1 }.

As expected (25) generalises the standard fact that dim
(
Fν
)
=
∣∣MultR+(ν)

∣∣ for
Verma modules, i.e. it generalises the character of Verma modules. The difference
in the general case is that one must also specify a z-degree for each occurrence of
a positive root.

Remark. This notion of positivity is lost with the (finite) modules of § 12: in
particular they have infinite-dimensional weight spaces and are less suited to yield
irregular versions of conformal blocks. 4

For example consider the case where ν = θ ∈ Π is a simple root. One has

MultR+(θ) =
{
mθ
}

, with mθα := δθ,α. Also WCompp(m
θ) =

{
ϕθ,i

}
i
, where

ϕθ,i
α (j) = δα,θδij for i, j ∈ { 0, . . . ,p− 1 }. Hence Xϕθ,i = X−θz

i, so we recover

dim
(
Fθ
)
= p with Fθ = spanC

{
X−θw, . . . ,X−θz

p−1w
}

.

Remark. It follows from the above that

U
(
n+JzK

)
Fν =

⊕
0�ν ′�ν

Fν ′ , for ν ∈ Q+ .

7A composition of mα is a sequence of positive integers summing to mα; it is a p-composition if
the sequence has finite length p > 1; and it is weak if zero is allowed.
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Hence the module W is locally n+JzK-finite, i.e. the vector spaces U
(
n+JzK

)
ŵ ⊆W

are finite-dimensional for all ŵ ∈W.
One is tempted to say that W lies in a “Bernstein–Gelfand–Gelfand category

OJzK” [28]—of h-semisimple finitely generated left U
(
gJzK)-modules which are

locally n+JzK-finite. 4

3.4.1. Archetypal case. One may get to the end of this story when g = sl(2, C) with
the standard basis (F,H,E) and the standard A1-root system R = {±α }, where α
is positive and 〈α,H〉 = 2. Then Q+ = Z>0α, so simply MultR+(ν) = {m } for
elements ν = mα with m ∈ Z>0.

Thus (25) reduces to

dim
(
Fmα

)
=
∣∣∣WCompp(m)

∣∣∣ = (m+ p− 1
m

)
. (27)

In the tame case one recovers the line generated by Fmv, whereas in the general
case a basis is given by

wϕ =

p−1∏
i=0

(
Fzi
)ϕ(i) · v , for ϕ ∈WCompp(m) . (28)

4. Dual modules

In view of Prop. 3.1 we consider the restricted duals of the h∨-graded singular
modules, i.e. the h∨-graded vector spaces

Ŵ∗ :=
⊕
µ∈h∨

F̂∨
µ ⊆ Ŵ∨ , W∗ :=

⊕
µ∈h∨

F∨
µ ⊆W∨ . (29)

They are naturally equipped with a right U
(
ĝ
)
- and U

(
gp
)
-module structure (re-

spectively), namely〈
ψ̂Xzi, ŵ

〉
=
〈
ψ̂,Xziŵ

〉
, ψ̂K = κψ̂ , for i ∈ Z, X ∈ g, ψ̂ ∈ Ŵ∗, ŵ ∈ Ŵ ,

and analogously in the finite case.
To get a left action compose with a Lie algebra morphism ĝ → ĝop (resp.

gp → g
op
p ), or rather with the induced ring morphism U

(
ĝ
)
→ U

(
ĝop) = U

(
ĝ
)op

(resp. U(gp) → U(gp)
op). In particular a Lie algebra morphism θ : g → gop has

a unique Z-graded extension θ̂ : Lg → L
(
gop) =

(
Lg
)op: in the finite case one

can then consider the restriction θ̂ : gJzK → gJzKop (which is compatible with the
projections gJzK � gp and gJzKop � g

op
p ); in the affine case one may further ask

that θ is (· | ·)-orthogonal, and extend the definition by θ̂(K) := −K.
In what follows we only consider morphisms of this type.

Definition 4.1 (Dual singular modules).
The affine (resp. finite) θ-dual singular module Ŵ∗θ (resp. W∗θ) is the left U

(
ĝ
)
-

module (resp. U(gp)-module) defined by the morphism θ : g→ gop.

The U
(
gJzK)-linear inclusion map W ↪→ Ŵ then dually correspond to U

(
gJzK)-

linear restriction maps Ŵ∗θ �W∗θ.
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Remark 4.1 (Dual/contragredient modules). Basic examples of morphisms θ : g→
gop preserving (· | ·) are the tautological θ0 = − Idg, and the transposition θ1,
defined by

θ1(Eα) = E−α , θ1
∣∣
h
= Idh , for α ∈ R .

We refer to θ0-duals simply as dual modules, and to θ1-duals as contragredient
modules. 4

Consider then the element ψ ∈ W∗ dual to the cyclic vector in the basis (19),
i.e. 〈ψ,w〉 = 1 and ψ vanishes on all other vectors of (19)—whence F∨

λ = Cψ.
Assume hereafter that θ(h) = hop (up to conjugating θ by an inner auto-

morphism of g), and canonically identify h ' hop and their duals. Then we
have a well defined pull-back map θ∗ ∈ GL(h∨), which we extend z-linearly to(
h⊗ zi

)∨ ' h∨ ⊗ zi. Moreover by orthogonality the subspace n+ ⊕ n− ⊆ g is
θ-stable.

Lemma 4.1. The vector ψ ∈W∗ satifies the relations

zpgJzKψ = (0) = θ−1(n−)JzK ,

Hziψ = 〈θ∗ai,Hzi〉ψ , for H ∈ h, i ∈ { 0, . . . ,p− 1 } .
(30)

Proof. Use (10), (21), zpgJzKW = (0), and the fact that θ̂ : gJzK→ gJzKop preserves
the z-grading of Def. 3.2. �

In particular n−JzKψ = (0) in the dual case, and n+JzKψ = (0) in the contragre-
dient case.

4.1. Dual weight grading. Denote θ∗ :=
(
θ∗
)−1

=
(
θ−1)∗, and introduce the

notation F̂∗µ ⊆ Ŵ∗θ and F∗µ ⊆W∗θ for the h-weight spaces.

Lemma 4.2. One has F̂∨
µ = F̂∗θ∗µ and EαziF̂∨

µ ⊆ F̂∨
µ+θ∗α

, for µ ∈ h∨, α ∈ R, i ∈ Z,
and analogously in the finite case—restricting to i ∈ Z>0.

Proof. Let Îν : Ŵ → Ŵ be the idempotent for the direct summand F̂µ ⊆ Ŵ,
viz. the endomorphism such that Îµ

∣∣
Ŵ(µ ′)

= δµ,µ ′ IdŴ(µ ′)
. Then by definition

ψ̂ ∈ F̂∨
µ means ψ̂ = ψ̂ ◦ Îµ, and by construction

θ(H)̂Iµ = Îµθ(H) = 〈θ∗µ,H〉̂Iµ ∈ End
(
Ŵ
)

, for µ ∈ h∨, H ∈ h .

Hence for ŵ ∈ Ŵ one has〈
Hψ̂, ŵ

〉
=
〈
ψ̂, Îµ

(
θ(H)ŵ

)〉
= 〈θ∗µ,H〉

〈
ψ̂, ŵ

〉
,

whence the inclusion F̂∨
µ ⊆ F̂∗θ∗µ, and the equality follows from (29).

The latter inclusion follows from θ(Eα)z
iF̂µ ⊆ F̂µ−θ∗α for α ∈ R, which is a

straightforward computation using (1).
The same pair of arguments applies verbatim to the finite case. �

Hence (29) is the h-weight decomposition of θ-dual singular modules, and the
weights are contained inside θ∗(λ +Q) ⊆ h∨ (resp. θ∗(λ +Q+)) in the affine
(resp. finite) case. By Lem. 3.4 we conclude that ψ ∈ W∗θ0

is a lowest-weight
vector of lowest weight θ∗0λ = −λ, whereas ψ ∈W∗θ1

is a highest-weight vector of
highest weight θ∗1λ = λ.
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In particular in the contragredient case matching the cyclic vector with its dual
yields a canonical morphism Φ : W → W∗θ1

, hence a generalisation of the Shapo-
valov form

S : W ⊗W −→ C , ŵ⊗ ŵ ′ 7−→ 〈Φ
(
ŵ
)
, ŵ ′〉 .

This may be degenerate, particularly since the image of the canonical morphism
is the submoduleW ′θ := U

(
gJzK

)
ψ ⊆W∗θ, which in general is a proper submodule

(e.g. in the finite dual tame case for g = sl(2, C) and λ = 0). Nonetheless we can
recursively find the obstruction for ψ to generate the θ-dual module. To give a
necessary condition consider the vector ŵ = E−αz

p−1w ∈ Fλ−α, for α ∈ R+. By
Lem. 4.2 a linear form ψ̂ ∈W ′θ that vanishes on BW \ { ŵ } must lie in the span of{
θ−1(Eα)ψ, . . . , θ−1(Eα)z

p−1ψ
}
⊆ F∨

λ−α, so consider a generic element

ψ̂ = ψ̂(b0, . . . ,bp−1) =

p−1∑
j=0

bjθ
−1(Eα)z

jψ , with bj ∈ C .

Using zpgJzKW = (0) = n+JzKw and 〈ψ,w〉 = 1 yields〈
ψ̂, ŵ

〉
= bp−1〈ap−1,Hαzp−1〉,

so we need the highest irregular part to be regular (cf. § 6).
Conversely we have the following.

Proposition 4.1. One has W ′θ = W∗θ for parameters (λ,q) in a dense subspace of the
affine space h∨p—with respect to the strong/classical topology.

Proof. Clearly F∨
λ ⊆W

′
θ, and then we reason recursively on the h∨-weight space

decomposition of W.
Choose ŵ ∈ BW ∩ Fµ, and consider the vectors ŵα(k) := E−αz

kŵ ∈ Fµ−α,
for α ∈ R+ and k ∈ { 0, . . . ,p− 1 }. As ŵ, α and k vary, the vectors ŵα(k) exhaust

BW ∩Fµ−α, so we must find coefficients bij ∈ C such that
〈
ψ̂α(i), ŵα(k)

〉
= δik,

where

ψ̂α(i) =

p−1∑
j=0

bijθ
−1(Eα)z

jψ̂ ∈ F∨
µ−α , for i ∈ { 0, . . . ,p− 1 } ,

and where ψ̂ ∈ F∨
µ is the dual of ŵ—lying in W ′θ by the recursive hypothesis.

Now one has 〈
ψ̂α(i), ŵα(k)

〉
=

p−1∑
j=0

bij

〈
ψ̂,EαzjE−αzkŵ

〉
,

hence the given condition means BM = IdCp , where B and M are the p-by-p

matrices with coefficients Bij = bij and Mjk =
〈
ψ̂,EαzjE−αzkŵ

〉
, respectively

(the latter selects the component of EαzjE−αzkŵ ∈ Fµ along the line Cŵ, in the
basis (19)). A solution exists if and only if det(M) 6= 0.

Now the determinant of M =M(ŵ,α) is a degree-p polynomial whose coeffi-
cients depend polynomially on (λ,q), hence it amounts to a polynomial function
h∨p → C. Thus W ′θ = W∗θ by taking (λ,q) in a countable intersection of open
dense subsets. �
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Finally we can choose a complementary subspace to W inside Ŵ, and extend
ψ : W → C by zero to the whole of Ŵ—e.g. extract a PBW-basis from (17). Then
one can consider the module Ŵ ′θ ⊆ Ŵ

∗
θ generated by this extension over Lg, and

define gradings/filtrations on Ŵ ′θ � W ′θ analogously to §§ 3.2 and 3.3, using
the generating set (16), the basis (18), and the standard filtration of U

(
θ−1(n+)

)
.

These satisfy the analogous identities of (20)–(23).

5. Segal–Sugawara operators

For n ∈ Z define

Ln :=
1

2
(
κ+ h∨

)∑
j∈Z

(∑
k

: Xkz
−j ·Xkzn+j :

)
, (31)

where (Xk)k and (Xk)k are (· | ·)-dual bases of g, κ 6= −h∨ is a noncritical level,
and in the normal-ordered product one puts elements of gJzK ⊆ Lg to the right.

The Sugawara operators (31) (due to Segal in this particular form) are well-
defined elements of the completion Û

(
ĝ
)

of U
(
ĝ
)

with respect to the inverse
system of left ideals U

(
ĝ
)
z•+1gJzK � U

(
ĝ
)
z•gJzK. If follows from Lem. 3.2 that

there are well-defined actions of (31) on the modules W ⊆ Ŵ.

5.1. Cyclic vector as Sugawara eigenvector. The cyclic vector w ∈ Ŵ is a com-
mon eigenvector for the Sugawara operators when n� 0. To get explicit formulæ
for the eigenvalues we recall further euclidean properties of the Cartan–Weyl ba-
sis (15).

Remark 5.1 (On bases and dualities).
Recall that E±α = 2

(Hα|Hα)
E∓α. Using the pairing (· | ·) : h∨ ⊗ h∨ → C induced

by the minimal-form duality h ' h∨ this can be written E±α =
(α|α)

2 E∓α.
Then we replace the simple-root basis of h with a (· | ·)-orthonormal basis,

denoted (Hk)k—i.e. we “divide” by the Cartan matrix—, and for i ∈ Z we
transfer the basis and the pairings to g⊗ zi and

(
g⊗ zi

)∨ ' g∨ ⊗ zi using the
canonical vector space isomorphism g ' g⊗ zi. Then one has the tautological
basis-independent identity

(µ | µ ′) =
r∑
k=1

〈µ,Hkzi〉〈µ ′,Hkzj〉 for µ ∈ h∨ ⊗ zi,µ ′ ∈ h∨ ⊗ zj .

Finally denote as customary ρ := 1
2
∑
α∈R+ α ∈ h∨ the half-sum of positive

roots. 4

Proposition 5.1. The cyclic vectorw is a common eigenvector for the operators (31) with
n > p− 1. If n > 2(p− 1) then Lnw = 0, else Lnw = lnw with

ln :=
1

2
(
κ+ h∨

) p−1∑
j=1−p+n

(aj | an−j) , for n ∈
{
p, . . . , 2(p− 1)

}
, (32)

and

lp−1 :=
1

2
(
κ+ h∨

)(p−1∑
j=0

(aj | ap−1−j) + 2p(ρ | ap−1)

)
. (33)
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Proof. Postponed to § A.1. �

Hence the cyclic vector is an “irregular vector of order p− 1” in the WZNW
model—instead of the Liouville model [24].

Remark 5.2. This generalises the standard fact that Lnv = 0 for n > 0, and that v is
an L0-eigenvector, with nonzero eigenvalue for generic values of λ ∈ h∨. Namely
if p = 1 then (33) reduces to

L0v = ∆λv , ∆λ =
(λ | λ+ 2ρ)
2(κ+ h∨)

,

reverting to the notation λ = a0, which recovers the conformal weight correspond-
ing to the action of the quadratic Casimir (3). 4

5.2. Action on finite modules. Later we will use the action of the operator L−1

on the finite module W ⊆ Ŵ.
Using zpgJzKW = (0) we see nonvanishing terms arise for 1−p 6 j 6 p in (31),

and resolving the ordered product yields

L−1ŵ =
1

κ+ h∨

p∑
j=1

(∑
k

Xkz
−jXkzj−1

)
ŵ , for ŵ ∈W . (34)

As expected L−1ŵ 6∈ W, but it can be put back into the finite module via the
loop-algebra action (see § 7).

Remark. We see (34) generalises the usual formula from the tame case:

L−1v̂ =
1

κ+ h∨

∑
k

Xkz
−1Xkv̂ , for v̂ ∈ V . (35)

4

6. Irregular conformal blocks: first version

Consider the Riemann sphere Σ := CP1, choose an integer n > 1 and mark
points p1, . . . ,pn ∈ Σ. Denote J = { 1, . . . ,n } the ordered set of labels for the
points and p = (p1, . . . ,pn) the ordered set of points.

Let OΣ be the structure sheaf of regular functions on Σ, seen as a (smooth)
complex projective curve. Then consider the stalks Oj = OΣ,pj at the marked
points, their (unique) maximal ideals Mj = Mpj ⊆ Oj of germs of functions
vanishing at pj, the completions Ôj := lim←−nOj

/
Mn
j , and their field of fractions

Ôj ↪→ K̂j.

Remark. If zj is a local coordinate on Σ vanishing at pj then

Oj ' C[zj] , Mj = zjC[zj] , Ôj ' CJzjK , K̂j ' C((zj)) .

4

Then consider the loop algebras (Lg)j := g⊗ K̂j and the associated affine Lie
algebras ĝj � (Lg)j. There are canonical isomorphisms ĝi ' ĝj for i, j ∈ J, and
the subscripts distinguish the local picture at the marked points.

Now for j ∈ J further choose an integer rj > 1, and set up singular modules as
in § 1. Hence consider the Lie subalgebras S(rj) ⊆ ĝj, a common level κ ∈ C for
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the central elements, and singular characters χj = χ(λj,qj, κ), where λj ∈ h∨ and
qj =

(
(aj)1, . . . , (aj)rj−1

)
with (aj)i ∈

(
h⊗ zi

)∨. This yields singular modules

W
(rj)
χj =:Wj ⊆ Ŵj := Ŵ

(rj)
χj , and we consider the vector spaces

Ĥ = Ĥp,χ :=
⊗
j∈J

Ŵj , H = Hp,χ :=
⊗
j∈J

Wj , (36)

where χ = (χj)j∈J. Clearly H ⊆ Ĥ, and the dependence on the choice of marked
points is void (it becomes relevant after considering the action of g-valued mero-
morphic functions in § 6.2).

The spaces (36) are endowed with natural structures of left modules for the
associative algebras U

(
ĝ
)⊗n '⊗j∈JU

(
ĝj
)

and
⊗
j∈JU

(
grj
)
, respectively.

Moreover for indices i 6= j ∈ J denote ι(ij) : U(Lg)⊗2 → U(Lg)⊗n the natural
inclusion on the i-th and j-th slot, defined on pure tensors by

X⊗ Y 7−→ 1⊗i−1 ⊗X⊗ 1⊗j−i−1 ⊗ Y ⊗ 1⊗n−j , (37)

for i < j, and analogously for i > j. Finally define ι(ii) : U(Lg)⊗2 → U(Lg)⊗n

by X⊗ Y 7→ 1⊗i−1 ⊗XY ⊗ 1⊗n−i. This yields an action of quadratic loop-algebra
tensors on (36).

6.1. Tame isomonodromy times. We now vary part of the parameters defining
the spaces (36), namely the marked points. An admissible deformation is one
where they do not coalesce, so marked points vary inside the configuration space
Cn := Confn(Σ) ⊆ Σn of ordered n-tuples of (labeled) points on Σ.

The space Cn is the space of tame isomonodromy times. It is a complex mani-
fold of dimension n.

Remark. The terminology points again to meromorphic connections on the sphere.
Namely the positions of the poles and the irregular types together control

Stokes data of irregular meromorphic G-connections over the sphere. Recall
Stokes data generalise the conjugacy class of the monodromy representation
ν : π1

(
Σ◦,b

)
→ G, where Σ◦ := Σ \

{
pj
}
j∈J is the punctured sphere with the

poles removed and b ∈ Σ◦ a base point [7].
Then one may consider admissible deformations of the connections along

which Stokes data do not vary, which yields by definition isomonodromic deforma-
tions. This can be set up as a system of nonlinear differential equations where the
positions of the poles and the irregular types are precisely the independent vari-
ables, hence they become the “times” of isomonodromic deformations: the posi-
tions of the poles are the tame/regular times, and the rest are the wild/irregular
ones.

Geometrically these differential equations constitute a nonlinear flat/integrable
symplectic connection in the local system of moduli spaces M∗dR of meromorphic
connections, as the marked points and the irregular types vary (i.e. as the wild
Riemann surface structure on the sphere varies [12]). 4

Remark 6.1. Let Σ ⊇ U
z−→ C be a local affine chart on Σ—so Σ ' C ∪ {∞ }.

Then coordinates on the open subset Cn(U) := Confn(U) ⊆ Cn are given by
t : Cn(U) → Cn, where t = (tj)j∈J and tj(p) := z(pj)—so Cn(U) ' Confn(C),
and Cn ' Confn(C) ∪ Confn−1(C). This yields an atlas on the configuration
space. 4
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Now for a J-tuple χ of singular characters we consider the vector bundles
Ĥ = Ĥ•,χ → Cn and H = H•,χ → Cn, whose fibres over p ∈ Cn are the
spaces (36), respectively. We have an inclusion H ⊆ Ĥ, and global vector bundle
trivialisations:

Ĥ '
⊗
J∈J

U
(
n̂−
)
⊗U(n−) U

(
n−rj
)
×Cn −→ Cn ,

by (12), and the simpler

H '
⊗
j∈J

U
(
n−rj
)
×Cn −→ Cn ,

by Wj ' U
(
n−rj
)
. The point here is that both vector space isomorphisms do not

depend on the choice of marked points (nor on the character, cf. 6.4).

6.2. Action of meromorphic functions: punctual version. Given marked points
pj ∈ Σ consider the effective divisor D :=

∑
j∈J
[
pj
]

on Σ, and denote as custom-
ary O∗D(Σ) = OΣ,∗D(Σ) the vector space of meromorphic functions along Σ with
poles at most on (the support of) D. Then let g∗D(Σ) := g⊗O∗D(Σ) be the Lie
algebra of g-valued such meromorphic functions, with bracket coming from g:

[f,g](p) :=
[
f(p),g(p)

]
∈ g , for f,g ∈ g∗D(Σ) ,p ∈ Σ .

Taking Laurent expansions at pj yields a linear map τj : O∗D(Σ) → K̂j, and
tensoring with g a linear map g∗D(Σ)→ Lgj ⊆ ĝj.

Remark. If zj is a local coordinate on Σ vanishing at pj, and f ∈ O∗D(Σ), then
there are coefficients fi ∈ C such that

τj(f) = f(zj) =
∑

i>− ordpj(f)

fiz
i
j ∈ C((zj)) ,

where ordp(f) > 0 is the order of p ∈ Σ as a pole of f. 4

Thus there is an arrow

τ : g∗D(Σ) −→ End
(
Ĥ
)

, τ(X⊗ f) :=
∑
j∈J

(
X⊗ τj(f)

)(j) . (38)

Using (1), and the fact that the sum of the residues of a meromorphic 1-form on
Σ vanishes, shows that (38) is a morphism of Lie algebras.

Then the action τ : g∗D(Σ) → gl
(
Ĥ
)

endows Ĥ with a left g∗D(Σ)-module
structure.

Definition 6.1 (Irregular conformal blocks space, first version).
The space of irregular conformal block at the pair (p,χ) is the space of coinvari-

ants of the g∗D(Σ)-module Ĥ:

H := Ĥg∗D = Ĥp,χ
/
g∗D(Σ)Ĥp,χ . (39)

Remark. In our terminology (39) would be better called the space of singular con-
formal blocks, and be irregular/wild when rj > 2 for some j ∈ J. 4
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By (38), the fundamental identity inside the space of irregular conformal blocks
is [(

X⊗ τi(f)
)(i)
ŵ
]
= −

∑
j∈J\{ i }

[(
X⊗ τj(f)

)(j)
ŵ
]

, (40)

for i ∈ J, X ∈ g, f ∈ O∗D(Σ) and ŵ ∈ Ĥ, where square brackets denote equiva-
lence classes modulo g∗D(Σ)Ĥp,χ.

6.3. Action of meromorphic functions: global version. Now we want to glob-
alise the action (38) over the space of configurations of n-tuples of points on the
sphere, i.e. we want a map of sheaves of Lie algebras on Cn.

To define the domain sheaf consider the projection

πΣ : Σ
n+1 −→ Σn, (p,p1, . . . ,pn) 7−→ (p1, . . . ,pn) .

Then set

Y := π−1
Σ (Cn) =

{
(p,p1, . . . ,pn)

∣∣ pi 6= pj for i 6= j
}
⊆ Σn+1 ,

so that πΣ : Y � Cn is the universal family of n-pointed spheres.
Now for j ∈ J define the hyperplane Pj :=

{
p = pj

}
⊆ Σn+1, consider the

effective divisor D :=
∑
j∈J
[
Y ∩ Pj

]
on Y, and let O∗D = OY,∗D be the sheaf of

meromorphic functions on Y with poles at most along (the support of) D. Then
we have the push-forward sheaf (πΣ)∗O∗D on Cn, and by tensoring we obtain
the sheaf of Lie algebras g∗D := g⊗ (πΣ)∗O∗D.

Remark. If U ′ ⊆ Cn is open then g∗D(U ′) is then the Lie algebra of g-valued
meromorphic functions on Σ×U ′, such that the restriction to Σ× {p } ' Σ has
poles at most at the set

{
pj
}
j∈J for all p ∈ U ′, as wanted. 4

Now for U ′ ⊆ Cn open we consider the Laurent expansion τj(U ′)(f) of func-
tions f ∈ O∗D

(
π−1
Σ (U ′)

)
along the divisor Y ∩ Pj. Then tensoring with g yields a

map of sheaves

τj : g∗D −→ OCn ⊗Lgj ⊆ OCn ⊗ ĝj ,

where OCn is the structure sheaf on the configuration space.

Remark. If zj is a local coordinate on Σ vanishing at pj, U ′ = Confn(U) for U ⊆ Σ
an open affine subset, and f ∈ (πΣ)∗O∗D(U ′), then there are suitable functions
fi : U

′ → C such that

τj(U
′)(f) = f(zj, t1, . . . , tn) =

∑
i

fi(t1, . . . , tn)zij ∈ OCn(U
′)⊗C((zj)) ,

using the local coordinates (tj)j∈J on U ′ ⊆ Cn of Rem. 6.1. By definition the
functions fi may have poles on the hyperplanes

{
ti = tj

}
⊆ Cn. 4

Finally summing the action over each slot of the tensor product we have a
sheaf-theoretic analogue of (38), acting on sections of Ĥ.
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6.4. Irregular isomonodromy times. One may add the other possible deforma-
tions, e.g. with the following setup.

Recall the regular parts of the Cartan subalgebra and its dual are the comple-
ments of (co)root hyperplanes:

hreg := h \
⋃
α∈R

Ker(α) , h∨reg := h∨ \
⋃
α∈R

Ker
(
evHα

)
,

and analogously for h⊗ zi and its dual.
Then consider irregular parts qj ∈ b∨rj such that the most irregular coefficient

(aj)rj−1 is regular, and define an admissible deformation of as one in which the
most irregular coefficient does not cross coroot hyperplanes.

Remark. This is the analogous condition as for the marked points: the open charts
Cn(C) ⊆ Cn are regular parts for Cartan subalgebras of rank-n type-A simple
Lie algebras. 4

Doing so we get to the space of isomonodromy times

B = Cn ×
∏
j∈J

(
h∨rj
)

reg , (41)

where

(
h∨rj
)

reg =

rj−2∏
i=1

(
h⊗ zi

)∨ × (h⊗ zrj−1)∨
reg ,

and (h⊗ zi)reg :=
{
Hzi

∣∣∣ H ∈ hreg

}
⊆ h⊗ zi for i ∈ Z.

The space (41) is a complex manifold of dimension d = n + r
∑
j∈J(rj − 1),

where r = rk(g). As expected it coincides with the space of tame isomonodromy
times if rj = 1 for j ∈ J.

Remark. If there is just one irregular module Wj with rj = 2 then

B = Cn ×
(
h⊗ z

)∨
reg ,

and one recovers the base space for the FMTV connection [19]—up to the canoni-
cal vector space isomorphism h⊗ z ' h. If further the variations of marked points
are neglected then (41) becomes the base space for the “Casimir” connection of
De Concini and Millson–Toledano Laredo (DMT) [35, 46]. 4

Then in (36) one can let both p ∈ Cn and χ ∈
∏
j∈J
(
h∨rj
)

reg vary, getting a
vector bundle over the base space (41). This also comes with a canonical vector
bundle trivialisation, reasoning in the same way as for H ⊆ Ĥ (namely (12) is
also independent of χ).

Finally one may extend the sheaf g∗D trivially along the Cartan directions.
Namely the projection πCn : B � Cn is open, so one may take the naïf pullback
sheaf:

π∗Cng∗D(U) = g∗D
(
πCn(U)

)
, for U ⊆ B open .
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7. Conformal blocks in terms of finite modules: first version

Throughout this section fix a pair (p,χ) to define the spaces H ⊆ Ĥ as in (36).
Compose the inclusion H ↪→ Ĥ with the canonical projection πH : Ĥ � H to
obtain a map ι : H→H .

To study the image of ι consider the tensor product filtration

F̂
−
6• :=

⊗
j∈J

(
F̂−
j

)
6• , (42)

where
(
F̂−
j

)
6• is the filtration defined in § 3.3 on Ŵj. By definition F̂

−
60 = H,

and we push (42) forward to a filtration F̂−
6• on H , along the surjection πH .

Note F̂−
6• is exhaustive, since F̂FF

−

6• is.

Proposition 7.1. The map ι is surjective,

Proof. We will show that F̂−
6k lies in the image of ι by induction on k > 0. The

base is given by F̂−
60 = πH

(
H
)
.

Now we use (40) for a function fi ∈ O∗D(Σ) with a pole at pi, and only there.
Such a function is e.g. defined by fi(z) = (z − ti)

−m, with the notations of
Rem. 6.1, working in a local chart containing p.

Hence τj
(
fi
)
∈ Ôj for j 6= i, and if ŵ ∈ F̂

−
6k the rightmost identity of (22)

shows that the right-hand side of (40) lies in F̂−
6k. Then by induction the image of

ι contains F̂−
6k and all the vectors on the left-hand side of (40), and the conclusion

follows from the leftmost identity of (22). �

Proposition 7.2. One has Ker(ι) = gH ⊆ H.

Proof. Consider an element ŵ = τ(X⊗ f)û with û =
⊗
j∈J ûj ∈ Ĥ, f ∈ g∗D(Σ)

and X ∈ g.
If the function f is noncostant then it has a pole, say at pj ∈ Σ. It follows that

τj(f) 6∈ Ôj, whence X⊗ τj(f)(j)ûj 6∈
(
F̂+
j

)
60 by (20), and ŵ 6∈ H = F̂

+
60.

Thus to have element of the kernel we must restrict to f ∈ C. Then using (20)
again we see that X⊗ f = X⊗ τj(f) ∈ g preserves the grading

(
F̂−
j

)
• on Ŵj, so

(X⊗ f)ûj ∈Wj =
(
F̂−
j

)
0 implies ûj ∈Wj.

Conversely gH ⊆ g∗D(Σ)Ĥ ∩H lies in the kernel. �

Hence there is an identification H ' Hg = H
/
gH, generalising the analogous

standard fact for the tame case.
To go further one may appeal to the tensor product of the weight grading of

§ 3.4, which is a
(
h∨
)J-grading on H. Namely we consider the subspaces

Fµ = Fµ(H) :=
⊗
j∈J

Fµj(Wj) ⊆ H , for µ = (µj)j∈J ∈
(
h∨
)J . (43)

By (38) the subspace Fµ lies inside the weight space of weight |µ| :=
∑
j µj ∈ h∨

for the tensor product h-action.



SINGULAR MODULES AND IRREGULAR CONFORMAL BLOCKS 27

If |µ| 6= 0 then Fµ ⊆ hFµ is annihilated by πH , so we still have a surjective
map

H ⊇
⊕
|µ|=0

Fµ
πH−−−→H , (44)

and by construction the h-action is trivialised on this subspace.

Remark. The condition |µ| = 0 is reminiscent of meromorphic connections: it is
equivalent to the vanishing of the sum of the residues over Σ—in the duality (13).

4

7.1. Auxiliary tame module. Suppose one of the modules is tame, e.g. the last
one: rn = 1 and Wn = Vn. Then we split the tensor product as

H = H ′ ⊗ Vn , H ′ :=
⊗
j∈J ′

Wj ,

where J ′ := J \ {n }, and we embed

H ′ −→ H ,
⊗
j∈J ′

ŵj 7−→
⊗
j∈J ′

ŵj ⊗ vn ,

where vn ∈ Vn is the cyclic/highest-weight vector.

Proposition 7.3. One has ι(H ′) = H .

Proof. Denote E
(n)
6• the filtration on U(g)vn ⊆ Vn defined in § 3.3, which is ex-

haustive in this (tame) case. We will prove by induction on k > 0 that ι
(
H ′
)

contains the classes of all vectors inside H ′ ⊗ E
(n)
6k , noting the base follows from

the identity E
(n)
60 = Cvn.

For the inductive step we use the constant version of (40). For X ∈ g this shows
that the class of X(n)ŵ lies in ι

(
H ′
)

as soon as that of ŵ ∈ H ′⊗E
(n)
6k does, which

is precisely the inductive hypothesis. Hence the conclusion follows from (23). �

Now Cvn = Fλn(Vn), so (44) yields a surjection:

H ′ ⊇
⊕

|µ|=−λn

F ′µ
πH−−−→H , where µ = (µj)j∈J ′ ∈

(
h∨
)J ′ , (45)

writing |µ| =
∑
j∈J ′ µj ∈ h∨ analogously to the above, and where F ′µ ⊆ H ′ is the

tensor product of the weight-gradings over J ′ ⊆ J (analogously to (43)). Note the
direct sum is just the weight space of weight −λn ∈ h∨ for the (tensor) action of
h on H ′; let us temporarily denote this space by H ′(−λn).

Lemma 7.1. The kernel of (45) equals n+H ′ ∩H ′(−λn) ⊆ H ′(−λn).

Proof. We must show that no coinvariants can arise from the residual n−-action.
To this end recall n− has nontrivial action on the associated graded of the

filtration E6• of § 3.3: more precisely (24) yields

n−
(
H ′ ⊗ gr

(
E(n)

)
k

)
⊆
(
H ′ ⊗ gr

(
E(n)

)
k

)
⊕
(
H ′ ⊗ gr

(
E(n)

)
k+1

)
⊆ H ,

for k ∈ Z>0; but there can be no vanishing of components in the latter direct
summand since Vn is freely generated over U(n−), and this applies in particular
to vn ∈ E

(n)
60 ' gr

(
E
(n)
0
)
. �
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The punchline is the final identification

H ' H ′(−λn)
/(

n+H ′ ∩H ′(−λn)
)

. (46)

7.1.1. On dimensions. To go further we use the results of § 3.4; in particular we
employ the notation Fν(Wj) := Fλj−ν ⊆Wj for ν ∈ Q+—i.e. we parametrise the
weights µj = λj − ν � λj by ν ∈ Q+.

By definition the weight space of weight −λn ∈ h∨ for the h-action on H ′,
denoted H ′(−λn) above, is the direct sum of the spaces F ′ν ⊆ H ′ such that
0 = λn +

∑
j∈J ′(λj − νj), so only elements such that |ν| = |λ| ∈ h∨ will contribute

to coinvariants. This actually depends on the sum of the tame parts of the singular
characters, hence we ought to change notation:

H ′|λ| :=
⊕

|ν|=|λ|

F ′ν ⊆ H ′ . (47)

Proposition 7.4. The h-weight space H ′
|λ|
⊆ H ′ has dimension

dim
(
H ′|λ|

)
=
∑

|ν|=|λ|

(∏
j∈J ′

∑
m∈MultR+(νj)

(
m+ rj − 1

m

))
<∞ . (48)

Proof. It follows from (25), taking the products of the dimensions of the weight
spaces Fνj ⊆Wj.

The dimension is finite since for ν ∈ Q+ there are finitely many J ′-tuples

ν ∈
(
Q+
)J ′ such that |ν| = ν—analogously to

∣∣MultR+(ν)
∣∣ <∞. �

We deduce the following.

Corollary 7.1. If one module is tame then the space of irregular conformal blocks of
Def. 6.1 is finite-dimensional for all choices of marked points and singular characters.

In particular the weight space is trivial if |λ| 6∈ Q+, and the simplest nontrivial
case is when |λ| = 0. Then |ν| = 0 implies νj = 0 for j ∈ J ′, so H ′0 is the line
generated by the tensor product

⊗
i∈J ′ wi of the cyclic vectors wi ∈Wi.

The next nontrivial example is when |λ| = θ ∈ Π is a simple root. Now |ν| = θ

implies ν ∈
{
νθ,i
}
i
, with νθ,i

j = δijθ for i, j ∈ J ′. Then one finds the singleton

MultR+

(
νθ,i
j

)
=
{
δijm

θ
}

, with mθα = δαθ. On the whole (48) reduces to

dim
(
H ′θ
)
=
∑
i∈J ′

(∏
j∈j ′

(
δijm

θ + rj − 1
δijmθ

))
=
∑
i∈J ′

(
mθ + ri − 1

mθ

)
=
∑
i∈J ′

ri ,

independently of the choice of simple root.
A basis is given by the pure tensors

ŵ
j
i :=

i−1⊗
k=1

wk ⊗ Fθzjwi ⊗
n−1⊗
k=i+1

wk ,

for i ∈ J ′ and j ∈ { 0, . . . , ri − 1 }.

Remark 7.1. One way to ensure coinvariants are nontrivial is the following: for a
given configurations of points p = (pj)j∈J consider the Lie subalgebra of g-valued
meromorphic functions with poles at pj, and further with a zero elsewhere, say at
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p ′ ∈ Σ \
{
pj
}
j
. Then the proof of Prop. 7.1 can easily be adapted working in the

chart where p ′ =∞—as the function fi(z) = (z− ti)
−m vanishes at infinity.

Thus there is still a surjection of H on the space of coinvariants, and similarly
to Prop. 7.2 only constant functions lie in the kernel. Hence in this setup the
kernel is trivial and H 6= (0) itself is the space of coinvariants.

Another way to ensure nontriviality is to put a θ-dual module in the tensor
product (introduced in § 4). Further when it is tame then one still has a finite-
dimensional space, see § 8. 4

7.1.2. Archetypal case. Consider the same setup of § 3.4.1 for g = sl(2, C). In this
case |λ| = mα for an integer m > 0.

Proposition 7.5. One has

dim
(
H ′mα

)
=

(
m+ R− 1

m

)
, where R :=

∑
j∈J ′

rj . (49)

A basis is provided by the pure tensors

ŵΦ =
⊗
j∈J ′

( rj−1∏
i=0

(
Fzi
)Φ(i,j)

wj

)
,

where Φ ∈WCompR(m)—identifying { 1, . . . ,R } '
∐
j∈J ′
{

0, . . . , rj − 1
}

.

Proof. Fix an integer m > 0 and look for ν ∈ (Z>0α)
J ′ satisfying |ν| = mα. Such

elements are given by weak J ′-compositions of m, i.e. functions φ : J ′ → Z>0
satisfying

∑
j∈J ′ φ(j) = m, with bijection

φ 7−→ νφ , ν
φ
j := φ(j)α .

Then by definition MultR+

(
ν
φ
j

)
=
{
φ(j)

}
for j ∈ J ′, so we need only give ele-

ments ϕj ∈WComprj
(
φ(j)

)
to allocate the z-degrees of the occurrences of −α at

each slot of the tensor product.
The data of φ and ϕ = (ϕj)j is equivalent to that of the weak R-composition

Φ : R→ Z>0 defined by Φ(i, j) = ϕj(i), and the result follows. �

Remark. In the tame case (49) simplifies to

dim
(
H ′mα

)
=
∣∣∣WCompJ ′(m)

∣∣∣ = (m+
∣∣J ′∣∣− 1
m

)
,

and a basis is given by the pure tensors

v̂φ =
⊗
j∈J ′

Fφ(j)vj for φ ∈WCompJ ′(m) .

This is somehow the opposite of (28): there we had an arbitrary singular module,
here we have a tensor product of arbitrarily many tame modules. 4
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8. Irregular conformal blocks: second version

We now vary the setup of § 6 giving a special role to one of the marked points
(e.g. the last one): choose a (· | ·)-orthogonal morphism θ : g→ gop and at the last
marked point put a θ-dual module Ŵ ′θ �W ′θ as defined in § 4.

In this case the tensor product splits as

Ĥ = Ŵ ′n ⊗
⊗
j∈J ′

Ŵj , H =W ′n ⊗
⊗
j∈J ′

Wj , (50)

where J ′ = J \ {n } as in § 7.1—and omitting the subscript θ. These are naturally
subspaces of Hom(Ŵn, Ĥ ′) and Hom(Wn,H ′), respectively, where H ′ is as in
§ 7.1 and Ĥ ′ :=

⊗
j∈J ′ Ŵj. Moreover they still assemble into trivial vector bundles

Ĥ � H over the space Cn = Confn(Σ)—but also over the full space (41) of
isomonodromy times.

The Lie algebra of g-valued meromorphic functions on Σ acts on the leftmost
tensor product of (50). Thinking in terms of linear maps ψ̂ : Ŵn → Ĥ ′, and
using (38) and the dual actions of § 4, one has the formula〈

τ(X⊗ f)ψ̂, ŵ
〉
=
∑
j∈J ′

(
X⊗ τj(f)

)(j) 〈
ψ̂, (θ(X)⊗ τn(f))ŵ

〉
∈ Ĥ ′ ,

where X ∈ g, f ∈ O∗D(Σ) and ŵ ∈ Ŵn. Taking coinvariants of the resulting left
module yields a second version of the space of irregular conformal blocks, still
denoted H . Moreover the material of § 6 goes through, and there is an action of
the sheaf of Lie algebras g∗D on sections of Ĥ and H.

8.1. On coinvariants. Consider first the natural inclusion ι : Ŵ ′n ⊗H ′ ↪→ Ĥ,
which can be composed with the canonical projection πH : Ĥ→H .

Reasoning as in Prop. 7.1 (which may be thought of as the case Ŵ ′n = C)
shows this composition is surjective. Then reasoning as in Prop. 7.2 shows the
kernel is obtained from the action of meromorphic functions with no poles at{
p1, . . . ,pn−1

}
⊆ Σ, but only (at most) at the point pn. Hence there is a vector

space isomorphism

H ' Ŵ ′n ⊗H ′
/
g∗pn(Σ)

(
Ŵ ′n ⊗H ′

)
,

thinking of pn ∈ Σ as a divisor.
Now a function with a pole at most at pn is either constant, or its Laurent

expansion at pn lies in z−1
n g

[
z−1
n

]
⊆ (Lg)n, where as usual zn is a local coordinate

on Σ vanishing at pn. Hence a coinvariant function is uniquely determined by
its restriction to Wn ⊆ Ŵn, and since now poles are not allowed we get the
following.

Proposition 8.1. There is a canonical vector space identification

H 'W ′n ⊗H ′
/
g(W ′n ⊗H ′) .

Thus in this case as well we can reduce the discussion to g-coinvariants for the
tensor product of finite modules.

Now suppose the dual module is tame, and adapt the discussion of § 7.1. We
see there is a surjective map H ′ → H , where again H ′ =

⊗
j∈J ′Wj—embedded
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in H via ŵ 7→ ψ⊗ ŵ, where ψ ∈ V ′n is the cyclic vector. Reasoning as in Lem. 7.1
the θ−1(n−)-action cannot give coinvariant elements, so we are left with the action
of h⊕ θ−1(n+).

In the dual case where θ = θ0 = − Idg we have θ−1(n+) = n+, so we are
essentially back to § 7.1.1. The contragredient case where θ = θ1 (the transpo-
sition) instead allows to go further. In this case θ−1(n+) = n−, whence a new
identification H ' H ′b− , and to trivialise the h-action we consider again the zero-
weight subspace inside H ′. This is again (47), whose (finite) dimension is given
in Prop. 7.4.

Finally in this setup we can recover nontriviality, as follows. Recall we attach
weights λ = (λj)j∈J ∈

(
h∨
)J to the marked points, and that we consider the sum

|λ| =
∑
j∈J λj ∈ h∨. The weight space is H ′

|λ|
⊆ H ′, hence

H ' H ′|λ|
/(

n−H ′ ∩H ′|λ|
)

.

Compare with (46): as expected the roles of the nilpotent subalgebras n± are
exchanged—by θ.

Proposition 8.2. Suppose n > 3 and |λ| ∈ Q+: then the space of coinvariants is
nontrivial—for any choice of wild parts.

A fortiori then nontriviality holds if the n-th module is not tame.

Proof. For ŵ ∈ F|λ|(W1) ⊆W1 consider the pure tensor

ŵ := ŵ⊗
⊗

26i6n−1

wi ∈ H ′|λ| .

(In brief put the cyclic in all slots except the first, and put a vector of suitable
weight in the first slot.) An argument analogous to the proof of Lem. 7.1 shows
that ŵi 6∈ n−H ′, which means exactly that

[
ŵi
]
6= 0 inside H .

More precisely denote E
(j)
6• the filtration on U(g)wj = U(n−)wj ⊆Wj induced

from U(n−), as in § 3.3, with associated grading gr
(
E(j)

)
•. Then consider the

tensor product ZJ
′′

>0-grading

gr
(
E
)
• :=

⊗
j∈J ′′

gr
(
E(j)

)
• , where J ′′ := J ′ \ { 1 } .

Using (24) yields

n−
(
W1 ⊗ gr

(
E
)
k

)
⊆
(
W1 ⊗ gr

(
E
)
k

)
⊕
n−1⊕
i=2

(
W1 ⊗ gr

(
E
)
k+εi

)
,

for k ∈ ZJ
′′

>0, where εi ∈ ZJ
′′

is the i-th vector of the canonical Z-basis. Again
the vanishing of components in the latter direct summands cannot happen, since
the U(n−)-action is free on singular modules. �

Remark. If n = 2 instead simply H ' Fν(W)
/(

n−W ∩ Fν(W)
)

for ν ∈ Q+, and
we must further distinguish the tame/wild case.

In the tame case V = n−V ⊕ Cv, so nontriviality implies v ∈ Fν: this forces
ν = 0 and H ' Fλ(V) = Cv.
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In the wild case instead write ν =
∑
α∈R+ mαα for mα ∈ Z>0, and consider

the vector
ŵν :=

∏
α∈R+

(
X−αz

)mαw ∈ Fν(W) ,

ordering again the positive roots along the Cartan–Weyl basis (15) (note this
makes sense at all depths p > 2). Clearly ŵν 6∈ n−W, since all occrrences of
root vectors have positive z-degree, hence H 6= (0) always in this case. 4

Remark. One may also consider the tensor products of the grading of Def. 3.2, in
addition to the h-weight grading—i.e. use the fact that every finite module is a
graded n−JzK-module. Namely there is a decomposition

H ′ =
⊕
k∈ZJ

′

F+
k , where F+

k =
⊗
j∈J ′

F+
kj
(Wj) ,

which is preserved by the tensor product b−-action, so H '
⊕
k∈ZJ

′ (F+
k )b− .

This is a new feature: in the tame case the grading in positive z-degree is trivial.
4

9. Connection on the irregular conformal blocks bundle

Consider a particular case of the setup of § 6: mark n+ 1 (ordered) points on
Σ, vary the first n > 1 of them, and fix singular characters at those points.

Thus we work on a closed subspace of Confn+1(Σ), which is naturally identi-
fied with the local chart U ′ = Confn(U) ⊆ Cn of Rem. 6.1 where pn+1 = ∞—
whence { p1, . . . ,pn } ⊆ U ' C. The label set becomes J = { 1, . . . ,n,∞ }, and we
write J ′ := J \ {∞ }.

Then we have two versions of spaces of irregular conformal blocks: either
we put a singular module at infinity, or a θ-dual. In any case we consider the
restrictions of the vector bundles H ⊆ Ĥ over U ′ ' Cn(C) := Confn(C), as well
as for the sheaves (πΣ)∗O∗D and g∗D on U ′—and keep the same notation for
them.

Then we want to define a connection ∇̂ on Ĥ → Cn(C) which is compatible
with the action of the sheaf of Lie algebras g∗D. In the given trivialisation this
will be of the form ∇̂ = d−$̂, where $̂ is a 1-form on Cn(C) with values in en-
domorphisms of the fibres, and with a view towards (generalisations of) KZ [33]
we set

〈$̂,∂ti〉 := L
(i)
−1 , for i ∈ J ′ ,

where we use the coordinates t : Cn(C) → Cn of Rem. 6.1 and the Sugawara
operator (31). This is a translation-invariant 1-form on the parallelisable manifold
Cn(C), so in particular d$̂ = 0. Further the actions of L−1 on different slots
commute, so

[
$̂∧ $̂

]
= 0, and the connection ∇̂ is (strongly) flat.

9.1. Compatibility with the action of meromorphic functions. We now consider
a natural connection D on the sheaf g∗D—a linear map D : g∗D → Ω1

Cn(C) ⊗ g∗D
satisfying Leibnitz’s rule. Namely we set

D(X⊗ f) := X⊗ df ,

where d: Ω0
Cn(C)

→ Ω1
Cn(C) is the standard de Rham differential.
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Proposition 9.1. One has

∇̂
(
τ(X⊗ f)ŵ

)
= τ
(
D(X⊗ f)

)
ŵ+ τ(X⊗ f)∇̂ŵ , (51)

where X ∈ g, and f and ŵ are local sections of (πΣ)∗O∗D and Ĥ, respectively.

To prove this we use the following well-known fact.

Lemma 9.1 ([30], Lem. 12.8). One has the identity
[
L−1,Xzm

]
= −mXzm−1 inside

the completion Û
(
ĝ
)

of U
(
ĝ
)
, for X ∈ g and m ∈ Z.

Proof of Proposition 9.1. For i ∈ J ′ and for local sections ŵ and X⊗ f of Ĥ and
g∗D—respectively—we must prove that

∂ti
(
τ(X⊗ f)ŵ

)
−
[
L
(i)
−1 , τ(X⊗ f)

]
ŵ = τ

(
X⊗ ∂tif

)
ŵ+ τ(X⊗ f)∂tiŵ .

Now for j ∈ J ′ we have the expansions

τj(f) =
∑
k

fk(t1, . . . , tn)zkj ,

where fk is a regular function on an open subset of Cn(C), and we take the local
coordinate zj = z− tj on Σ—vanishing at pj. Since ∂ti(zj) + δij = 0 one has

∂ti
(
τj(f)

)
= τj(∂tif) + δij

[
L−1, τj(f)

]
,

using Lem. 9.1. Hence by (38):

∂ti
(
τ(X⊗ f)ŵ

)
= τ
(
X⊗ ∂tif

)
ŵ+

[
L−1,X⊗ τi(f)

](i)
ŵ+ τ(X⊗ f)(∂tiŵ) ,

and we conclude with[
L
(i)
−1 , τ(X⊗ f)

]
=
[
L
(i)
−1 ,
(
X⊗ τi(f)

)(i)]
=
[
L−1,X⊗ τi(f)

](i) .

�

Thus a reduced connection is well defined on H → Cn(C), since ∇̂ preserves
the sheaf of sections with values in the subspaces g∗DĤp,χ ⊆ Ĥp,χ, by (51).
We conclude the sheaf of irregular conformal blocks has a natural structure of
flat vector bundle over the space of tame isomonodromy times. It follows that the
dimension of the spaces of irregular conformal blocks is constant along variations
of the marked points—when finite.

9.2. Description on finite modules: first version. By the results of § 7 it is possi-
ble to describe the reduction of ∇̂ as the g-reduction of a connection ∇ living on
the vector sub-bundle H ⊆ Ĥ, and further as a connections acting on H ′ ⊆ H

when the module at infinity is tame.
The goal is to find an explicit expression for ∇. For this we will use the follow-

ing elementary fact, where we further set z∞ := z−1—a local coordinate vanishing
at infinity.

Lemma 9.2 (Expansions at irregular singularities).
For i ∈ J ′ and for an integer m > 0 one has

τj
(
z−mi

)
=


∑
l>0

(
m+l−1
l

) zlj
(ti−tj)l(tj−ti)m

, j ∈ J \ { i } ,∑
l>0

(
m+l−1
l

)
tliz
m+l∞ , j =∞ .

(52)
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9.2.1. Tame case. Suppose rj = 1 for j ∈ J. Then using (52) with m = 1 yields

X⊗ τj
(
z−1
i

)
v̂j =

X

tj − ti
v̂j , X⊗ τ∞(z−1

i

)
v̂∞ = 0 ,

for X ∈ g, i 6= j ∈ J ′, v̂j ∈ Vj and v̂∞ ∈ V∞—since zjgJzjKVj = (0) for j ∈ J. Hence
by (40) one has the following identity inside H —with tacit use of πH :(

X⊗ z−1
i

)(i)
v̂⊗ v̂∞ =

∑
j∈J ′\{ i }

X(j)

ti − tj
v̂⊗ v̂∞ ,

where v̂ =
⊗
j∈J ′ v̂j ∈H. In particular the action is trivial at infinity.

Looking at (35) and writing L(i)−1(v̂⊗ v̂∞) = v̂i ⊗ v̂∞ we find

v̂i =
1

κ+ h∨

∑
j∈J ′\{ i }

(∑
k

(Xk)(i)X
(j)
k

ti − tj

)
v̂ =

1
κ+ h∨

∑
j∈J ′\{ i }

Ω(ij)

ti − tj
v̂ , (53)

where Ω(ij) := ι(ij)(Ω) denotes the embedding (37) of the quadratic tensor (4)—
with m = l = 0.

One recovers the KZ connection [33] on the sub-bundle H ′
|λ|

↪→ H, taking V∞
as auxiliary tame module.

9.2.2. Tame modules in the finite part. Now allow r∞ > 1 to be arbitrary. What
changes is

X⊗ τ∞(z−1
i )ŵ∞ =

r∞−2∑
l=0

tliXz
l+1∞ · ŵ∞ ,

for X ∈ g, ŵ∞ ∈ W∞ and i ∈ J ′, using the case m = 1 of (52). So the action is
nontrivial at infinity if r∞ > 2.

Then by (40) one has the following identity inside H —with tacit use of πH :

(
X⊗ z−1

i

)(i)
v̂⊗ ŵ∞ =

 ∑
j∈J ′\{ i }

X(j)

ti − tj
−

r∞−2∑
l=0

tli
(
Xzl+1)(∞)

 v̂⊗ ŵ∞ .

Thus looking at (35) one finds L(i)−1(v̂⊗ ŵ∞) = v̂i ⊗w∞ +Di(v̂⊗ ŵ), where v̂i is
as in (53), and

Di(v̂⊗ ŵ∞) = 1
κ+ h∨

r∞−2∑
l=0

tliΩ
(i∞)
0,l+1(v̂⊗ ŵ∞) ,

using again the embedding ι(i∞)(Ω0,l+1) of (4) defined by (37).

Remark. E.g. if r∞ = 2 then the new operator acts by

Di(v̂⊗ ŵ∞) = Ω
(i∞)
01 v̂⊗ ŵ∞
κ+ h∨

. (54)

In this case the reduced connection is close to the dynamical KZ connection,
i.e. [19, Eq. 3]. We will recover the very same “dynamical” Cartan term in § 12.

4
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9.2.3. Tame module at infinity. Suppose symmetrically r∞ = 1, but rj is arbitrary
for j ∈ J ′.

Proposition 9.2. One has L(i)−1ŵ⊗ v̂∞ = ŵi ⊗ v̂∞, with

ŵi = −
1

κ+ h∨

∑
j∈J ′\{ i }

(
ri−1∑
m=0

rj−1∑
l=0

(
m+ l

l

)
Ω

(ij)
ml ŵ

(ti − tj)l(tj − ti)m+1

)
. (55)

Proof. Postponed to § A.2. �

This is an irregular generalisation of the KZ connection, corresponding to an
action of the universal connection of [41].8

Remark. The flat connection (55) is known to admit an isomonodromy system as
semiclassical limit (see op. cit.): precisely the irregular isomonodromy system on
CP1 for variations of the positions of the poles (the tame isomonodromy times,
as considered in [32]).

This generalises the same fact from the tame case: the quantisation of the
Schlesinger system [43] yields the KZ connection [41, 26]. 4

9.2.4. General case. Finally take r∞ > 1 to be generic as well.

Proposition 9.3. One has L(i)−1ŵ ⊗ ŵ∞ = ŵi ⊗ ŵ∞ +Di(ŵ ⊗ ŵ∞), with ŵi as
in (55) and

Di(ŵ⊗ ŵ∞) = 1
κ+ h∨

ri−1∑
m=0

r∞−m−1∑
l=0

(
m+ l

l

)
tliΩ

(i∞)
m,m+l+1(ŵ⊗ ŵ∞) . (56)

Proof. This is a generalisation of Prop. 9.2 where moreover

X⊗ τ∞(z−mi )ŵ∞ =

r∞−m−1∑
l=0

(
m+ l− 1

l

)
tliXz

m+l∞ · ŵ∞ ,

for X ∈ g, ŵ∞ ∈W∞ and i ∈ J ′, using the general case of (52). Now the action is
nontrivial at infinity for r∞ > m+ 1, and the result still follows from (34). �

9.3. Description on finite modules: second version. Finally one may consider
the setup of § 8, i.e. put a θ-dual module W ′θ at infinity. In the analogue of
§§ 9.2.1 and 9.2.3—when the module at infinity is tame—the description of the
reduced connection does not change, using (30). In the remaining cases one finds
the action of the same quadratic tensors on the last slot, acting on the θ-dual.

Hence in the next section we will introduce a universal versions of the reduced
connection, looking at (55) and (56), to treat the two versions on the same footing.

10. Universal connections

Fix again a depth p > 1, an integer n > 1, and the finite ordered sets

{ 1, . . . ,n } = J ′ ⊆ J = { 1, . . . ,n,∞ } .

8Compare also (55) with [23, Eqs. B.6 and B.7], where g = sl(2, C): this should be a formalisation
of fn. 6 of op. cit.
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Consider then the nonautomous (quantum) Hamiltonian systems

Ĥi = Ĥ
(p)
i : Cn(C)→ U

(
gp
)⊗|J| ,

with Hamiltonians Ĥi = Ĥ ′i + Ĥ
′′
i for i ∈ J ′, where

Ĥ ′i(t) := −
1

κ+ h∨

∑
j∈J ′\{ i }

(
p−1∑
m,l=0

Ω
(ij)
ml

(
m+ l

l

)
(−1)m(ti − tj)

−1−m−l

)
, (57)

and

Ĥ ′′i (t) :=
1

κ+ h∨

p−1∑
m,l=0

Ω
(i∞)
m,m+l+1

(
m+ l

l

)
tli , (58)

as suggested by (55) and (56).
These Hamiltonians are equivalent to the universal connection (at depth p):

∇p = d−$p , $p = $ ′p +$
′′
p , $ ′p :=

∑
J ′

Ĥ ′i dti , $ ′′p :=
∑
J ′

Ĥ ′′i dti , (59)

defined on the trivial vector bundle U(J,p) := Cn(C)×U
(
gp
)⊗|J| → Cn(C) by

means of the U(gp)⊗|J|-valued 1-forms $ ′p and $ ′′p on the base space. This gen-
eralises [41] with a nontrivial action at infinity.

Then for every choice of singular modules labeled by J there is an action of (59)
on H for p� 0, which reproduces the most general case of § 9.2 (with θ-duals or
not), so in particular there are induced integrable quantum Hamiltonian systems.
Hence one expects (59) to be flat before taking representations, as we will show.

Remark. One directly checks that

∂Ĥ ′j
∂ti

−
∂Ĥ ′i
∂tj

= 0 , and
∂Ĥ ′′j
∂ti

= δij , for i, j ∈ J ′ ,

so (strong) flatness is equivalent to the commutativity of the quantum Hamilto-
nians. 4

10.1. Flatness at finite distance. The 1-form defining the Hamiltonians (57) can
be written

$ ′p =
1

κ+ h∨

∑
i 6=j∈J ′

r
(ij)
p (ti − tj)d(ti − tj) ,

where rp : C \ { 0 }→ g⊗2
p is the following rational function:

rp(t) := −

p−1∑
m,l=0

Ωml ⊗ (−1)m
(
m+ l

l

)
t−1−m−l . (60)

Remark. It is easy to see that rp is skew-symmetric, meaning

r
(ij)
p (t) + r

(ji)
p (−t) = 0 , for t ∈ C \ { 0 } , i, j ∈ J ′ . (61)

4
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The study of the connection ∇ ′p := d−$ ′p is closely related to the theory of the
classical Yang–Baxter equation (CYBE) [4]. In particular flatness (for

∣∣J ′∣∣ > 3) is
equivalent to the CYBE for (60) in the Lie algebra gp, i.e. to the following identity
inside g⊗3

p :[
r
(12)
p (t12), r

(13)
p (t13)

]
+
[
r
(13)
p (t13), r

(23)
p (t23)

]
+
[
r
(12)
p (t12), r

(23)
p (t23)

]
= 0 ,

where tij := ti − tj.

Theorem 10.1 (cf. [41]). The rational function (60) is a solution of the CYBE.

Proof. We will reduce the proof to the well-known case p = 1, where gp = g. In
this case we have the classical result that the rational function r1(t) = Ωt−1 is a
skew-symmetric solution of the CYBE [4], which is an easy consequence of the
Drinfeld–Kohno relations

[
Ω(ij),Ω(ik)+Ω(jk)

]
= 0, and the Arnold relations [2]:

1
tijtjk

+
1

tjktki
+

1
tkitij

= 0 . (62)

To prove the general case consider the identification g⊗2
p ' g⊗2 ⊗ A(2,p),

where A(n,p) := CJw1, . . . ,wnK
/
Ip is the quotient of the power-series ring by

the ideal Ip =
(
w
p
1 , . . . ,wpn

)
generated by

{
w
p
1 , . . . ,wpn

}
. In this identification

Ωml = Ω⊗wm1 w
l
2, and (60) can be written

rp(t) = Ω⊗ τ
(p)
(0,0)(ft) ∈ g⊗2

p , where ft(wi,wj) :=
1

t+wi −wj
,

and where τ(p)
(0,0)(ft) is the class mod Ip of the Taylor expansion of ft at the origin.

Then, up to the identification g⊗3
p ' g⊗3 ⊗A(3,p), the CYBE follows again from

(62), with ti replaced by ti −wi, for i ∈ { 1, 2, 3 }. �

Hence we have an inverse system of classical r-matrices, with respect to the
canonical projections gJzK

/
z•+1gJzK � gJzK

/
z•gJzK, corresponding to an inverse

system of flat vector bundles
(
U(n,p),∇ ′p

)
over the space of configurations of

J ′-tuples of points in the complex plane. The inverse limit of the vector bundles

is naturally identified with the trivial vector bundle with fibre U
(
gJzK

)⊗̂|J|, the
completion of the n-th tensor power of the positive part of the loop algebra.

Remark. The inverse limit r∞(t) = lim←−p rp(t) ∈ g⊗2[t−1]Jz1, z2K is a solution of the

CYBE in a completion of gJzK⊗3 ⊗OC3(C)

(
C3(C)

)
.

Analogously on the representation-theoretic side one may consider characters
of the Lie subalgebra

S(∞) :=
⋂
p>1

S(p) = b+JzK⊕CK ⊆ ĝ ,

using (6). Then S
(∞)
ab ' hJzK⊕CK, so the induced non-smooth modules Ŵ(∞)

depend on infinitely many Cartan parameters (and a level κ), and are generated
over U(Ln−) by a cyclic vector annihilated by n+JzK. Under (13) the parame-
ters of these modules correspond to principal parts of connections with essential
singularities. 4
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10.2. Flatness overall. The 1-form defining the Hamiltonians (58) can be written

$ ′′p =
1

κ+ h∨

∑
i∈J ′

s
(i∞)
p (ti)dti ,

where sp : C \ { 0 }→ g⊗2
p is the following rational function:

sp(t) :=

p−1∑
m,l=0

Ωm,m+l+1 ⊗
(
m+ l

l

)
tl .

Theorem 10.2. The universal connection ∇p is flat for p > 1.

Proof. Reasoning as in the proof of Thm. 10.1 consider the function

gt(wi,wj) :=
wj

1 −wj(t+wi)
.

Then one directly checks that the Taylor expansion of gt at the origin satisfies

sp(t) = Ω⊗ τ
(p)
(0,0)(gt) ,

and we can conclude by proving a version of the CYBE in the Lie algebra gp.
Namely by Thm. 10.1 the commutator of two Hamiltonians becomes[
Ĥi, Ĥj

]
=
[
r
(ij)
p (tij), s

(i∞)
p (ti)

]
+
[
r
(ij)
p (tij), s

(j∞)
p (tj)

]
+
[
s
(i∞)
p (ti), s

(j∞)
p (tj)

]
,

using the fact that actions on disjoint pairs of slots commute, and the skew-
symmetry (61). Now we can use the standard Drinfeld–Kohno relations to reduce
flatness (for all p > 1) to a variation of the Arnold relations (62), namely to the
following identity:

gti(wi,w∞)gtj(wj,w∞) + ftij(wi,wj)(gti(wi,w∞) − gtj(wj,w∞)) = 0 ,

where ft = ft(wi,wj) is as in the proof of Thm. 10.1. �

Remark 10.1. One can give a more symmetric expression of (59), with no special
role for the marked point at infinity.

To this end consider the generating function

ϕ(wi,wj) :=
1

wi −wj
, (63)

which is a meromorphic function on C2 with poles along
{
wi = wj

}
⊆ C2—

and only there. It can be extended (by zero) to a meromorphic function on the
complex surface Σ2 \

{
(∞,∞)

}
, so we can take Taylor expansions τ(pi,pj)(ϕ) of

ϕ at any pair of distinct points pi,pj ∈ Σ—using the local coordinates w−1
i and

w−1
j at infinity.
Then analogously to the above one checks that

τ
(p)
(pi,pj)

(ϕ) = rp(tij) , τ
(p)
(pi,∞)

(ϕ) = sp(ti) ,

for points pi,pj ∈ Σ at finite distance of coordinates ti, tj ∈ C, respectively.
Hence

$p =
1

κ+ h∨

∑
i 6=j∈J

τ
(p)
(pi,pj)

(ϕ)dtij ,

and all marked points are treated the same.
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Then the flatness of (59) for p > 1 is equivalent to generalised Arnold relations,
relating the Taylor expansions of (63) at pairs extracted from a triple of distinct
points on the Riemann sphere. 4

Hence we find again an inverse system of flat vector bundles
(
U(J,p),∇p

)
,

over the space of configurations of J ′-tuples of points in the complex plane.

10.3. Connection on coinvariants. The universal connection (59) is well defined
for sections with values in the space of g-coinvariants of U(gp)⊗n.

To prove this consider the canonical embedding g ↪→ gp ' g n bp and the
universal embedding gp ↪→ U(gp). Composing them we let g act on U(gp) in the
regular representation, and finally the tensor product action (analogous of (38) in
the case of constant functions). Then we get a g-action on differential forms with
values in the flat vector bundle

(
U(J,p),∇p

)
.

Proposition 10.1. The g-action is flat for all p > 1.

Note this is a particular case of a compatibility such as (51), for constant sec-
tions of the trivial bundle Cn(C)× g→ Cn(C), equipped with the trivial connec-
tion.

Proof. Postponed to § A.3. �

It follows that (59) preserves sections with values in gU(gp)
⊗|J| ⊆ U(gp)⊗|J|,

so a reduced (flat) connection is well defined on the space of g-coinvariants of the
tensor product. This was to be expected, as it holds for the induced connections
on the bundle of irregular conformal blocks.

11. On conformal transformations

Consider the action of Möbius transformations on Σ = P(C2), that is

g.
[
t1 : t2

]
=
[
at1 + bt2 : ct1 + dt2

]
,

for (t1, t2) ∈ C2 \ { 0 }, with g = g(a,b, c,d) given by numbers a,b, c,d ∈ C such
that ad− bc = 1. In the standard affine chart U = Σ \ { [1 : 0] } t−→ C we then have
the subgroup of affine transformation of the complex plane, with diagonal action
on Cn(C) ⊆ Cn, and with induced pull-back (right) action on sections of vector
bundles over that base.

In particular translations t 7→ t + b correspond to a = d = 1 and c = 0.
This is the 1-parameter subgroup corresponding to the infinitesimal generator
E ∈ Lie

(
PSL(2, C)

)
= sl(2, C), and the associated infinitesimal action reads

d
(
ŵ◦γ

)
(ε)

dε

∣∣∣
ε=0

=
dŵ(t+ε)

dε

∣∣∣
ε=0

=
∑
i∈J ′

∂ŵ

∂ti
,

considering the path γ : ε 7→ g(1, ε, 0, 1).
Analogously dilations correspond to the 1-parameter subgroup generated by

H ∈ sl(2, C), and the associated infinitesimal action is given by the Euler vector
field

d
(
ŵ◦γ

)
(ε)

dε

∣∣∣
ε=0

=
dŵ
(
(1+ε)2t

)
dε

∣∣∣
ε=0

= 2
∑
i∈J ′

ti
∂ŵ

∂ti
,

considering the path γ : ε 7→ g
(
1 + ε, 0, 0, (1 + ε)−1).
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Proposition 11.1. Suppose the module at infinity is tame. Then the action of affine
transformations on horizontal sections of the irregular conformal blocks bundle reads

ŵ(t ′) =
∏
i∈J ′

exp
(
aL

(i)
0
)
· ŵ(t) , (64)

where t ′ = (t ′i)i∈J ′ with t ′i = e
2ati + b. In particular horizontal sections are invariant

under translations.

Proof. Indeed if ŵ is a ∇ ′p-horizontal section of U(J,p)→ Cn(C) then

Eŵ =
∑
i∈J ′

( ∑
j∈J ′\{ i }

r
(ij)
p (tij)

)
ŵ ,

which vanishes by the skew-symmetry (61), and which implies the statement
about translations after taking gp-modules.

As for dilations, in the universal case of a ∇ ′p-horizontal section one finds

H

2
ŵ =

∑
i∈J ′

( ∑
j∈J ′\{ i }

tir
(ij)
p (tij)

)
ŵ =

∑
i 6=j∈J ′

tijr
(ij)
p (tij)ŵ ,

and we must consider the induced action on finite singular modules. Now one
computes

L0ŵ =
1

κ+ h∨

p∑
j=1

(∑
k

Xkz
−jXkz

j

)
ŵ, for ŵ ∈W ,

analogously to (34), using a (· | ·)-orthonormal basis (Xk)k of g. Then reasoning
as in § 9.2.3 the induced slot-wise action on coinvariants is

L
(i)
0 ŵ = −

1
κ+ h∨

∑
j∈J ′\{ i }

(
ri−1∑
m=0

rj−1∑
l=0

(
m+ l

l

)
(−1)mt−m−l

ij Ω
(ij)
ml

)
ŵ ,

with tacit use of the projection πH : H ′
|λ|
→H , and on the whole

H

2
ŵ =

(
L0 − L

(∞)
0
)
ŵ =

∑
i∈J ′

L
(i)
0 ŵ ,

by (60). This is the action of an endomorphism on the finite-dimensional vector
space H , and the statement follows by integrating the resulting (linear, first-
order) differential equation. �

Remark. As in the tame case, the g-coinvariance implies∑
i 6=j∈J

Ω(ij)ŵ+
∑
k∈J

Ω(kk)ŵ = 0 ,

in the space H . The action of Ω(kk) is that of the quadratic Casimir (3) on the
k-th slot, so this term acts diagonally and can be exponentiated to find the usual
conformal weight (cf. Rem. 5.2). The point is that in general the dilation action
has further nonscalar terms. 4



SINGULAR MODULES AND IRREGULAR CONFORMAL BLOCKS 41

12. Different dynamical term from infinity

In this section we generalise the dynamical KZ connection [19], varying the
setup of § 1.

Namely note another natural family of Lie algebras S(p) ⊆ S(p) ⊆ ĝ is given
by

S(p) := hJzK+ zpgJzK⊕CK .

The derived Lie algebra of S(1) yields the first “level subalgebra” of [17], then the
two differ for p > 2. One can then define (smooth) induced modules Ŵ as in § 1,

where Ŵ = Ŵ
(p)

χ depends on a character χ : S(p) → C. However one does not
recover the standard affine Verma module as the starting element of the family,
contrary to (9)—which is one motivation behind Def. 1.1.

Moreover one has S(p) ' h2p ⊕ CK, analogously to Lem. 1.1, so for p = 1
a character is defined by elements λ ∈ h∨ and by the irregular Cartan term
µ ∈ (h⊗ z)∨ (plus the choice of a level κ). Hence for p = 1 we see (13) matches
up the parameters of Ŵ with principal parts of meromorphic connections at poles
of order two, but in general only poles of even order can be obtained with this
construction, contrary to (9)—which is another motivation behind Def. 1.1.

Remark. The fact that the abelianisation of S(p) depends on “2p” Cartan param-
eters is our interpretation of the insightful Rem. 4 of [17, p. 5]. The same dilation
is seen in the formulæ of [18, §§ 2.8, 3.4], where one allows for poles “of orders
2mα”, but prescribes “the mα most singular terms”; and also in [22, § 7], where
only “the singular part of

√
φ2” is fixed (when given a meromorphic quadratic

differential φ2 on the sphere).
Of course one may alternatively shift degrees using the canonical vector space

isomorphisms g⊗ zi ' g for i ∈ Z, but this breaks the duality (13). 4

In any case one can put the module Ŵ = Ŵ
(1)
χ at infinity in the tensor prod-

uct Ĥ, and consider the spaces of coinvariants H as in § 6. The proofs of
Props. 7.1, 7.2 and 7.3 can be adjusted introducing suitable filtrations on Ŵ and
W = U(gJzK)w, where w ∈ Ŵ is the cyclic vector, as well as the whole of § 9.1.
Hence in brief one can use W as auxiliary module at infinity, which yields a dif-
ferent “dynamical” Cartan term in the reduced connection—with respect to (54).

Namely (54) simplifies to

Di(v̂⊗w) =
1

κ+ h∨

∑
k

µkH
(i)
k · v̂⊗w ,

where (Hk)k is a (· | ·)-orthonormal basis of h, using (n+ ⊕ n−)⊗ z∞ ·w = 0,
Hkz∞ ·w = µkw, and writing µk = 〈µ,Hkz∞〉.

We see the reduced connection generalises the dynamical KZ equations, i.e. [19,
Eq. 3], and it coincides with it when the modules over finite points are tame.9

So we recover the Felder–Markov–Tarasov–Varchenko connection (FMTV) over
variations of marked points as a particular case of this construction.

9Replace κ+h∨ ∈ C with “κ” and
∑
k µkHk ∈ h with “µ” to retrieve the exact [19, Eq. 3].



42 G. FELDER AND G. REMBADO

Note the whole of the FMTV connection also allows for variations of the ir-
regular part µ ∈ (h⊗ z)∨, in addition to the deformations à la Klarès considered
here [32]. In particular when there is only one simple pole the resulting flat con-
nection for variations of µ is the DMT connection [35, 46], which is derived from
a representation-theoretic setup in [17, § 3.11], and [18, § 3.7] (for the latter see
also [47]).

Remark 12.1 (On quantisation of isomonodromy connections). Just as in the case
of the KZ connection, a different derivation of these flat connections has been
obtained by (filtered) deformation quantisation of isomonodromy systems, this
time importantly for irregular meromorphic connections.

Namely [7] derived the DMT connection from the quantisation of a dual ver-
sion of the Schlesinger system (related to the usual Schlesinger system by the
Harnad duality [25], i.e. the Fourier–Laplace transform). In the same spirit, the
whole of FMTV connection can be obtained by quantising the isomonodromy
system of Jimbo–Miwa–Môri–Sato [29] (see [39, § 11]; more generally see op. cit.
and [40] for a further extension to connections with poles of order three including
all the above cases). 4

Outlook

As explained in the introduction we also wish to consider flat quantum con-
nections along variations of irregular types (i.e. variations of ”wild“ Riemann
surface structures on the sphere [10]). Two viable viewpoints to introduce them
are:

(1) the quantisation of the full irregular isomonodromy connections, in the
spirit of [7, 39], generalising the simply-laced quantum connections (which
quantise the simply-laced isomonodromy systems [11]);

(2) considering quantum symmetries: the quantum/Howe duality [3] was
used in [46] to relate KZ and the ”Casimir“ connection of De Concini and
Millson–Toledano Laredo (DMT) [35], and at the level of isomonodromy
systems corresponds to the Harnad duality [25]. An analogous quanti-
sation of the Fourier–Laplace transform may be taken here in order to
turn the variations of marked points into variations of irregular types,
extending the viewpoint of [9, 40].

Another natural direction to pursue is the higher-genus case, noting in that
case the moduli spaces of connections on holomorphically trivial bundles have
positive codimension inside the full de Rham spaces.

Finally one may try to introduce integrality conditions, and lift this Lie-algebra
representation setup to Lie groups, with a view towards the geometric quantisa-
tion of coadjoint Gp-orbits (along the lines of the Borel–Weyl–Bott theorem [44,
45, 15], or more generally of the orbit method [31]). Another approach we will
try in this direction is that of the quantisation of the nilpotent Birkhoff orbits
OB ⊆ b∨p [6].
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Appendix A. Computations

A.1. Proof of Prop. 5.1.

Proof. Set a(j)k := 〈aj,Hkzj〉 for k ∈ { 0, . . . , r } and j ∈ { 0, . . . ,p− 1 }, and further

a
(j)
α := 〈aj,Hαzj〉 for α ∈ R.

By (10) we see that : Xkz
−jXkzn+j : w 6= 0 implies 1 − p 6 j 6 p− 1 − n, so

n 6 2(p− 1) is necessary for nonvanishing terms.
Now importantly for n ∈

{
p− 1, . . . , 2(p− 1)

}
and j ∈ { 1 − p, . . . ,p− 1 −n }

one has −j,n+ j ∈ { 1 − p+n, . . . ,p− 1 } ⊆ { 0, . . . ,p− 1 }, so the normal ordered
products are void in (31). Then for α ∈ R+ and i ∈ { 1, . . . , r } one computes

Hkz
−jHkz

j+nw = a
(−j)
k a

(j+n)
k w , Eαz−jEαz

n+jw = 0 ,

and
(Hα | Hα)

2
Eαz

−jEαzn+jw = Hαz
nw = δn,p−1a

(n)
α w .

Hence

2
(
κ+ h∨

)
Lnw =

p−1−n∑
j=1−p

 r∑
k=1

(
Hkz

−jHkz
j+n

)
+
∑
α∈R+

(
Eαz

−jEαzj+n
)w

=

∑
j,k

(
a
(−j)
k a

(j+n)
k

)
+ δn,p−1(2p−n− 1)

∑
α∈R+

( (α | α)

2
a
(n)
α

)w ,

which implies (32) and (33) using (α|α)
2 〈µ,Hαzi〉 = (α | µ), for µ ∈ h∨ ⊗ zi. �

A.2. Proof of Prop. 9.2.

Proof. Using the general case of (52) yields

X⊗τj(z−mi )ŵj =

rj−1∑
l=0

(
m+ l− 1

l

)
Xzljŵj

(ti − tj)l(tj − ti)m
, X⊗τ∞(z−mi )v̂∞ = 0 ,

for X ∈ g, i 6= j ∈ J ′, ŵj ∈Wj and v̂∞ ∈ V∞—since z∞gJz∞KV∞ = 0 = z
rj
j gJzjKVj.

Hence by (40) one has the identity
(
X⊗ z−mi

)(i)
ŵ⊗ v̂∞ = ŵi,m,X ⊗ v̂∞ inside

H , where

ŵi,m,X = −
∑

j∈J ′\{ i }

(rj−1∑
l=0

(
m+ l− 1

l

) (
Xzl
)(j)
ŵ

(ti − tj)l(tj − ti)m

)
.

The result then follows from (34). �
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A.3. Proof of Prop. 10.1.

Proof. We prove the g-action commutes with ∇p : Ω0(U(n,p)
)
→ Ω1(U(n,p)

)
.

Since the g-action is independent of the point on the base space, this is equivalent
to $ ′p ⊗Xψ−X

(
$ ′p ⊗ψ

)
= 0 = $ ′′p ⊗Xψ−X

(
$ ′′p ⊗ψ

)
, for X ∈ g.

Now by (57) one has

(κ+ h∨)
(
$ ′p ⊗Xψ−X

(
$ ′p ⊗ψ

))
=
∑
i 6=j

p−1∑
m,l=0

(−1)m
(
m+ l

l

)
t−1−m−l
ij dtij ⊗

(∑
k∈J ′

[
Ω

(ij)
ml X

(k)
]
ψ

)
,

and analogously by (58)

(κ+ h∨)
(
$ ′′p ⊗Xψ−X

(
$ ′′p ⊗ψ

))
=
∑
i∈J ′

p−1∑
m,l=0

(
m+ l

l

)
tli ⊗

(∑
k∈J ′

[
Ω

(i∞)
ml ,X(k)

]
ψ

)
.

Hence it is enough to show that∑
k∈J ′

[
Ω

(ij)
ml ,X(k)

]
= 0 ∈ U(gp)⊗n ,

for all i 6= j ∈ J and for all m, l ∈ Z. Finally by (4) we have∑
k∈J ′

[
Ω

(ij)
ml ,X(k)

]
=
∑
r

([
Xr,X

]
zm
)(i)(

Xrz
l
)(j)

+
(
Xrz

m
)(i)([

Xr,X
]
zl
)(j)

,

where we let (Xr)r be a (· | ·)-orthonormal basis of g, which vanishes by (5). �
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