LONG-TERM STABILITY OF INTERACTING HAWKES PROCESSES ON RANDOM GRAPHS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

LONG-TERM STABILITY OF INTERACTING HAWKES PROCESSES ON RANDOM GRAPHS

Zoé Agathe-Nerine
  • Fonction : Auteur
  • PersonId : 1102450

Résumé

We consider a population of Hawkes processes modeling the activity of $N$ interacting neurons. The neurons are regularly positioned on the segment $[0,1]$, and the connectivity between neurons is given by a random possibly diluted and inhomogeneous graph where the probability of presence of each edge depends on the spatial position of its vertices through a spatial kernel. The main result of the paper concerns the long-time stability of the synaptic current of the population, as $N\to\infty$, in the subcritical regime in case the synaptic memory kernel is exponential, up to time horizons that are polynomial in $N$.
Fichier principal
Vignette du fichier
longterm_stability.pdf (520.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03739494 , version 1 (27-07-2022)
hal-03739494 , version 2 (11-07-2023)

Identifiants

Citer

Zoé Agathe-Nerine. LONG-TERM STABILITY OF INTERACTING HAWKES PROCESSES ON RANDOM GRAPHS. 2023. ⟨hal-03739494v2⟩
53 Consultations
50 Téléchargements

Altmetric

Partager

More