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Abstract. Landslides are a key hazard in high-relief areas
around the world and pose a risk to populations and infras-
tructure. It is important to understand where landslides are
likely to occur in the landscape to inform local analyses
of exposure and potential impacts. Large triggering events
such as earthquakes or major rain storms often cause hun-
dreds or thousands of landslides, and mapping the landslide
populations generated by these events can provide extensive
datasets of landslide locations. Previous work has explored
the characteristic locations of landslides triggered by seis-
mic shaking, but rainfall-induced landslides are likely to oc-
cur in different parts of a given landscape when compared
to seismically induced failures. Here we show measurements
of a range of topographic parameters associated with rainfall-
induced landslides inventories, including a number of previ-
ously unpublished inventories which we also present here.
We find that the average upstream angle and compound to-
pographic index are strong predictors of landslide scar lo-
cation, while the local relief and topographic position index
provide a stronger sense of where landslide material may end
up (and thus where hazard may be highest). By providing a
large compilation of inventory data for open use by the land-
slide community, we suggest that this work could be use-
ful for other regional and global landslide modeling studies
and local calibration of landslide susceptibility assessment,
as well as hazard mitigation studies.

1 Introduction

The impact of natural hazards on populations and infrastruc-
ture is most acute where the footprints of these hazards in-
tersect the locations where people live and buildings are sit-
uated. For some hazards like earthquakes and cyclones, the
footprints of the hazard can be distributed across wide re-
gions, but for other hazards like landslides the footprint may
be significantly more localized. Although the impacts of in-
dividual landslides may be localized, large triggering events
such as intense rainfall or seismic activity can cause large
numbers of landslides across a wide region, the extent of
which often mirrors the extent of the intense rainfall and seis-
mic shaking (Marc et al., 2017, 2018; Tanyaš and Lombardo,
2019). The individual landslides triggered during these ex-
treme events occur in specific parts of the landscape that are
most susceptible to failure. These slopes become critically
unstable due to both preconditioning factors like slope and
internal frictional strength and triggering factors like change
in fluid pore pressure or seismic acceleration.

A range of studies from around the world have assessed
the locations of landslides and used them to construct sus-
ceptibility models for local settings (e.g., Emberson et al.,
2021; Goetz et al., 2015; Broeckx et al., 2019), across
larger regions (e.g., Van Den Eeckhaut and Hervás, 2012;
Van Den Eeckhaut et al., 2012), and globally (e.g., Stanley
and Kirschbaum, 2017; Nowicki Jesse et al., 2018; Tanyaş et
al., 2019). Comprehensive reviews of landslide susceptibil-
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ity models (Budimir et al., 2015; Reichenbach et al., 2018)
highlight a number of factors that are often considered to
be generally important for landslide susceptibility. These in-
clude morphological (slope, aspect, roughness), geological
(e.g., lithology), land cover, seismic and hydrological factors.
Naturally, to study the importance of each of these factors, in-
formation on landslide location is essential to both calibrate
and validate any susceptibility model that is produced.

Landslide location data can come in different forms, and
landslide inventory maps are the most useful data source
in which the extent of landslide phenomena are systemati-
cally documented in a region (Guzzetti et al., 2012). Unfor-
tunately, the number of digitally available landslide invento-
ries is still rather limited (Wasowski et al., 2011; Guzzetti
et al., 2012; Tanyaş et al., 2017; Mirus et al., 2020). As a
result, landslide locations in global catalogs are often based
on media reports (e.g., Kirschbaum et al., 2015; Froude and
Petley, 2018), which can limit the accuracy of the defined
locations. A review of data in the NASA Global Landslide
Catalog (Kirschbaum et al., 2015) suggests that only 33 % of
landslides have a location known to within a 1 km resolution,
which does not permit assessment of the specific locations
where landslides occur within a landscape (e.g., at a hillslope
scale). Additionally, global landslide catalogs generally do
not include the entire landslide population for a given area.
While they may capture many of the landslides that cause
damage or fatalities (Petley, 2012; Froude and Petley, 2018),
underestimation of landslide susceptibility may result if sys-
tematic biases in reporting are found for certain geographies
or terrain parameters.

Landslide inventories are the ideal data source not only
to better understand the spatial, temporal and size distribu-
tion of landslides but also to conduct more accurate sus-
ceptibility, hazard and risk assessments (Guzzetti et al.,
2012). Overall, landslide inventories are categorized as his-
torical and event inventories (Malamud et al., 2004). Histor-
ical landslide inventories include many landslide events over
time in a given region. Landslide event inventories, on the
other hand, contain landslides triggered by a specific trigger
(e.g., earthquake, rainfall or snowmelt) of a known date. In
other words, the time of landslide occurrence is unknown in
historical landslide inventories, and therefore, landslide sus-
ceptibility models developed based on historical inventories
are time-invariant products solely representing geomorpho-
logically landslide-prone hillslopes (Lombardo and Tanyas,
2020). Historic inventories are by definition biased toward
frequent climatic triggers and are not representative of the
long-term average susceptibility to triggers including earth-
quakes, whereas landslide event inventories are more suitable
data sources to develop near-real-time products to predict the
spatial distribution of landslides triggered by a specific event
(e.g., Nowicki Jessee et al., 2018).

For specific large triggering events such as an earthquake
or an episode of extreme rainfall, it is possible to rela-
tively accurately define the timing of the event, and if high-

resolution imagery is found that brackets the dates in ques-
tion, it is also possible to systematically map the landslides
generated by such a trigger (Guzzetti et al., 2012). Map-
ping landslides following extreme events has become com-
mon, and inventories exist for a large number of earthquakes
(Tanyaş et al., 2017). A smaller number of intense rainfall
events have also been mapped (Marc et al., 2018), but unlike
for earthquakes (Schmitt et al., 2017) no centralized repos-
itory of these data exists at present. Location data for land-
slides triggered by intense rainfall are vitally important to
calibrate and validate existing susceptibility models since the
datasets produced are generally considered to be nearly com-
plete. It is also useful to characterize the rainfall required to
trigger landslides and thus help inform local and global haz-
ard models (Emberson et al., 2021; Kirschbaum and Stanley,
2018). These can then be used to inform exposure and risk
assessment estimates (Emberson et al., 2020).

It is important to note that the positions where earthquake-
triggered landslides occur on a given hillslope are not nec-
essarily applicable to rainfall-triggered landslides. As shown
by previous research (Densmore and Hovius, 2000; Meunier
et al., 2008), the higher peak ground acceleration in earth-
quakes at the top of ridges tends to increase landslides in
those locations, while increasing water saturation at the base
of slopes by intense rain tends to increase landslides lower
down the slope (e.g., Rault et al., 2019). As such, it is imper-
ative to use the appropriate type of landslide inventory to cal-
ibrate any model. Finally, recent studies have sought to derive
underlying simple topographic rules to understand hazard as-
sociated with earthquake-triggered landslides (e.g., Milledge
et al., 2019), and it is important that we extend this kind of
analysis to rainfall-triggered events to provide comparative
data.

In this study, we combine 10 existing inventories of
landslides triggered by intense rain storms with 6 new
inventories mapped using high-resolution data for this
study. Assessing these landslide event inventories both
individually and in combination, we assess the local to-
pographic characteristics that are most strongly related to
where landslides are initiated, as well as local forest loss
that can be calculated from satellite data. We suggest that
these inventories and the associated parameters can be used
to calibrate and validate other models of susceptibility and
hazard and will provide valuable information to authors
seeking landslide data with high spatial accuracy, as well
as supporting characterization of rainfall thresholds for
landslide impacts (e.g., Conrad et al., 2021). Moreover, with
a set of simplified rules for landslide hazard, researchers
can support hazard assessment in areas where more detailed
models may be unavailable. The inventories described
here will be available on the NASA Landslide Viewer
app (https://maps.nccs.nasa.gov/arcgis/apps/webappviewer/
index.html?id=824ea5864ec8423fb985b33ee6bc05b7, last
access: 6 January 2022) for open access by other researchers.
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2 Context and methods

2.1 Landslide inventories

It has become common practice to map areas affected by
landslide-triggering earthquakes to build a spatially complete
picture of landslide impacts (Tanyaş et al., 2017), and the in-
ventories that are generated have been used to produce haz-
ard maps (Jibson et al., 2000; Harp et al., 2011), susceptibil-
ity models (García-Rodríguez et al., 2008; Xu et al., 2012),
guidelines for hazard zonation (Milledge et al., 2019) and
global alerting systems (Nowicki Jessee et al., 2018). Land-
slide event inventories are also required to explore the land-
scape response to tectonic and climatic forcings (e.g., Mala-
mud et al., 2004; Korup et al., 2012; Marc et al., 2016,
2019). Mapping of landslides in the aftermath of major rain-
fall events is somewhat less common, since cloud cover is
often a significant impediment in the impacted areas, which
may limit clear views from satellites. However, an increasing
number of intense rainfall events have now had landslides
mapped, with extensive examples in Taiwan (Lin et al., 2011;
Chen et al., 2013), Japan and Brazil (Marc et al., 2018), and
the Caribbean (van Westen and Zhang, 2018).

Several methods exist to generate event-specific landslide
inventories. The robustness and accuracy of the final inven-
tory depend on the type and quality of imagery and data
available, as well as the method chosen. Synthetic aperture
radar (SAR) data have been employed to generate inventories
of slow-moving landslides (Handwerger et al., 2019; Bekaert
et al., 2020), to focus on the kinematics of single slow-
moving slides (Hu et al., 2019) and to map landslides occur-
ring in the aftermath of major triggering events (Mondini et
al., 2019; Handwerger et al., 2019; Adriano et al., 2020; Bur-
rows et al., 2020; Jung and Yun, 2020). The most widely used
technique is to map landslides directly from optical imagery,
from unmanned aerial vehicle (UAV) imagery (Casagli et al.,
2017; Rossi et al., 2018), aerial photography (Harp et al.,
2004) or satellite observations (Casagli et al., 2017; Martha et
al., 2012; Behling et al., 2014). While satellite observations
generally have the lowest spatial resolution and may be im-
pinged by cloud cover, these satellites offer near-global cov-
erage and frequent return intervals that generally allow for
imagery that brackets the event in question. This is particu-
larly the case for some of the newer commercial satellite con-
stellations. Some rainfall-triggered events may occur in loca-
tions where cloud cover is so prevalent that it precludes any-
thing other than seasonal assessment of landslide occurrence,
such as the Himalayas during the monsoon. However, an in-
creasing number of satellite-generated inventories now exist.
The methods used to delineate landslides from optical im-
agery include manual mapping, where a human determines
what is and is not a landslide, or semi-automatic/automatic
mapping, where detection algorithms are used to determine
landslide locations.

2.2 Methodology

Summarizing various previous work, five mapping criteria
appear essential for landslide inventories (see Guzzetti et al.,
2012; Marc and Hovius, 2015; Tanyaş et al., 2017): (i) man-
ual mapping (or correction) to reduce errors and avoid amal-
gamation, (ii) a high enough imagery resolution for com-
pleteness and to avoid amalgamation, (iii) mapping land-
slides as polygons to allow maximum scientific usage (e.g.,
area affected, volume of sediment mobilized, frequency–size
distributions), (iv) mapping with pre- and post-event imagery
to focus on landslides with a known trigger, and (v) de-
fined mapping boundary to clarify inventory completeness.
For the purposes of this study, we have tried to obtain as
many inventories as possible for comparison, while generally
satisfying these five essential criteria. Nevertheless, due to
varying imagery and mapping techniques, criteria (i) and (ii)
are fulfilled with variable quality for the studied inventories
(Table 1). More detailed inventories have differentiated the
source and deposit areas of landslides, but this often requires
field validation. The locations of the inventories are shown
in Fig. 1. It is important to note that although high-resolution
imagery can provide more accurate mapping in some cases,
it can also be more challenging to ortho-rectify, which can
limit the quality of landslide inventories generated (Williams
et al., 2018).

As such, we incorporate 10 existing inventories and sup-
plement them with 6 further inventories that we have pro-
duced for this study. The details of each of the invento-
ries are described in Table 1. For several of the newly pro-
duced inventories, we have utilized high-resolution imagery
from Planet Dove satellites (Planet Team, 2017) available
through the Commercial Smallsat Data Acquisition (CSDA)
Program (https://earthdata.nasa.gov/esds/csdap, last access:
12 January 2022). Planet imagery represents an important
step change for landslide mapping procedures, since the high
spatial resolution of approximately 3 m of the images is com-
bined with a rapid return time of the satellites (of the order of
1 image per day). For several of the newly generated inven-
tories, we have mapped the landslides manually using GIS
software. This has resulted in three inventories; two in the
Philippines and one in Thrissur, India (Table 1). The remain-
ing new inventories were generated using the semi-automatic
object-based methods of Amatya et al. (2019, 2021). The al-
gorithmic method was used to reduce the overall time spent
mapping some of the larger new inventories. Since algorith-
mic methods are known to produce artifacts when broadly
applied (Pawluszek et al., 2018) and can lead to amalgama-
tion of individual landslides into larger polygons (Marc and
Hovius, 2015), each of the automatically generated invento-
ries was additionally corrected by manual comparison with
pre- and post-event high-resolution imagery in GIS software.

Beyond the five essential mapping criteria, additional cri-
teria include the differentiation of scar and deposit areas
and the classifications of landslides according to their type-
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Figure 1. Locations of landslide inventories considered in this study. Locations labeled in red have been published previously, while those in
blue are presented for the first time here. Satellite images of the newly mapped landslide inventories can be found in the Supplement. Table 1
contains the details of each of the inventories, organized in alphabetical order.

/mechanisms. However, these criteria are difficult to fulfill
for large event inventories (see in Tanyaş et al., 2017), es-
pecially when based on various sources of optical imagery,
limiting our ability to differentiate between scar and deposit
areas (Casagli et al., 2017).

The mapped inventories combine scars and deposits in the
polygon delineation, although in the analysis discussed be-
low we have sought to differentiate these areas. In terms of
landslide type we could not systematically classify each land-
slide polygon. However, we have removed debris flows from
the analysis where possible by removing long-runout land-
slide polygons from each mapped inventory. In general, this
mapping identifies rockslides, rock avalanches, shallow soil
toppling and slumping failures but does not capture slow-
moving landslides where surface changes may be less evi-
dent. A focus on these kinds of landslides is warranted since
the volume of material mobilized during large storms from
such landslides can lead to damaging debris flows and bed-
load transport impacts (Badoux et al., 2014). Removing de-
bris flows from the analysis allows us to provide consistent
landslide maps that can be used to estimate volumes of mo-
bilized landslide material, for example using global scaling
relationships like those defined by Larsen et al. (2010), and
permits a focus solely on the topographic characteristics of
landslide source regions, rather than on the characteristics of
preferential runout paths.

We contrast each of the inventories mapped here by
comparing the size–frequency distributions of each dataset,
shown in Fig. 2. For each of the inventories, we show the
probability of a landslide within a given area interval, as a
way to assess the frequency of small and large landslides
across the different datasets. Each of these landslide events
was triggered by extreme rainfall, and although it is not our
intention to examine the triggering rainfall in detail in this
study, it is useful to briefly discuss the characteristics of the
rainfall events in question. It is important to note that the
date of the triggering rainfall is not identical to the dates

Figure 2. Probability density for landslides in each event inventory,
obtained as the number of landslides with areas falling into loga-
rithmic bins (consistent bins for all inventories), N[A:A+dA], nor-
malized by the bin width, dA, and the total number of slides for the
event, Ntot (see Malamud et al., 2004).

on which the imagery used to map the landslides was ob-
tained. Although we have selected events where the trig-
gering rainfall significantly exceeds historical peak rainfall
(and therefore is likely to be the dominant trigger for land-
slides), some events may have occurred as a result of lesser
rainfall before or after. While the new inventories generated
for this study utilize Planet imagery that closely brackets
the rainfall events (within 1 week either side), the older in-
ventories may be more subject to this challenge. A detailed
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Table 1. Details of landslide inventories analyzed in this study.

Location Event triggering Date of Reference Imagery (resolution) Dominant Global
triggering Lithological Map
rainfall

Micronesia (A) Cyclone 2 Jul 2002 Harp et al. (2004) Aerial photographs Basaltic/andesitic/
(varies) trachytic lava flows

South Taiwan (B) Typhoon 15–18 Jul 2008 Chen et al. (2013), Landsat 5 (30 m) Sedimentary/
Kalmaegi Marc et al. (2018) metamorphic

Blumenau, Brazil (C) Prolonged 20–25 Nov 2008 Marc et al. (2018) Google Earth/Landsat 5 Metamorphic
intense rain (3–30 m/30 m)

Taiwan (D) Typhoon 6–9 Aug 2008 Chen et al. (2013), FormoSat-2/Landsat 5 Sedimentary/
Morakot Chang et al. (2014), (4 m/30 m) metamorphic

Marc et al. (2018)

Teresópolis, Brazil (E) Local storm 11–13 Jan 2011 Marc et al. (2018) Google Earth/Landsat 5/ Acid plutonic/
EO ALI (3–30 m/30 m/30 m) metamorphic

Kii Province, Japan (F) Typhoon 2–5 Sep 2011 Marc et al. (2018) Aerial photographs/ Sedimentary/minor
Talas Google Earth/Landsat 5 plutonic/

(varies/3–30 m/30 m) metamorphic

Salgar, Colombia (G) Local storm 17–18 May 2015 Marc et al. (2018) Sentinel-2/Google Earth Metamorphic
(10 m/3–30 m)

Hiroshima, Japan (H) Prolonged 28 Jun– The Association Drone/aerial imagery Plutonic acidic/
intense rain 9 Jul 2018 of Japanese (varies) volcanic acidic/

Geographers minor siliciclastic
(2019)

Zimbabwe (I) Cyclone Idai 15–19 Mar 2019 This study Planet Dove (3 m) Metamorphic/
minor siliciclastic

Itogon, Philippines (J) Cyclone 15–20 Sep 2018 This study Planet Dove (3 m) Mixed sedimentary/
Mangkhut minor acidic

volcanic

Lanao del Norte, Tropical 20–26 Dec 2018 This study Planet Dove (3 m) Volcanic acidic
Philippines (K) Storm

Tembin

Dominica (L) Tropical 25–28 Aug 2015 van Westen et al. WorldView-3 (1.8 m) Intermediate
Storm Erika (2016) volcanic

Dominica (M) Hurricane 18–22 Sep 2017 van Westen and Pleiades (0.5 m) Intermediate
Maria Zhang (2018) volcanic

Burundi (N) Prolonged 3–5 Dec 2019 This study Sentinel-2 (10 m) Metamorphic
intense rain

Thrissur, India (O) Prolonged 7–18 Aug 2018 This study Planet Dove (3 m) Metamorphic/
intense rain plutonic acidic

West Pokot, Kenya (P) Prolonged 22–25 Nov 2019 This study Sentinel-2 (10 m) Metamorphic
intense rain

analysis of the triggering rainfall associated with several of
these inventories is described by Marc et al. (2018), who
used local gauge data to characterize the rainfall intensities.
We were unable to find consistent local gauge data for sev-
eral of the more recent events that are published here for
the first time (events in Zimbabwe, Burundi and Kenya and
the two events in the Philippines). We can still use satel-
lite rainfall data as a consistent source of rainfall for each

of the events, however. To assess these, we utilize the re-
processed IMERG (Integrated Multi-satellitE Retrievals for
GPM) version 6B rainfall product (Huffman et al., 2020),
which merges and homogenizes data from NASA’s Global
Precipitation Measurement (GPM) mission with its prede-
cessor Tropical Rainfall Measuring Mission (TRMM). All
of the events considered occurred within the period during
which GPM IMERG v06B rainfall data are available (2001–

https://doi.org/10.5194/nhess-22-1129-2022 Nat. Hazards Earth Syst. Sci., 22, 1129–1149, 2022
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Table 2. Macro-level characteristics for events discussed, including rainfall statistics. Note that median slope values have been calculated by
excluding very low slope values (< 1◦) to remove lakes and oceans.

Event name Number of Total Density of Median Total Standard Total Standard Maximum Standard
landslides area landslides slope event deviation event deviation 3 h rain / deviation

(km2) (m2 m−2) (degrees) rainfall in event rainfall / in event historical 3 h rain /
(mm) rainfall historical rainfall / 24 h 99th historical

99th historical percentile daily 99th
percentile 99th percentile

percentile

Micronesia (A) 273 1.949 3.62× 10−2 12.0 1426.2 85.6 24.7 1.5 11.2 0.4

South Taiwan (B) 429 3.650 3.33× 10−4 25.5 517.1 103.7 6.6 1.7 2.5 1.1

Blumenau, Brazil (C) 597 5.847 2.11× 10−3 15.3 72.8 37.0 1.5 0.7 0.3 0.35

Taiwan (D) 10 236 205.048 7.43× 10−3 23.7 1114.0 183.7 14.6 4.0 2.1 1.42

Teresópolis, Brazil (E) 7268 21.560 7.76× 10−3 20.8 193.2 54.3 5.4 1.6 1.6 1.0

Kii Province, Japan (F) 1901 12.258 1.51× 10−3 25.4 284.5 46.2 4.3 0.5 1.3 0.6

Salgar, Colombia (G) 131 0.283 4.75× 10−3 27.44 112.2 34.0 3.5 1.3 1.4 1.8

Hiroshima, Japan (H) 9275 4.542 1.06× 10−3 14.1 488.2 62.0 10.6 1.1 4.1 0.9

Zimbabwe (I) 1319 2.554 1.62× 10−3 13.3 321.0 30.0 8.7 0.7 3.6 0.9

Itogon, Philippines (J) 458 0.627 1.04× 10−3 26.1 179.3 12.5 4.0 0.5 1.5 0.7

Lanao del Norte, 17 0.195 8.36× 10−4 16.3 150.6 22.7 5.6 0.9 2.2 1.5
Philippines (K)

Dominica (L) 1756 10.450 2.48× 10−3 18.2 169.6 16.2 9.9 1.7 5.2 0.9

Dominica (M) 21 379 10.251 1.36× 10−2 18.2 73.0 11.5 4.0 0.8 2.9 0.8

Burundi (N) 492 1.976 1.12× 10−2 21.2 54.3 19.0 2.7 1.0 0.6 0.7

Thrissur, India (O) 188 1.130 6.02× 10−4 14.6 475.0 59.1 10.3 1.9 1.4 0.3

West Pokot, Kenya (P) 338 1.346 4.54× 10−3 22.4 99.4 7.1 5.0 0.9 2.7 0.6

present). Because the satellite rainfall data spatial resolution
is relatively coarse, it is not possible to effectively draw com-
parisons between the landslide polygons and the surrounding
data in the same manner as the topographic data. However,
we can still characterize the rainfall occurring during each
event. We have analyzed the total rainfall occurring during
each of the events by accumulating the rainfall data over the
period of each event indicated in Table 1 and compared this
with the calculated historical 99th percentile of daily rain-
fall as a way to normalize each event to the historical trends.
The 99th percentile is calculated empirically based on the
GPM IMERG v06B record (2001–2020). Since the length
of rainfall period associated with each inventory varies, nor-
malizing by the 99th percentile for a single day provides a
consistent normalizing factor for each inventory. Addition-
ally, in Table 2 we show the maximum 3 h rainfall intensity
for each of the events, normalized by the historical 99th per-
centile of daily rainfall. The normalized total event rainfall
and normalized 3 h rainfall provide a side-by-side compar-
ison of the overall rainfall accumulation and the maximum
intensity. The values for both total event rainfall and max-
imum 3 h rainfall are calculated as the average across all
IMERG grid cells in the area of the inventory. Table 2 sum-

marizes information on the landslide inventory characteris-
tics including the total landslide area, the density of land-
slides in the mapped area, satellite rainfall and average slope
in the mapped area. Despite other studies suggesting links
between event total rainfall and the density of landsliding
(Chen et al., 2013; Marc et al., 2018), we do not observe
clear links between the measured rainfall data and the macro-
scale statistics of each landslide inventory. Relations between
landslide density and rainfall can be obscured by variations in
climatic and/or hydromechanical properties with each study
area (Marc et al., 2019). We suggest that exploring the links
between rainfall intensity as characterized by satellite mea-
surements and the density of landsliding that results is an
important topic for future research.

2.3 Topographic analysis

We have analyzed the topographic characteristics of land-
slide locations for the event inventories, using global satel-
lite datasets to ensure consistency across each site. These
datasets are also openly available, which supports replication
of these methods and findings by other authors. In Table 3,
we show the datasets we have used.
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Table 3. Analysis datasets. Explanation of each of the variables is found in the accompanying text.

Dataset Source/reference Parameters from dataset

SRTM DEM SRTM Non-Void Filled Relief (1 km radius)
(1 arcsec https://doi.org/10.5066/F7K072R7 Slope
resolution) Average upstream angle

Compound topographic index, CTI
(Beven and Kirkby, 1979; Sörensen et al.,
2006)
Topographic ruggedness index, TRI
(Riley et al., 1999)
Topographic position index, TPI300 –
300 m wavelength (Weiss, 2001)

Forest cover Global Forest Change Forest loss since 2000
(1 arcsec 2000–2018 (Hansen et Forest cover
resolution) al., 2013)

The DEM and forest loss data are both provided at approx-
imately a 1 arcsec resolution, which means we do not have
to resample either dataset when conducting a raster-based
analysis at this scale. While this resolution is not as fine as
some of the imagery used to map the landslides, which can
be 3 m or finer, it represents the finest resolution at which
these two datasets can be analyzed using non-commercial,
open datasets at a global extent. We utilize forest loss data de-
rived from Landsat imagery spanning the years 2000–2018.
Cells where forest loss is observed in any year from 2000
until the year in which the landslide event occurred are con-
sidered a binary “true” value for forest loss. This does not
consider regrowth of vegetation in places where forest loss
was observed many years prior to the event, and as such it is
a relatively blunt tool to assess the importance of vegetation
to landslide location.

Not all of the topographic parameters are universally used
in landslide analysis. Slope is almost universally considered
for landslide modeling, but the use of others (in particular the
topographic position index) is less common (Reichenbach
et al., 2018). The topographic position index (TPI) (Weiss,
2001) is a quantification of the relative position of a cell
within the landscape. It is calculated as the difference in el-
evation of each cell in a DEM from the mean elevation of a
specified neighborhood around that cell, with the radius of
the neighborhood chosen beforehand (in this case, 300 m).
Negative values indicate the cell is in a topographic hollow,
and positive values suggest that it is elevated above its sur-
roundings. The distance over which the neighborhood com-
parison is made (TPI wavelength) determines the scale of the
features resolved; negative values at long wavelengths indi-
cate a position in a wider valley, while at short wavelengths
this would indicate steep narrow gorges. In this study, we fo-
cus on short-wavelength TPI values since this aligns more
closely with the scale of the landslide features. Relief indi-
cates the difference between minimum and maximum eleva-

tion in a given window. It is a proxy for both slope and the
size of hillslopes; higher-relief zones have been shown to be
associated with landslides in many locations (Reichenbach et
al., 2018). The compound topographic index (CTI) is a mea-
sure of both slope and the upstream contributing area. It is
calculated by the formula ln(a/ tanb), where a is the flow ac-
cumulation area per pixel and b is the local slope in radians.
In some locations the CTI is correlated with soil parameters
such as thickness (Liang and Chan, 2017). We also calculate
the topographic ruggedness index (TRI), a measure of the lo-
cal surface roughness. It is defined as the root-mean-squared
difference in elevation between a central pixel and each of its
8 neighboring pixels.

Finally, we also analyze the average upstream angle – this
is the average angle from the pixel location to every cell that
drains into that pixel. It provides a measure of how steep the
areas are that feed into each pixel. There is a significant de-
gree of overlap between how some of these parameters are
calculated, and we recognize the importance of considering
co-linearity.

In order to assess the co-linearity of the variables, we have
compared each pair of variables. Pair plots are shown in
the supplementary material (Figs. S1 and S2 in the Supple-
ment). Unsurprisingly, strong correlations are observed be-
tween slope and the average upstream angle, as well as be-
tween topographic ruggedness and relief. It is also impor-
tant to note the negative relationship observed between the
TPI and CTI, confirming that the hollows in the landscape
are also locations where the saturation state is likely to be
higher. Considering these co-linear relationships, it is impor-
tant to ask which variables are the most effective predictors
of landslide locations for the analyzed inventories. To ana-
lyze the importance of the input variables, we first perform
analysis of the influence of each individual variable as a bi-
variate analysis (Sect. 3.1) and then use a generalized linear
model to explore the effect of co-linearity (Sect. 3.2).
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For the assessment of each parameter by itself, we calcu-
late the relative ratios of the distributions for each variable
for the topography and the landslide populations. The topog-
raphy values are calculated for all pixels within the area in
which landslides were mapped. Since we lack data on the
mapped areas for all of the inventories, we assume that the
convex hull (minimum bounding polygon) for the landslide
polygons represents the mapping area. This follows the ex-
ample of other recent studies (Marc et al., 2018; Milledge
et al., 2019). For both the landslide parameter distribution
and the parameter distribution for the topography, we divide
the values into bins, normalizing by the total size of the dis-
tribution. This essentially represents a value–frequency dis-
tribution. For each of the bins, we then divide the landslide
probability by that of the topography to obtain a ratio. Using
slope as an example, this provides an estimate of the proba-
bility of a landslide occurrence at a given slope value com-
pared to the occurrence of that slope in the landscape. This
step is meant to explore the significance of each variable in a
bivariate structure (Fig. 3).

We characterize the landslides in two ways – first, by cal-
culating the parameter value for the scar area of the landslide
and, secondly, by calculating the raster values for the entire
landslide body. We lack consistent data on the scar area for
the landslide inventories in question, so instead we calcu-
late an approximation of the scar area based on the geom-
etry of each individual landslide. We utilize the method of
Marc et al. (2018) to extract the scar areas, which uses the
perimeter and area (A) of landslide polygons to calculate the
aspect ratio of an equivalent ellipse, K (Marc and Hovius
2015), and the associated width (W ), according to the for-
mula W ∼=

√
(4A/πK) (Marc et al., 2018). The scar area is

defined as ∼ 1.5 W2 based on a global database of the scar
aspect ratio (Domej et al., 2017). For each scar, we calculate
the average value within the polygon area of each parameter.
This avoids bias toward landslides with long runouts and ef-
fectively removes the lowest portion of the polygons which
may not have the same topographic signal as the source ar-
eas. Even if the scar areas are only approximate, focusing on
the upper part of the landslides is warranted for an improved
understanding of the topographic control on landslide sus-
ceptibility.

The second way of characterizing the landslide – assessing
the overall area of the landslide – allows us to focus on areas
in the landscape that are likely to be hazardous, including
areas where landslide material may end up.

To calculate the parameter distribution for the whole land-
slide body, we first rasterize the polygons of landslide lo-
cations to the resolution of the SRTM DEM (1 arcsec). This
provides a binary raster of landslide presence. We then assess
the parameter values for each of the pixels where landslides
are present. This does mean that the largest landslides are
most strongly represented in the distribution, but this is in-
tentional as it permits us to focus on all of the areas affected
in the landscape. It is important to note this approach – count-

Figure 3. Example of landslide : topography ratio comparison for
landslides in Zimbabwe triggered by Cyclone Idai. This shows the
distribution of values for landslides (a) and topography (b) for
slope. The lower part of the figure (c) shows the relative ratio of
the two distributions for the parameter. The black lines in (a) and
(b) illustrate the mean value of the data. In the lower figure (c),
the size of the points depends on whether the difference between
landslide and topography exceeds the calculated confidence inter-
val for that bin interval; larger points indicate significant deviation
(p > 0.95), and small points indicate the difference is not signifi-
cant at that probability level.

ing all pixels – is not appropriate for statistical susceptibility
analysis, since it could lead to highly dependent datasets. For
hazard analysis purposes, we feel it is appropriate to consider
all pixels, since larger landslides are consistently more dam-
aging, and we seek to capture the entire footprint.

In Fig. 3, an example of the comparison is shown for the
landslides occurring in Zimbabwe as a result of Cyclone Idai.
We show upstream slope as an illustrative parameter. To com-
pare the landslide data with the topography, we split the data
into bins, using the same bins for both landslide and topogra-
phy. The probabilities of the landslide and topography values
are then compared with one another. To allow for more con-
sistent comparison of inventories with diverse topography,
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we normalize the landslide and topography data by the me-
dian value for the parameter in question prior to splitting the
data into bins (Marc et al., 2018; Milledge et al., 2019). This
specifically results in the normalized conditional probability
(Milledge et al., 2019). For example, in the case of slope,
we calculate the median slope value for all pixels within the
mapped area for each inventory and divide each binned inter-
val by the median slope value calculated across the mapped
area. Finally, for each bin, we calculate the confidence inter-
val for the comparison of topography to landslides using the
method of Rault et al. (2019).

We have generated these estimates for each of the vari-
ables listed in Table 3 and for each of the landslide inven-
tories listed in Table 1. One of the variables – forest loss –
is a binary variable – it is calculated as forest is either lost
or not. As such, we can only compare the average value for
landslides and for topography at large to obtain a relative dif-
ference in the average forest loss value.

Because landslides are triggered as a result of a com-
plex interaction between various factors, we also analyze the
inventories using a multivariate regression scheme to con-
sider the interactions between the topographic factors. We
do so by fitting a binomial generalized linear model (GLM)
for each landslide inventory. We also apply a feature selec-
tion algorithm to identify the significant and irrelevant vari-
ables to feed the GLM. For this purpose, we use the least
absolute shrinkage and selection operation (LASSO) tech-
nique (Tibshirani, 1996). This method is particularly sug-
gested for landslide susceptibility assessment to reduce the
large number of highly correlated predictors without losing
parameter interpretability (e.g., Camilo et al., 2017). GLM
fitting with a LASSO implementation is carried out by us-
ing the R (R Core Team, 2018) “glmnet” library, which was
made available by Friedman et al. (2021). We apply this
method and couple it with the 10-fold cross-validation to re-
move non-informative covariates and to assess the modeling
performance based on the area under the receiver operating
characteristic curve (AUC) calculated for each landslide in-
ventory (Hosmer and Lemeshow, 2000). From each model
we built, we store the information related to the regression
coefficients. Before fitting the regression model, we apply a
mean zero and unit variance normalization to all variables
(e.g., Lombardo et al., 2018), which are expressed in differ-
ent ranges and on different scales. This normalization allows
us to better examine the modeling results in terms of the con-
tribution of each variable. In this scheme, larger absolute val-
ues of the regression coefficients refer to a relatively large
contribution of variables.

We have combined the results from each individual inven-
tory into a single figure for each of the variables to assess rel-
ative differences, as well as which variables are most strongly
associated with where landslides are mapped.

3 Results

3.1 Bivariate analysis

The bivariate analyses show that several of the parameters
are strong predictors of the location of both the scars and
the overall area of landslides, and while there is significant
variability between the different inventories, there are con-
sistent patterns that emerge across all events. In broad terms,
we find that rainfall-triggered landslides occur more often in
rough, steep terrain (Figs. 4, 5 and 7). Results from the com-
pound topographic index (CTI) and short-wavelength topo-
graphic position suggest that these parameters can be used to
effectively distinguish between scars and the entire landslide
area, with a high probability of scars at low CTI values and
at more positive TPI values (i.e., landscape convexities). For
all metrics, we find that all studied inventories have approx-
imately equal sampling at the median landscape value. This
can be observed in Figs. 4–8, where the probability ratio of 1
for almost all inventories occurs at approximately the me-
dian value of the parameter for the entire landscape. In other
words, the transition from low to high landslide probability
is relative to the local landscape median value and not to an
absolute value of the considered metric.

For all of the events, there is a general increase in landslide
probability at higher slope values (Fig. 4). Similarly, a strong
increase in landslide probability is observed for the average
upstream slope angle (Fig. 5). The distributions of the dif-
ferent inventories are slightly tighter than for slope, indicat-
ing that this may be a more consistently applicable variable.
Specifically, we note that both scars and whole landslides are
at an equal sampling level at the median landscape upstream
angle, strongly undersampling and oversampling the gentler
and steeper slopes, respectively (i.e., proportionately more
landsliding at higher slope values and less at lower slopes).
This can be observed in Fig. 5. Consistent trends emerge
where results are within a 95th-percentile confidence inter-
val, although there is a greater spread of data values where
results are not considered statistically significant.

The compound topographic index (sometimes referred to
as the wetness index), when tested for landslide scars, shows
higher probability of landslides for lower CTI values (Fig. 6).
This trend is negligible for whole landslide areas, with the
statistically significant points showing almost no variation
in landslide probability with a changing CTI. This suggests
broadly that the CTI is a poor predictor of the areas where
landslide hazard may be increased but a better predictor of
the source locations. The relationship between scar probabil-
ity and the CTI is not strongly linked with flow accumulation,
despite the role that flow accumulation plays in setting the
CTI. In Fig. S3 we show the probability ratios for flow accu-
mulation values, and no clear relationship emerges between
the probability ratio and flow accumulation. This suggests
that the slope component of the CTI is more important when
considering scar locations, while the flow accumulation fac-
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Figure 4. Landslide probability ratio against the slope normalized by the median of the local landscape, for the scar area (a) and the whole
landslide area (b). The size of the points depends on whether the difference between the landslide and topography exceeds the calculated
confidence interval for that bin interval; larger points indicate significant deviation (p > 0.95), and small points indicate the difference is not
significant at that probability level.

Figure 5. Landslide probability ratio against the average upstream angle normalized by the median of the local landscape, for the scar area (a)
and the whole landslide area (b). The size of the points depends on whether the difference between the landslide and topography exceeds
the calculated confidence interval for that bin interval; larger points indicate significant deviation (p > 0.95), and small points indicate the
difference is not significant at that probability level.
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Figure 6. Same as Fig. 4 but for the compound topographic index (CTI). Note that the x axis is a logarithmic scale.

Figure 7. Same as Fig. 4 but for the topographic ruggedness index (TRI).

tor (observed to be correlated with an increase in probability
of whole landslide areas) may be offset by the slope in the ar-
eas where landslides run out, leading to no overall correlation
with the CTI and whole landslide area.

Additionally, we observe that the CTI value where land-
slide scars and topography are equally sampled is approx-
imately the median value, and the fit for each inventory is
relatively consistent.

We find that the topographic ruggedness index is also a
relatively strong predictor for landslide probability, with in-
creases in the TRI correlated with increases in the landslide
probability ratio for almost all events (Fig. 7), and statisti-
cally significant results are observed for several of the inven-
tories. For several events, the results are in line with prior
work that has shown roughness and related metrics to be cor-
related with landslide occurrence (Costanzo et al., 2012; Re-
ichenbach et al., 2018). While the point of equal sampling of
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Figure 8. Same as Fig. 4 but for relief in a 1 km radius of each cell.

landslides and topography is approximately the median value
for the inventories analyzed, the slope of the relationship di-
verges somewhat above and below this point. This suggests
that the most heterogeneous parts of the landscape may not
be as strong a predictor for landslide occurrence as areas of
high slope.

There are not strong systematically consistent relation-
ships between relief at a 1 km scale and the probability of
landslide scars and total areas. Some increase in probability
is observed with increasing relief, although this is saturated
at relief values above the median relief. This suggests that re-
lief alone is a relatively poor predictor of the source areas of
landslides or that the resolution of relief may be too coarse.
In a few cases – Burundi, Typhoon Morakot in Taiwan and
Kii Province in Japan – there is a slightly clearer increasing
relationship.

We observe a link between the short-wavelength topo-
graphic position index (300 m assessment radius) and land-
slide probability ratios for landslide scars in several, but
not all (i.e., not Kalmaegi, Morakot and Kii), of the events
(Fig. 9). Specifically, landslide scars are significantly more
likely at positive TPI values (short-wavelength landscape
convexities like ridges). Although this is the case for the ma-
jority of inventories, results from both inventories in Taiwan
and Dominica do not exhibit this tendency. This parameter
also shows the clearest distinction between the scar areas and
the whole landslide areas. The entire landslide area is more
likely to be found at negative TPI values (landscape concav-
ities like valley bottoms). While the TPI at the 300 m wave-
length does not demonstrate quite as consistent relationships
as slope or the CTI, it remains a strong predictor. In partic-

ular, the larger variation between scars and overall landslide
areas suggests that short wavelengths may be a valuable way
to distinguish between scarps and deposits in a preliminary
assessment.

Since forest loss is a binary variable, we do not plot this
across multiple bins. However, we calculate the average ra-
tio of forest loss in landslide zones to the overall topography,
and we find across all events that the value is 1.98± 1.38
(1 SD – standard deviation). This implies that forest loss
zones are correlated with higher probability of landsliding.
We see the largest differences between landslide zones and
non-landslide zones in Salgar, Colombia, and Hiroshima,
Japan, and the landslides triggered by Typhoon Morakot in
Taiwan (forest loss is more than 3.5 times more likely in
landslides in these cases). In four cases, forest loss was ob-
served as less likely in landslide pixels: in Blumenau, Brazil;
Lanao del Norte, the Philippines; Thrissur, India; and West
Pokot, Kenya. We suggest that while forest loss prior to land-
slide events is generally higher in landslide locations than in
the rest of the landscape, this relationship is not consistent
enough to necessarily be a good predictor of landslide loca-
tion by itself.

3.2 Multivariate analysis

We have used the LASSO method to quantify the importance
of the different predictors for both scars and whole landslides
while reducing the influence of co-linearity (Camilo et al.,
2017) (Fig. 10).

Figure 10a and b also show the modeling performances,
which are represented by AUC values, varying from “reason-
able” (0.6< AUC< 0.7) to “adequate” (0.7< AUC< 0.8)
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Figure 9. Same as Fig. 4 but for the topographic position index (however, here we omit normalization given that the TPI is a zero-centered
variable) with an analysis window radius of 300 m.

and “outstanding” (0.8< AUC< 0.9) based on AUC classes
defined by Hosmer and Lemeshow (2000). The lower AUC
values for some events may indicate that we lack some key
explanatory variables; crucially, this may include rainfall in-
tensity and duration, although as discussed above we lack
consistent high-resolution data to assess this within the spa-
tial domain of the considered inventories. Other relevant pa-
rameters may include land cover, lithology and geo-structural
parameters, and anthropogenic influence (Reichenbach et al.,
2018).

Our findings show that slope, on one hand, is the factor that
most frequently appears as significant in the GLM run for
both the landslide scars and the whole areas, with landslides
favoring steeper locations. On the other hand, the average up-
stream angle and CTI in the GLM of the scars and the average
upstream angle, CTI and topographic position index (with a
300 m radius) in the GLM run for the whole area appear as
the least commonly observed significant variables. The non-
significant or low impact of most of these topographic vari-
ables is likely due to the co-linearity existing between these
variables (e.g., slope and average upstream slope, slope and
CTI, CTI and TPI – Figs. S1 and S2).

The results indicate that except for the CTI, all variables
have a positive weight on classifying a given grid cell as
“landslide presence” instead of “landslide absence” given the
choice of predictors. There are only two cases that do not fol-
low this general trend (i.e., the two Taiwanese inventories).

The regression coefficient of the TPI calculated for the
landslide scar areas for Typhoon Kalmaegi, Taiwan, has a
negative sign, unlike all other cases. Overall, as we explained

above, different TPI values refer to different subsections of a
hillslope. Specifically, positive values refer to ridges or hill-
slopes, whereas negative values correspond to the valley. As a
result, the negative weight of the TPI on classifying the land-
slide presence and absence condition in the GLM is difficult
to interpret. This could be caused by interactions between
variables. Although we run a variable selection method (i.e.,
LASSO), the TPI could be still interacting with the others.
If it shares a similar signal to at least one other variable, the
sign of the regression coefficient can be influenced by the
interaction.

The negative regression coefficient of the TRI obtained for
the whole landslide areas for Typhoon Morakot, Taiwan, is
the other case where the response of the covariate is different
from the other examples. Similarly to the Kalmaegi inven-
tory case we presented above, the negative sign could also be
caused by the interactions between variables. However, this
could also be associated with the physical properties char-
acterizing whole landslide areas. The TRI in the case of Ty-
phoon Morakot, Taiwan, in particular, might correspond to
smooth topography. In either case, the TRI does not appear as
a significant variable other than in case of Typhoon Morakot,
Taiwan.

The two inventories where negative CTI values are most
significantly associated with landslide incidence – Morakot
and Hiroshima – have few commonalities; their lithologies
differ, and the mean slope of the affected area in Hiroshima
is markedly lower than for Morakot. Perhaps the most signif-
icant commonality is that the triggering rainfall exceeded the
historical maxima by a significant degree (Table 3), which
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Figure 10. Figure showing regression coefficients and corresponding AUC values calculated from the fitted GLM for each landslide inven-
tory, considering scars (a) or the whole landslide area (b). The error bar corresponds to the variation in the AUC distribution across 10-fold
cross-validation replicates. Regression coefficients are not shown for predictors considered not significant by the LASSO methods. The AUC
values shown in the legend are for scars (prior to slash) and entire landslides (second value).

may increase the likelihood of failure resulting from local
transient pore pressure increases, rather than due to saturated
flow at the base of hillslopes. Excepting these two examples,
the results show that the signal of the CTI does not contribute
to the GLM while classifying landslide presence or absence.

4 Discussion

The primary intention of this study is to assess the critical to-
pographic parameters associated with rainfall-triggered land-
slides, using a large dataset of landslide inventories that in-
cludes six newly mapped events. Our results are compara-
ble with existing studies (e.g., Marc et al., 2018; Milledge
et al., 2019) exploring landslide locations using inventories
while adding more detail and assessment of global variabil-
ity, which we discuss below. First, however, we explore some
of the limitations and assumptions that go into the mapping
and analysis of the landslides.

4.1 Uncertainty in landslide mapping and DEM
metrics’ extraction

Firstly, it is important to consider how representative the
landslide inventories are. We have attempted to include land-
slide maps from a diverse set of locations around the world,
but this is still only a fraction of landslides that have oc-
curred in the last 2 decades. Some of the inventories, like
the landslides occurring due to Typhoon Morakot in Tai-
wan, are driven by such huge rainfall events that the over-
all area of landsliding greatly exceeds other examples with
lower rainfall. This is one of the key reasons why we have
used probability ratios as a metric to assess landslide loca-
tions, since they do not consider the overall area of land-
slides triggered by a given rainfall event. Most of the invento-
ries are drawn from locations with tropical climates (Geiger,
1954), and although the pairs from Brazil and Japan sample
areas of humid subtropical climates, this is not a true repre-
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sentative sampling of climatic regimes. One exception is the
landslide inventory from Zimbabwe, which is in a semi-arid
climatic region. Although our examples disproportionately
sample tropical and subtropical areas, these areas generally
experience the highest erosion rates (Milliman and Syvitski,
1991), driven by increasingly intense rainfall (e.g., Bookha-
gen and Strecker, 2012). Similarly, while the inventories are
drawn from places with diverse lithologies, we do not have
datasets from a fully representative set of lithological loca-
tions (Hartmann and Moosdorf, 2012; Table 1).

Although we have used hand corrections to reduce the
impact of polygon amalgamation from algorithmic mapping
methods, some inconsistencies may still exist. One important
consideration is that the datasets used here do not distinguish
between different landslide types or distinguish between scar
and deposit. While this is consistent across inventories, it is
important when considering the results. In particular, since
we do not have constraints on whether mapped landslides are
purely shallow soil slides or whether they incorporate deeper
bedrock, we cannot determine differences in topographic
characteristics associated with each. The change in material
properties from soil to bedrock can lead to changes in over-
all volume mobilized for a given landslide area (Larsen et
al., 2010), so inventories where smaller shallow landslides
are a larger proportion of the mapped inventory may have
different characteristics. For example, the landslides mapped
using aerial photography around Hiroshima, Japan, do not
show particularly high probability ratios at very high relief
or TRI values, suggesting these landslides generally occur
on smaller less rough hillslopes.

Hand mapping and correcting will help reduce the poten-
tial for landslide amalgamation (Marc and Hovius, 2015),
which is essential in order to estimate width and scar ar-
eas from landslide polygon geometry (Marc et al., 2018).
Since we do not have access to the imagery for all of the
previously published events, we are not able to correct these
events and thus must rely on prior mapping being consis-
tent with our own efforts. Part of the challenge of compiling
different events is the different sources of imagery used to
create each inventory. For most of the inventories we have
mapped as part of this study, the imagery is consistent in
terms of resolution, and we have benefited from the rapid re-
turn time of Planet Dove satellites to ensure that cloud cover
does not mask any of the areas mapped. However, without
imagery to clarify, it may be possible that parts of the previ-
ously published inventories are masked by cloud cover. In ad-
dition, the inventories mapped using coarser-resolution satel-
lite imagery, such as the part of Taiwan impacted by Typhoon
Kalmaegi, may not capture the smallest landslides that re-
sulted. If smaller landslides are preferentially found in cer-
tain parts of the landscape, this may introduce systematic bi-
ases in observed probability ratios.

While the imagery used to compile the different inven-
tories varies in resolution, there do not seem to be consis-
tent, systematic differences between probability ratios that

can be explained as a result of small landslides that system-
atically bias the events. For example, landslides in the Do-
minica events have similar probability ratios for each param-
eter compared to the landslides from Typhoon Kalmaegi in
Taiwan, despite these datasets having the largest difference
in effective imagery resolution.

When considering the whole landslide area, we pixelate
the landslides to the resolution of the DEM to highlight the
most hazardous parts of the landscape. This pixelation pro-
cess can introduce a source of systematic error, since if less
than half of a cell area is occupied by a landslide polygon, it
is still considered to be a “landslide pixel”. Some landslides
may be significantly smaller than the SRTM cell resolution
if they are mapped using high-resolution imagery, but they
will still count as a full-size pixel for the purposes of analy-
sis as a result of the rasterization process. This introduces a
potential source of bias as smaller landslides may make up
a larger proportion of analyzed pixels than their actual area
would represent. Landslides below the approximate area of
half an SRTM cell (450 m3) make up an appreciable propor-
tion of the total landslide area in Hiroshima and Dominica
(∼ 30 %) (Fig. S12). In these settings, we would expect that
the influence of smaller landslides may be over-estimated at
the 30 m resolution of analysis, although in the majority of
other inventories landslides below this cutoff represent less
than 5 %–10 % of the total landslide area (and therefore the
analytical dataset of landslide pixels).

To address the potential for bias due to oversampling of
small landslides with a coarse-resolution DEM, we have
resampled the DEM for the events in Hiroshima and Do-
minica to a resolution of 10 m, at which nearly all landslides
are captured without size exaggeration. We then recalculate
the probability ratios for the landslides and compare the re-
sampled DEM results with those from the original DEM
(Fig. S5). For the slope, average upstream angle, CTI, relief
and TRI, only minor differences are observed between the re-
sults for a resampled DEM and the original DEM. There are
some differences between the TPI at a 300 m resolution, but
no consistent relationship seems to emerge. Thus we do not
think our results are affected by the coarse rasterization pro-
cess, although it is likely that accessing a higher-resolution
DEM may alter the result depending on the local variable,
like the slope, CTI or TRI.

Other parameters are often incorporated into landslide sus-
ceptibility such as geological factors like soil characteris-
tics or lithology, local land cover type, or climatic metrics.
Although global data for rainfall, soil type and geological
parameters exist, the resolution of these datasets is too low
to allow for consistent comparison of landslide and non-
landslide areas at the scale of the analysis described here
(∼ 100 m). As such, we have chosen to focus exclusively on
topographic factors within our assessment.
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Figure 11. Probability ratio of landslide scar areas compared with the entire landslide area. It is important to note that while Figs. 3–9
contrast the landslide areas (scar or entire mapped area) with the topography, this figure shows the ratio of probabilities for the scar and
whole landslide area. Specifically, this shows the probability of a scar at a given CTI value, normalized by the probability of that CTI value,
divided by the probability of the entire landslide at a given CTI value, normalized by the probability of that CTI value. Higher values indicate
that scars are more likely than whole landslide areas at that parameter value. Panel (a) shows the result for the CTI and panel (b) for the
short-wavelength TPI.

4.2 Differences between scar and overall landslide area

While for several parameters, scars and the entire landslide
area are similarly sampled at a range of values, for the TPI
and CTI we see significant differences across a large number
of the inventories (Fig. 11). Scars are more likely at lower
CTI values and at more positive TPI values. A positive TPI
implies scars are more likely at concave locations in the land-
scape, while a lower CTI value indicates areas with lower
flow accumulation and saturation. This describes parts of the
landscape that sit closer to ridges. This broadly supports the
assessment above that higher TPI and CTI values may be a
way to distinguish between scar and deposit areas. No sys-
tematic differences are observed with respect to the TRI or
average upstream angle (Fig. S4).

By comparing scars and the overall landslide area, the ob-
servations we have made provide informative contrasts with
prior work. Similar recent work exploring the characteris-
tics of earthquake-induced landslide inventories suggests that
the slope angle and upslope contributing area are key de-
terminants of hazard, defined by the entire landslide areas
(Milledge et al., 2019). Our findings are consistent for entire
landslide areas but differ for the scar area, which is poorly
determined by flow accumulation (Fig. S3). One may be sur-
prised by the fact that landslides triggered by intense rain-
fall have scars uncorrelated with drainage area, while both
earthquake- and rainfall-induced landslides have whole ar-
eas strongly related to it. We propose that the whole-area re-

lationship mainly reflects runout paths and not hydrological
processes and that the initiation of rainfall-induced landslides
poorly relates to the surface-parallel hydrological flow. This
is discussed in more detail below. Our results for drainage
are of the whole landslides are quite different from the ones
of Milledge et al. (2019). We suggest that the variability in
scar location (higher for earthquake; see Rault et al., 2019)
may explain more diverse behavior in normalized drainage
below the median, while the propensity for longer runout
(more likely for rainfall-induced landslides) may explain that
some (not all) cases have a probability ratio increasing until
reaching very large drainage levels (Fig. S3).

The observed differences between the scar and overall
landslide area can be exploited to refine our understanding of
susceptibility and hazard modeling by focusing on parame-
ters controlling scar areas where landslides are initiated (e.g.,
slope, CTI) and the entire landslide area where landslides im-
pact (e.g., drainage area, TPI), respectively. Such a focus can
help support both sets of applications for more comprehen-
sive landslide hazard information and emphasizes the need to
distinguish diverse portions of mapped landslides depending
on the study objective.

4.3 Implications for triggering mechanisms and
landscape evolution

One of the most consistent observations that emerges from
this study is that for several parameters (slope, average up-
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stream slope, TRI, CTI), the critical point where landslides
and topography are equally sampled is approximately the
median value for the inventory in question. This is consis-
tent with previous observations on rainfall- and earthquake-
induced landsliding (Marc et al., 2018; Milledge et al., 2019).
For the average upstream slope and CTI, the relationships for
different inventories are in fact very similar; this is despite
a large variation in the median slope for each of the inven-
tories (Table 2). This suggests that landslide probability is
strongly dependent on the median topography, rather than on
a specific critical angle. This implies two important points:
first, that despite important differences in the landscapes ob-
served, consistent hazard relationships can be defined based
upon median landscape values and, second, that these diverse
landscapes may be in a form of long-term equilibrium with
respect to their landslide behavior.

We suggest that each of the considered landscapes, each
with its own lithology, vegetation, climate and tectonic forc-
ing, may have evolved such that local hillslopes have slope
gradients and hydromechanical properties that set the possi-
bility for landslides on the upper half of the distribution. The
evolution of the hillslopes’ regolith state, which acts as an
important control on landslide susceptibility, under climatic
forcing is predicted by geomorphological models of hillslope
stability coupled with stochastic rainfall forcing (Dietrich et
al., 1995; Iida, 1999, 2004). Landscape evolution toward a
critical state was also inferred to explain why landsliding in
the Kii peninsula better matched the relative rainfall anomaly
than absolute rainfall patterns (Marc et al., 2019).

Alongside the implications for landscape evolution and
how to derive susceptibility metrics, our results also offer
insight into the mechanisms of landslide triggering in ex-
treme rainfall events. By focusing on the scar areas, we ob-
serve that landslides are more likely in locations with lower
CTI and higher TPI values – parts of a landscape near ridges
with a generally lower propensity for water saturation. This is
somewhat in contrast to studies that suggest rainfall-triggered
landslides are more likely to occur in areas lower down hill-
slopes where fluid saturation is greater (Densmore and Hov-
ius, 2000; Meunier et al., 2008), possibly because these stud-
ies did not clearly differentiate the scar from whole landslide
area, which are very different relative to these two metrics
(Fig. 11). The relationship with the CTI and drainage area
also suggests that modeling landslides under the assump-
tion of regolith saturation due to slope-parallel, steady-state
flow (e.g., Montgomery and Dietrich, 1994) may be inade-
quate. Instead, the pore pressure triggering landslides in ex-
treme rainfall events may rather be controlled by transient,
vertical infiltration and/or preferential flow paths (Iverson,
2000; Montgomery et al., 2009; Hencher, 2010; Bogaard
and Greco, 2016). This recalls the essential challenge for
developing modeling approaches that can account for such
complex hillslope hydrology as well as highly variable hy-
dromechanical properties of the regolith. Nevertheless, we
also suggest that future studies should compare the results

from this analysis of landslides triggered by extreme rain-
fall with landslide inventories resulting from longer-duration,
lower-intensity rainfall events to assess whether the relation-
ship with the CTI and TPI changes. Indeed, we might ex-
pect that lower-intensity rainfall would trigger landslides in
parts of the landscape with higher CTI values as steady-state
saturation may be more widespread. In any future compara-
tive study of low-intensity and high-intensity rainfall events,
it will be necessary to carefully select landslide inventories
where the imagery used to generate them closely brackets the
start and end of the rainfall events to ensure only landslides
triggered by an individual event are analyzed.

Finally, for some events, including Typhoon Morakot in
Taiwan and Cyclone Idai in Zimbabwe, there is a small de-
cline in relative landslide probability at very high slope val-
ues (> 35–40◦) (Fig. 4). It is possible that these slopes, which
are generally above the angles considered to be critically un-
stable (Selby, 1982; Roering et al., 2001), may represent ar-
eas where landslide probability is reduced as a result of non-
topographic factors, such as local lithological bedding plane
angles (Guzzetti et al., 1996; Santangelo et al., 2015) or thin-
ner soils limiting the availability of material that can be mo-
bilized as landslides (Prancevic et al., 2020). The decline in
landslide probability at the highest slope values may repre-
sent the limit to which local pore pressure as a result of ex-
treme rainfall can influence triggering.

5 Conclusions

In this study we have combined 10 existing rainfall-induced
landslide inventories from a range of mountainous regions
with 6 new inventories mapped as part of this study. We sug-
gest that providing newly mapped inventories is a valuable
service for the landslide community at large, and we antici-
pate that these inventories can provide data to calibrate and
validate susceptibility and hazard models both in the specific
locations where landslides occurred and also further afield.
In addition, we have used moderate-resolution open-source
satellite data to assess the parameters that characterize the lo-
cation of landslides in these inventories. We find that along-
side the previously documented importance of slope and to-
pographic ruggedness, the average upstream angle and to-
pographic position are also determinants of landslide proba-
bility in a given location. After normalizing the topographic
variables by the local landscape median, we find consistent
relationships across the different inventories despite the va-
riety of lithological and topographic settings. This suggests
that relative metrics should be considered to perform land-
slide susceptibility analysis and that different landscapes can
be at a state of equilibrium with respect to the probability
of landsliding. The importance of multiple topographic fac-
tors to determine the local landslide probability highlights
the value of high-resolution DEM data. While we have used
the 1 arcsec resolution SRTM data, higher-resolution DEM
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data are increasingly available. Given that we are able to map
landslides at finer and finer resolutions as very high reso-
lution satellite imagery becomes available, combining these
new detailed inventories with DEMs of similar resolutions
is likely to provide further insights about landslide location
within the landscape.

While we have not undertaken a detailed assessment of
the rainfall that triggered these landslides, we emphasize that
variability in rainfall is likely to explain a significant degree
of variability in where landslides occur (e.g., Marc et al.,
2019). Future work should assess each of these inventories
with respect to the rainfall that triggered the significant land-
sliding, which could yield important insights into the rela-
tionship between intense rainfall and landslide occurrence.
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Tanyaş, H., Rossi, M., Alvioli, M., van Westen, C. J., and March-
esini, I.: A global slope unit-based method for the near real-time
prediction of earthquake-induced landslides, Geomorphology,
327, 126–146, https://doi.org/10.1016/j.geomorph.2018.10.022,
2019.

The Association of Japanese Geographers: The 2018 July Heavy
rain in West Japan, http://ajg-disaster.blogspot.com/2018/07/
3077.html, last access: 1 November 2019.

Tibshirani, R.: Regression Shrinkage and Selection via
the Lasso, J. Roy. Stat. Soc. Ser. B, 58, 267–288,
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x, 1996.

Van Den Eeckhaut, M. and Hervás, J.: Geomorphology State of
the art of national landslide databases in Europe and their poten-
tial for assessing landslide susceptibility, Hazard Risk, 140, 545–
558, https://doi.org/10.1016/j.geomorph.2011.12.006, 2012.

Van Den Eeckhaut, M., Hervás, J., Jaedicke, C., Malet, J.-P., Mon-
tanarella, L., and Nadim, F.: Statistical modelling of Europe-
wide landslide susceptibility using limited landslide inventory
data, Landslides, 9, 357–369, https://doi.org/10.1007/s10346-
011-0299-z, 2012.

van Westen, C. J. and Zhang, J.: Landslides and floods triggered
by Hurricane Maria (18 September, 2017) in Dominica, Digital
or Visual Products, UNITAR-UNOSAT, http://www.unitar.org/
unosat/node/44/2762 (last access: 31 March 2022), 2018.

van Westen, C., Jetten, V., and Alkema, D.: Validating national
landslide susceptibility and hazard maps for Caribbean island
countries: the case of Dominica and tropical storm Erika, in:
EGU General Assembly Conference Abstracts, April 2016,
EPSC2016-4334, 2016.

Wasowski, J., Keefer, D. K., and Lee, C. T.: Toward the next
generation of research on earthquake-induced landslides: cur-
rent issues and future challenges, Eng. Geol., 122, 1–8,
https://doi.org/10.1016/j.enggeo.2011.06.001, 2011.

Weiss, A.: Topographic Position and Landforms Analysis,
in: ESRI User Conference, San Diego, CA, http://www.
jennessent.com/downloads/TPI-poster-TNC_18x22.pdf (last ac-
cess: 31 March 2022), 2001.

Williams, J. G., Rosser, N. J., Kincey, M. E., Benjamin, J., Oven,
K. J., Densmore, A. L., Milledge, D. G., Robinson, T. R., Jor-
dan, C. A., and Dijkstra, T. A.: Satellite-based emergency map-
ping using optical imagery: experience and reflections from the
2015 Nepal earthquakes, Nat. Hazards Earth Syst. Sci., 18, 185–
205, https://doi.org/10.5194/nhess-18-185-2018, 2018.

Xu, C., Dai, F., Xu, X., and Hsi, Y.: GIS-based support vector ma-
chine modeling of earthquake-triggered landslide susceptibility
in the Jianjiang River watershed, China, Geomorphology, 145–
146, 70–80, https://doi.org/10.1016/j.geomorph.2011.12.040,
2012.

https://doi.org/10.5194/nhess-22-1129-2022 Nat. Hazards Earth Syst. Sci., 22, 1129–1149, 2022

https://doi.org/10.1130/G33217.1
https://api.planet.com
https://api.planet.com
https://doi.org/10.1029/2020GL087505
https://doi.org/10.5194/esurf-7-829-2019
https://www.R-project.org/
https://doi.org/10.1016/j.earscirev.2018.03.001
https://doi.org/10.1130/0091-7613(2001)029<0143:HEBNCA>2.0.CO;2
https://doi.org/10.1130/0091-7613(2001)029<0143:HEBNCA>2.0.CO;2
https://doi.org/10.1007/s10346-018-0978-0
https://doi.org/10.1007/s10346-014-0485-x
https://doi.org/10.3133/ds1064
https://doi.org/10.1002/esp.3290070506
https://doi.org/10.5194/hess-10-101-2006
https://doi.org/10.1007/s11069-017-2757-y
https://doi.org/10.1016/j.enggeo.2019.105229
https://doi.org/10.1002/2017JF004236
https://doi.org/10.1016/j.geomorph.2018.10.022
http://ajg-disaster.blogspot.com/2018/07/3077.html
http://ajg-disaster.blogspot.com/2018/07/3077.html
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1016/j.geomorph.2011.12.006
https://doi.org/10.1007/s10346-011-0299-z
https://doi.org/10.1007/s10346-011-0299-z
http://www.unitar.org/unosat/node/44/2762
http://www.unitar.org/unosat/node/44/2762
https://doi.org/10.1016/j.enggeo.2011.06.001
http://www.jennessent.com/downloads/TPI-poster-TNC_18x22.pdf
http://www.jennessent.com/downloads/TPI-poster-TNC_18x22.pdf
https://doi.org/10.5194/nhess-18-185-2018
https://doi.org/10.1016/j.geomorph.2011.12.040

	Abstract
	Introduction
	Context and methods
	Landslide inventories
	Methodology
	Topographic analysis

	Results
	Bivariate analysis
	Multivariate analysis

	Discussion
	Uncertainty in landslide mapping and DEM metrics' extraction
	Differences between scar and overall landslide area
	Implications for triggering mechanisms and landscape evolution

	Conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

