Insights from the topographic characteristics of a large global catalog of rainfall-induced landslide event inventories - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Natural Hazards and Earth System Sciences Année : 2022

Insights from the topographic characteristics of a large global catalog of rainfall-induced landslide event inventories

Robert Emberson
Dalia Kirschbaum
  • Fonction : Auteur
Pukar Amatya
  • Fonction : Auteur
Hakan Tanyas
Odin Marc
  • Fonction : Auteur
  • PersonId : 1294062
  • IdHAL : odin-marc

Résumé

Abstract. Landslides are a key hazard in high-relief areas around the world and pose a risk to populations and infrastructure. It is important to understand where landslides are likely to occur in the landscape to inform local analyses of exposure and potential impacts. Large triggering events such as earthquakes or major rain storms often cause hundreds or thousands of landslides, and mapping the landslide populations generated by these events can provide extensive datasets of landslide locations. Previous work has explored the characteristic locations of landslides triggered by seismic shaking, but rainfall-induced landslides are likely to occur in different parts of a given landscape when compared to seismically induced failures. Here we show measurements of a range of topographic parameters associated with rainfall-induced landslides inventories, including a number of previously unpublished inventories which we also present here. We find that the average upstream angle and compound topographic index are strong predictors of landslide scar location, while the local relief and topographic position index provide a stronger sense of where landslide material may end up (and thus where hazard may be highest). By providing a large compilation of inventory data for open use by the landslide community, we suggest that this work could be useful for other regional and global landslide modeling studies and local calibration of landslide susceptibility assessment, as well as hazard mitigation studies.
Fichier principal
Vignette du fichier
nhess-22-1129-2022.pdf (3.75 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03740552 , version 1 (29-07-2022)

Identifiants

Citer

Robert Emberson, Dalia Kirschbaum, Pukar Amatya, Hakan Tanyas, Odin Marc. Insights from the topographic characteristics of a large global catalog of rainfall-induced landslide event inventories. Natural Hazards and Earth System Sciences, 2022, 22 (3), pp.1129-1149. ⟨10.5194/nhess-22-1129-2022⟩. ⟨hal-03740552⟩
11 Consultations
19 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More