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LONG-TERM STABILITY OF INTERACTING HAWKES PROCESSES

ON RANDOM GRAPHS

ZOÉ AGATHE-NERINE

Abstract. We consider a population of Hawkes processes modeling the activity of N
interacting neurons. The neurons are regularly positioned on the segment [0, 1], and the
connectivity between neurons is given by a random possibly diluted and inhomogeneous
graph where the probability of presence of each edge depends on the spatial position of
its vertices through a spatial kernel. The main result of the paper concerns the long-
time stability of the synaptic current of the population, as N → ∞, in the subcritical
regime in case the synaptic memory kernel is exponential, up to time horizons that are
polynomial in N .

Keywords. Multivariate nonlinear Hawkes processes, Mean-field systems, Neural Field
Equation, Spatially extended system, W -Random graph.
AMS Classification. 60F15, 60G55, 44A35, 92B20.

1. Introduction

1.1. Hawkes processes in neuroscience. In the present paper we study the large time
behavior of a population of interacting and spiking neurons, as the size of the population
N tends to infinity. We model the activity of a neuron by a point process where each
point represents the time of a spike: ZN,i(t) counts the number of spikes during the time
interval [0, t] of the ith neuron of the population. Its intensity at time t conditioned on
the past [0, t) is given by λN,i(t), in the sense that

P (ZN,i jumps between(t, t+ dt)|Ft) = λN,i(t)dt,

where Ft := σ (ZN,i(s), s ≤ t, 1 ≤ i ≤ N).
For the choice of λN,i, we want to account for the dependence of the activity of a neuron

on the past of the whole population : the spike of one neuron can trigger others’ spikes.
Hawkes processes are then a natural choice to emphasize this interdependency. A generic
choice is

λN,i(t) = µ(t, xi) + f


v(t, xi) +

1

N

N∑

j=1

w
(N)
ij

∫ t−

0
h(t− s)dZN,j(s)


 . (1.1)

Here, with the ith neuron at position xi =
i
N ∈ I := [0, 1], f : R −→ R+ represents the

(possible) non linear synaptic integration, µ(t, ·) : I −→ R+ a spontaneous activity of the
neuron at time t, v(t, ·) : I −→ R a past activity and h : R+ −→ R a memory function

which models how a past jump of the system affects the present intensity. The term w
(N)
ij

represents the random inhomogeneous interaction between neurons i and j, that will be
modeled here in terms of the realization of a random graph.
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Since the seminal works of [31, 32], there has been a renewed interest in the use of
Hawkes processes, especially in neuroscience. A common simplified framework is to con-

sider an interaction on the complete graph, that is taking w
(N)
ij = 1 in (1.1), as done in

[23]. In this case, a very simple instance of (1.1) concerns the so called linear case, when

f(x) = x,µ(t, x) = µ and v = 0, that is λN,i(t) = λN (t) = µ+ 1
N

∑N
j=1

∫ t−
0 h(t−s)dZN,j(s),

with h ≥ 0 (see [23]). The biological evidence [11, 38] of a spatial organisation of neu-
rons in the brain has led to more elaborate Hawkes models with spatial interaction,
possibly including inhibition (see [45, 26, 15]). This would correspond in (1.1) to take

w
(N)
ij = W (xi, xj), where W is a macroscopic interaction kernel, usual examples being

the exponential distribution on R, W (x, y) =
1

2σ
exp

(
−|x− y|

σ

)
or the “Mexican hat”

distribution W (x, y) = e−|x−y| − Ae
−|x−y|

σ , A ∈ R, σ > 0. The macroscopic limit of the
multivariate Hawkes process (1.1) is then given by a family of spatially extended inhomo-
geneous Poisson processes whose intensities (λt(x))x∈I solve the convolution equation

λt(x) = µt(x) + f

(
vt(x) +

∫

I
W (x, y)

∫ t

0
h(t− s)λs(y)dsdy

)
. (1.2)

A crucial example is the exponential case, that is when h(t) = e−αt for some α > 0. In
this case, the Hawkes process with intensity (1.1) is Markovian (see [26]). Denoting in

(1.2) ut(x) := vt(x) +
∫
I W (x, y)

∫ t
0 h(t − s)λs(y)dsdy as the potential of a neuron (the

synaptic current) localised in x at time t (so that (1.2) becomes λt(x) = f(ut(x))), an
easy computation (see [15]) gives that, when vt(x) = e−αtv0(x) for some v0, u solves the
Neural Field Equation (NFE)

∂ut(x)

∂t
= −αut(x) +

∫

I
W (x, y)f(ut(y))dy + It(x), (1.3)

with source term It(x) :=
∫
I W (x, y)µt(y)dy. Equation (1.3) has been extensively studied

in the literature, mostly from a phenomenological perspective [46, 2], and is an important
example of macroscopic neural dynamics with non-local interactions (we refer to [13] for
an extensive review on the subject).

In a previous work [1], we give a microscopic interpretation of the macroscopic ker-

nel W in terms of an inhomogeneous graph of interaction. We consider w
(N)
ij = ξ

(N)
ij κi

in (1.1), where
(
ξ
(N)
ij

)
1≤i,j≤N

is a collection of independent Bernoulli variables, with in-

dividual parameter W (xi, xj): the probability that two neurons are connected depends
on their spatial positions. The term κi is a suitable local renormalisation parameter, to
ensure that the interaction remains of order 1. This modeling constitutes a further diffi-
culty in the analysis as we are no longer in a mean-field framework: contrary to the case

w
(N)
ij = 1, the interaction (1.1) is no longer a functional of the empirical measure of the

particles (ZN,1, · · · , ZN,N ). A recent interest has been shown to similar issues in the case
of diffusions interacting on random graphs (first in the homogeneous Erdős-Rényi case
[24, 21, 22, 20], and secondly for inhomogenous random graph [36, 3, 5]). See also [42]
where the interaction is random (either excitatory or inhibatory) on the complete graph

with a diffusive scaling in 1/
√
N when the excitation and inhibition are balanced.

A common motivation between [1] in the case of Hawkes processes and [36, 3, 5] in
the case of diffusions is to understand how the inhomogeneity of the underlying graph
may or may not influence the long time dynamics of the system. An issue common to
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all mean-field models (and their perturbations) is that there is, in general, no possibility
to interchange the limits N → ∞ and t → ∞. More precisely, restricting to Hawkes
processes, a usual propagation of chaos result (see [23, Theorem 8], [15, Theorem 1], [1,
Theorem 3.10]) may be stated as follows: for fixed T > 0, there exists some C(T ) > 0
such that

sup
1≤i≤N

E

(
sup

s∈[0,T ]

∣∣ZN,i(s)− Zi(s)
∣∣
)

≤ C(T )√
N

, (1.4)

where Zi is a Poisson process with intensity (λt(xi))t≥0 defined in (1.2) suitably coupled
to ZN,i, see the above references for details. Generically, C(T ) is of the form exp(CT ),
such that (1.4) remains only relevant up to T ∼ c logN with c sufficiently small. In the

pure mean-field linear case (w
(N)
ij = 1, f(x) = x), there is a well known phase transition

[23, Theorems 10,11] when ‖h‖1 =
∫∞
0 h(t)dt < 1 (subcritical case), λt −−−→

t→∞

µ

1− ‖h‖1
,

whereas when ‖h‖1 > 1 (supercritical case), λt −−−→
t→∞

∞. This phase transition has been

extended to the inhomogeneous case in [1]. In the subcritical case, one can actually
improve (1.4) in the sense that C(T ) is now linear in T so that (1.4) remains relevant up

to T = o(
√
N). A natural question is to ask if this approximation remains valid beyond

this time scale. The purpose to the present work is to address this question: we show
that, in the whole generality of (1.1), in the subcritical regime and exponential case (see
details below), the macroscopic intensity (1.2) converges to a finite limit when t → ∞ and
that the microscopic system remains close to this limit up to polynomial times in N .

1.2. Notation. We denote by Cparameters a constant C > 0 which only depends on the
parameters inside the lower index. These constants can change from line to line or inside
a same equation, we choose just to highlight the dependency they contain. When it is
not relevant, we just write C. For any d ≥ 1, we denote by |x| and x · y the Euclidean
norm and scalar product of elements x, y ∈ R

d. For (E,A, µ) a measured space, for a

function g in Lp(E,µ) with p ≥ 1, we write ‖g‖E,µ,p :=
(∫

E |g|pdµ
) 1

p . When p = 2, we

denote by 〈·, ·〉 the Hermitian scalar product in L2(E). Without ambiguity, we may omit
the subscript (E,µ) or µ. For a real-valued bounded function g on a space E, we write
‖g‖∞ := ‖g‖E,∞ = supx∈E |g(x)|.

For (E, d) a metric space, we denote by ‖g‖L = supx 6=y |g(x)−g(y)|/d(x, y) the Lipschitz
seminorm of a real-valued function g on E. We denote by C(E,R) the space of continuous
functions from E to R, and Cb(E,R) the space of continuous bounded ones. For any T > 0,
we denote by D ([0, T ], E) the space of càdlàg (right continuous with left limits) functions
defined on [0, T ] and taking values in E. For any integer N ≥ 1, we denote by J1, NK the
set {1, · · · , N}. For any p ∈ [0, 1], B(p) denotes the Bernoulli distribution with parameter
p.

1.3. The model. First, let us focus on the interaction between the particles. The graph
of interaction for (1.1) is constructed as follows:

Definition 1.1. On a common probability space
(
Ω̃, F̃ ,P

)
, we consider a family of ran-

dom variables ξ(N) =
(
ξ
(N)
ij

)
N≥1,i,j∈J1,NK

on Ω̃ such that under P, for any N ≥ 1 and

i, j ∈ J1, NK, ξ(N) is a collection of mutually independent Bernoulli random variables such
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that for 1 ≤ i, j ≤ N , ξ
(N)
ij has parameter WN ( i

N , j
N ), where

WN (x, y) := ρNW (x, y), (1.5)

with ρN some dilution parameter and W : I2 → [0, 1] a macroscopic interaction kernel.
We assume that the particles in (1.1) are connected according to the oriented graph GN =(
{1, · · · , N} , ξ(N)

)
. For any i and j, ξ

(N)
ij = 1 encodes for the presence of the edge j → i

and ξ
(N)
ij = 0 for its absence. The interaction in (1.1) is fixed as

w
(N)
ij =

ξ
(N)
ij

ρN
, (1.6)

so that the interaction term remains of order 1 as N → ∞.

The class (1.5) of inhomogenous graphs falls into the framework of W -random graphs,
see [35, 9, 10]. One distinguishes the dense case when limN→∞ ρN = ρ > 0 and the
diluted case when ρN → 0.

We now fix these sequences, and work on a filtered probability space
(
Ω,F , (Ft)t≥0 ,P

)

rich enough for all the following processes can be defined. We denote by E the expectation
under P and E the expectation w.r.t. P. In the following definitions, N is fixed and the
particles are regularly located on the segment I = [0, 1]. We denote by xi =

i
N the position

of the i-th neuron in the population of size N . We also divide I in N segments of equal
length, denoted by

BN,i :=

(
i− 1

N
,
i

N

)
. (1.7)

We can now formally define our process of interest.

Definition 1.2. Let (πi(ds, dz))1≤i≤N be a sequence of (Ft)-adapted i.i.d. Poisson random
measures on R+ × R+ with intensity measure dsdz. The multivariate counting process
(ZN,1 (t) , ..., ZN,N (t))t≥0 defined by, for all t ≥ 0 and i ∈ J1, NK:

ZN,i(t) =

∫ t

0

∫ ∞

0
1{z≤λN,i(s)}πi(ds, dz) (1.8)

where
λN,i(t) = F (XN,i(t−), ηt(xi)), (1.9)

and

XN,i(t) =

N∑

j=1

w
(N)
ij

N

∫ t

0
h(t− s)dZN,j(s), (1.10)

ηt : I −→ R
d for any t ∈ [0,+∞) for some d ≥ 1 and F : R × R

d −→ R
+ is called a

multivariate Hawkes process with the set of parameters
(
N,F, ξ(N),WN , η, h

)
.

Our main focus is to study the quantity (XN,i)1≤i≤N defined in (1.10) as N → ∞, and

more precisely the random profile defined for all x ∈ I by:

XN (t)(x) :=
N∑

i=1

XN,i(t)1x∈BN,i
, (1.11)

where BN,i is defined in (1.7).
As N → ∞, an informal Law of Large Numbers (LLN) argument shows that the

empirical mean in (1.10) becomes an expectation w.r.t. the candidate limit for ZN,i:
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we can replace the sum in (1.10) by the integral, the microscopic interaction term w
(N)
ij in

(1.10) by the macroscopic term W (x, y) (where y describes the macroscopic distribution
of the positions), and the past activity of the neuron dZN,j(s) by its intensity in large
population. In other words, the macroscopic spatial profile will be described by

Xt(x) =

∫

I
W (x, y)

∫ t

0
h(t− s)λs(y)ds dy, (1.12)

where the macroscopic intensity of a neuron at position x ∈ I denoted by λt(x) =
F (Xt(x), ηt(x)) solves

λt(x) = F

(∫

I
W (x, y)

∫ t

0
h(t− s)λs(y)dsdy, ηt(x)

)
. (1.13)

Such informal law of large number on a bounded time interval has been made rigorous
under various settings, we refer for further references to [23, 15] and more especially to [1]
which exactly incorporates the present hypotheses.

Remark 1.3. In the expression (1.9) of the intensity λN,i, XN,i given in (1.10) accounts
for the stochastic influence of the other interacting neurons, whereas ηt represents the
deterministic part of the intensity λN,i. Having in mind the generic example given in
(1.1), a typical choice would correspond to taking d = 2 with η := (µ, v) and

F (X, η) = F (X,µ, v) = µ+ f(v +X) (1.14)

Once again, µ here corresponds to the spontaneous Poisson activity of the neuron and one
may see v as a deterministic part in the evolution of the membrane potential of neuron i.
Note that we generalize here slightly the framework considered in [15] in the sense that
[15] considered (1.14) for µ ≡ 0 and vt(x) = e−αtv0(x) for some initial membrane potential
v0(x). In the case of (1.14), one retrieves the expression of the macroscopic intensity λt(x)
given in (1.2). Typical choices of f in (1.14) are f(x) = x (the so-called linear model)
or some sigmöıd function. Note that there will be an intrinsic mathematical difficulty in
dealing with the linear case in this paper, as f is not bounded in this case. As already
mentioned in the introduction, for the choice of h(t) = e−αt and vt(x) = e−αtv0(x), a
straightforward calculation shows that ut(x) := vt(x)+Xt(x) solves the scalar neural field
equation (1.3) with source term It(x) =

∫
I W (x, y)µ(t, y)dy.

We choose here to work with the generic expression (1.9) instead of (1.1) not only for
conciseness of notation, but also to emphasize that the result does not intrinsically depend
on the specific form of the function F .

Remark 1.4. We have assumed for simplicity in the current definition (1.10) of XN,i(t)

that XN,i(0) = 0. Define more generally, for any (ϑi)i=1,...,N , ϑi ∈ R, Xϑi

N,i(t) = ϑi +

∑N
j=1

w
(N)
i,j

N

∫ t
0 h(t − s)dZN,j(s) the same process starting at ϑi (here, ϑi accounts for the

history of the process before t = 0). Write then the corresponding intensity (1.9) and

process (1.8) as λϑi

N,i(t) and Zϑi

N,i(t) respectively. In particular, when h is exponential (see

(2.4)), the process (Xϑi

N,i)i=1,...,N is Markovian (see e.g. [26, Section 5]). The analysis of

the profile Xϑ
N (t) :=

∑N
i=1 X

ϑi

N,i(t)1BN,i
remains the same, under the additional hypothesis

that
∑N

i=1 ϑi1BN,i
−−−−→
N→∞

ϑ in L2(I). In the following, the actual dependence in the

initial condition ϑ will be dropped, whenever it is clear from the context, for simplicity of
notation.
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2. Hypotheses and main results

2.1. Hypotheses.

Hypothesis 2.1. We assume that

• F is Lipschitz continuous : there exists ‖F‖L such that for any x, x′ ∈ R, η, η′ ∈ R
d,

we have |F (x, η) − F (x′, η′)| ≤ ‖F‖L (|x− x′|+ |η − η′|).
• F is non decreasing in the first variable, that is for any η ∈ R

d, for any x, x′ ∈ R

such that x ≤ x′, one has F (x, η) ≤ F (x′, η). Moreover, we assume that F is C2 on
R
d+1 with bounded derivatives. We denote by ∂XF and ∂2

XF the partial derivatives
of F w.r.t. X and (with some slight abuse of notation) ∂ηF = (∂ηkF )k=1,...d as the

gradient of F w.r.t. the variable η ∈ R
d as well as ∂2

X,ηF =
(
∂2
X,ηk

F
)
k=1,...d

and

∂2
ηF =

(
∂2
ηk,ηl

F
)
k,l=1,...d

the Hessian of F w.r.t. the variable η.

• (ηt(x))t≥0,x∈I is uniformly bounded in (t, x). We also assume that there exists η∞
Lipschitz continuous on I such that

δt := sup
x∈I

|ηt(x)− η∞(x)| −−−→
t→∞

0. (2.1)

• The memory kernel h is nonnegative and integrable on [0,+∞).
• We assume thatW : I2 → [0, 1] is continuous. We refer nonetheless to Section 2.3.4
where we show that the results of the paper remain true under weaker hypotheses
on W .

It has been showed in [1] that the process defined in (1.8) is well-posed, and that the
large population limit intensity (1.13) is well defined in the following sense.

Proposition 2.2. Under Hypothesis 2.1, for a fixed realisation of the family (πi)1≤i≤N ,

there exists a pathwise unique multivariate Hawkes process (in the sense of Definition 1.2)
such that for any T < ∞, supt∈[0,T ] sup1≤i≤N E[ZN,i(t)] < ∞.

Proposition 2.3. Let T > 0. Under Hypothesis 2.1, there exists a unique solution λ in
Cb([0, T ] × I,R) to (1.13) and this solution is nonnegative.

Both Propositions 2.2 and 2.3 can be found in [1] as Propositions 2.5 and 2.7 respec-
tively, where F is chosen as η = (µ, v) and F (x, η) = f(x+ v) with f a Lipschitz function.
The same proofs work for our general case F . Proposition 2.3 also implies that the limiting
spatial profile Xt solving (1.12) is well defined.

Before writing our next hypothesis, we need to introduce the following integral operator.

Proposition 2.4. Under Hypothesis 2.1, the integral operator

TW : H −→ H
g 7−→

(
TW g : x 7−→

∫
I W (x, y)g(y)dy

)
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is continuous in both cases H = L∞(I) and H = L2(I). When H = L2(I), TW is compact,
its spectrum is the union of {0} and a discrete sequence of eigenvalues (µn)n≥1 such that
µn → 0 as n → ∞. Denote by r∞ = r∞(TW ), respectively r2 = r2(TW ) the spectral radii
of TW in L∞(I) and L2(I) respectively. Moreover, we have that

r2(TW ) = r∞(TW ). (2.2)

The proof can be found in Section 3.1.

Hypothesis 2.5. In the whole article, we are in the subcritical case defined by

‖∂XF‖∞ ‖h‖1r∞ < 1. (2.3)

Note that in the complete mean-field case, W ≡ 1 and r∞ = 1 so that one retrieves the
usual subcritical condition as in [23]. In the linear case η = µ and F (x, η) = µ + x, (2.3)
is exactly the subcritical condition stated in [1].

The aim of the paper is twofold: firstly, we state a general convergence result as t → ∞
of Xt defined in (1.12) (or equivalently λt in (1.13)), see Theorem 2.8. This result is valid
for any general kernel h satisfying Hypothesis 2.1. Secondly, we address the long-term
stability of the microscopic profile XN defined in (1.11), see Theorem 2.13. Contrary to
the first one, this second result is stated for the particular choice of the exponential kernel
h defined as

h(t) = e−αt,with α > 0. (2.4)

The parameter α > 0 is often called the leakage rate. The main advantage of this choice
is that the process XN then becomes Markovian (see Remark 1.4). This will turn out to
be particularly helpful for the proof of Theorem 2.13. As already mentioned in the intro-
duction, (2.4) is the natural framework where to observe the NFE (1.3) as a macroscopic
limit, recall Remark 1.3. Note that in the exponential case (2.4), we have that ‖h‖1 = 1/α
hence the subcritical case (2.3) reads

‖∂XF‖∞ r∞ < α. (2.5)

For our second result (Theorem 2.13), we also need some hypotheses on the dilution of
the graph. Recall the definition of ρN in Definition 1.1.

Hypothesis 2.6. The dilution parameter ρN ∈ [0, 1] satisfies the following dilution con-
dition: there exists τ ∈ (0, 12) such that

N1−2τρ4N −−−−→
N→∞

∞. (2.6)

If one supposes further that F is bounded, we assume the weaker condition

Nρ2N −−−−→
N→∞

∞. (2.7)

Remark 2.7. Hypothesis 2.6 is stronger than NρN
logN −−−−→

N→∞
∞, which is a dilution condition

commonly met in the literature concerning LLN results on bounded time intervals for
interacting particles on random graphs: it is the same as in [24, 21] (and slightly stronger
than the optimal NρN → +∞ obtained in [22] in the case of diffusions and as in [1] in the
case of Hawkes processes).

2.2. Main results. Our first result, Theorem 2.8, studies the limit as t → ∞ of the
macroscopic profile Xt (as an element of C(I)) defined in (1.12). Our second result,
Theorem 2.13, focuses on the large time behaviour of XN (t) defined in (1.11) on any time
interval of polynomial length.
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2.2.1. Asymptotic behavior of (Xt). Recall the definition of Xt in (1.12).

Theorem 2.8. Under Hypotheses 2.1 and 2.5,

(i) there exists a unique continuous function X∞ : I 7→ R
+ solution of

X∞ = ‖h‖1TWF (X∞, η∞) . (2.8)

(ii) Xt converges uniformly on I when t → ∞ towards X∞.

The proof can be found in Section 3.2.

Remark 2.9. Translating the result of Theorem 2.8 in terms of the macroscopic intensity
λt defined in (1.13) gives immediately that λt converges uniformly to ℓ solution to

ℓ = F (‖h‖1TW ℓ, η∞) (2.9)

The correspondence between X∞ and ℓ (recall (1.12)) is simply given by X∞ = ‖h‖1TW ℓ.

Remark 2.10. In the particular case of an exponential memory kernel (2.4), as a straight-
forward consequence of the expression of Xt in (1.12) and X∞ in (2.8), we have the fol-
lowing differential equation

∂t (Xt −X∞) = −α (Xt −X∞) + TW (F (Xt, ηt)− F (X∞, η∞)) . (2.10)

A simple Taylor expansion of Xt around X∞ shows that the linearised system associated
to the nonlinear (2.10) is then

∂tYt = −αYt + TW (GYt) , (2.11)

where

G := ∂XF (X∞, η∞). (2.12)

The subcritical condition (2.5) translates into the existence of a spectral gap for the
linear dynamics (2.11), which makes the stationary point X∞ linearly stable. More pre-
cisely,

Proposition 2.11. Assume that the memory kernel h is exponential (2.5). Define the
linear operator

L : L2(I) −→ L2(I)
g 7−→ L(g) = −αg + TW (Gg).

(2.13)

Then under Hypotheses 2.1 and 2.5, L generates a contraction semi-group on L2(I)(
etL
)
t≥0

such that for any g ∈ L2(I)

‖etLg‖2 ≤ e−tγ‖g‖2, (2.14)

where

γ := α− r∞ ‖∂XF‖∞ > 0. (2.15)

The proof can be found in Section 3.1.
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2.2.2. Long-term stability of the microscopic spatial profile. From now on, we place our-
selves in the exponential case (2.4). We first state a convergence result of XN towards the
macroscopic X on a bounded time interval [0, T ].

Proposition 2.12. Let T > 0. Under Hypotheses 2.1, 2.5 and 2.6, for any ε > 0, P-a.s.

P

(
sup

t∈[0,T ]
‖XN (t)−Xt‖2 ≥ ε

)
−−−−→
N→∞

0. (2.16)

The proof can be found in Section 7. Note that Proposition 2.12 slightly gener-
alises [1, Prop. 3.17] (see also [15, Cor. 2] for a similar result) where it is proven that

E
[∫ T

0

∫
I |XN (t)(x) −Xt(x)| dx dt

]
−−−−→
N→∞

0 for any T > 0. Here, we are more precise as

we show uniform convergence of XN (t) in L2(I) instead of L1(I).
We are now in position to state the main result of the paper: the proximity stated in

Proposition 2.12 is not only valid on a bounded time interval, but propagates to arbitrary
polynomial times in NρN .

Theorem 2.13. Choose some tf > 0 and m ≥ 1. Then, under Hypotheses 2.1, 2.6 and
2.5, P-a.s. for any ε > 0,

P


 sup

t∈[tε,(NρN )mtf ]
‖XN (t)−X∞‖2 ≥ ε


 −−−−→

N→∞
0, (2.17)

for some tε > 0 independent on N .

The proof can be found in Section 4.

Remark 2.14. The variable tε in Theorem (2.13) represents essentially the time for the
deterministic dynamics Xt to reach a neighborhood of X∞ of size ε. The time tε is of
order − log ε/γ (where γ is the spectral gap (2.15) given by the mean-field dynamics) and
diverges as ε → 0. Using the fact that on any finite [0, T ] (and in particular on [0, tε] for any
fixed ε), XN,t converges as N → ∞ to Xt (Proposition 2.12), a simple triangle inequality
gives that the following statement is also true: under the Hypotheses of Theorem 2.13,
P-a.s., for all ε > 0,

P

(
sup

t∈[0,(NρN )mtf ]
‖XN (t)−Xt‖2 ≥ ε

)
−−−−→
N→∞

0.

Since F is Lipschitz and λN,i(t) = F (XN,i(t−), ηt(xi)) by (1.9), it is straightforward to
derive from Theorem 2.13 a similar result for the profile of intensities

λN (t)(x) :=
N∑

i=1

λN,i(t)1x∈BN,i
, x ∈ I, (2.18)

where BN,i is defined in (1.7).

Corollary 2.15. Recall the definition of ℓ in (2.9). Under the same set of hypotheses of
Theorem 2.13 and with the same notation,

P


 sup

t∈[tε,(NρN )mtf ]
‖λN (t)− ℓ‖2 ≥ ε


 −−−−→

N→∞
0. (2.19)
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2.3. Examples and extensions. We give here some illustrating examples of our main
results.

2.3.1. Mean-field framework. To the best of the knowledge of the author, already in the
simple homogeneous case of mean-field interaction, there exists no long-term stability
result such as Theorem 2.13. We stress that our result may have an interest of its own in
this case. Let us be more specific. When ρN = WN = 1 and µt(x) = µ ≥ 0, the process
introduced in Definition 1.2 reduces to the usual mean-field framework [23]:

ZN,i(t) =

∫ t

0

∫ ∞

0
1{z≤λN (s)}πi(ds, dz) (2.20)

with λN (t) defined by
λN (t) = F (XN (t−), η), (2.21)

where

XN (t) =
N∑

j=1

1

N

∫ t

0
h(t− s)dZN,j(s), (2.22)

In this simple case, the spatial framework is no longer useful (in particular the spatial
profile defined in (1.11) is constant in x so that the L2 framework is not relevant, one has
only to work in R). The macroscopic intensity and synaptic current (respectively (1.13)
and (1.12) become

Xt :=

∫ t

0
h(t− s)λsds, λt := F (Xt, η). (2.23)

The main results of the paper translate then into

Theorem 2.16. Under Hypothesis 2.1 and when ‖∂XF‖∞ ‖h‖1 < 1, there exists a unique
X∞ ∈ R+ solution to X∞ = ‖h‖1F (X∞, η), and (Xt)t≥0 converges when t → ∞ towards

X∞. Respectively, (λt)t≥0 converges towards ℓ, the unique solution to ℓ = F (‖h‖1ℓ, η).
Moreover, under the same hypotheses, in the exponential case (2.4), for any tf > 0 and

m ≥ 1, P-a.s. for any ε > 0, P


 sup

t∈[tε,Nmtf ]
|XN (t)−X∞| ≥ ε


 and P

(
supt∈[tε,Nmtf ] |λN (t)− ℓ| ≥ ε

)

tend to 0 as N → ∞ for some tε > 0 independent on N .

Remark 2.17. The previous result applies in particular to the linear case where η = µ

and F (x, η) = µ+ x. We have then that ℓ =
µ

1− ‖h‖1
in this case, as in [23].

2.3.2. Erdős-Rényi graphs. An immediate extension of the last mean-field case concerns
the case of homogeneous Erdős-Rényi graphs: choose WN (x, y) = ρN for all x, y ∈ I.
The results of our paper are valid under the dilution Hypothesis 2.6. It is however likely
that these dilution conditions are not optimal (compare with the result of [20] with the
condition NρN → ∞ in the diffusion case, but a difficulty here is that we deal with a
multiplicative noise whereas it is essentially additive in [20]).

2.3.3. Examples in the inhomogeneous case. As already mentionned in Hypothesis 2.1,
the results are valid for any W continuous, interesting examples include W (x, y) = 1 −
max(x, y), W (x, y) = 1 − xy, see [7, 8]. Note also that we do not suppose any symmetry
on W . Another rich class of examples concerns the Expected Degree Distribution model
[18, 40] where W (x, y) = f(x)g(y) for any continuous functions f and g on I. The
specificity of such class is that we have an explicit formulation of r∞, that is r∞ =
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∫
I f(x)g(x)dx when

∫
I g = 1. In the linear case, we obtain an explicit formula for λt in [1,

Example 4.3].

2.3.4. Extensions (weaker hypothesis on W ). It is apparent from the proofs below that one
can weaken the hypothesis of continuity of W . Under the hypothesis that W is bounded,
Proposition 2.3 remains true when Cb([0, T ]×I) is replaced by C ([0, T ], L∞(I)) (continuity
of λt and Xt in x may not be satisfied). Supposing further that there exists a partition
of I into p intervals I = ⊔k=1,··· ,pCk such that for all ǫ > 0, there exists η > 0 such
that

∫
I |W (x, y)−W (x′, y)| dy < ǫ when |x − x′| < η and x, x′ ∈ Ck, then for every k,

λ|[0,T ]×C̊k
and X|[0,T ]×C̊k

are both continuous. When p = 1, both λ and X are continuous

on [0, T ] × I.
Concerning Theorem 2.8, defining for k ∈ {1, 2}:

RW
N,k :=

1

N

N∑

i,j=1

∫

BN,j

|W (xi, xj)−W (xi, y)|k dy, (2.24)

and

SW
N :=

N∑

i=1

∫

BN,i

(∫

I
|W (xi, y)−W (x, y)|2 dy

)
dx, (2.25)

Theorem 2.13 remains true when RW
N,1, R

W
N,2, S

W
N −−−−→

N→∞
0, see Lemmas 6.4, 6.5, 6.6 and

6.7. These particular conditions are met in the following cases (details of the computation
are left to the reader):

• P-nearest neighbor model [39]: W (x, y) = 1dS1
(x,y)<r for any (x, y) ∈ I2 for some

fixed r ∈ (0, 12 ), with dS1(x, y) = min(|x− y|, 1− |x− y|),
• Stochastic block model [34, 26]: it corresponds to considering p communities
(Ck)1≤k≤p. An element of the community Cl communicates with an element of
the community Ck with probability pkl. This corresponds to the choice of interac-
tion kernel W (x, y) =

∑
k,l pkl1x∈Ck,y∈Cl

.

2.3.5. Extensions (subcritical case). The point of this paragraph is to discuss the possibil-
ity of relaxing the subcriticality condition given in (2.3). This condition is used at several
times in the paper:

(a) as a sufficient condition to ensure the existence of a (unique) fixed-point X∞ to
(2.8) (see Theorem 2.8 (i)),

(b) to prove the convergence of the deterministic Xt to X∞ (see Theorem 2.8 (ii)), for
general h, not necessarily exponential,

(c) to prove the long-term stability of XN around X∞, in the exponential case (see
Theorem 2.13).

The trickiest point is actually the first one (a), i.e. the existence of a fixed-point to
(2.8). To fix ideas, let us think of the pure mean-field case seen in Section 2.3.1, for the
generic example (1.1) (that is, F (X, η) = µ+ f(X)). The fixed-point relation (2.8) is then
finite-dimensional and it reduces to find X∞ ∈ R solution to

X∞ = ‖h‖1 (µ+ f(X∞)) . (2.26)

The condition (2.3) is then the same as
∥∥f ′
∥∥
∞
‖h‖1 < 1, (2.27)
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which is essentially the generic subcriticality condition that one finds in the literature for
mean-field nonlinear Hawkes processes [12]. In the linear case (corresponding to f(x) = x),
condition (2.27) reduces to ‖h‖1 < 1 which is optimal. However, it is quite obvious that
(2.3)/(2.27) is no longer optimal w.r.t. the existence of a solution to (2.26) for general
f : there may very-well be a unique fixed-point to (2.26) whereas (2.27) is violated, for
example in the case a sigmoid f (sufficiently close to the Heaviside function 1[κ,+∞) for
some κ > 0): as long as κ /∈ [‖h‖1µ, ‖h‖1(µ + 1)], there is a unique solution to (2.26)
whereas (2.27) is not true, as ‖f ′‖∞ is very large. Not to mention the possibility of having
several (three) fixed-points in this sigmoid case, while (2.27) still does not hold. In this
homogenous mean-field case, one can compute the solution to (2.26) by hand, as it reduces
to a simple equation in dimension 1. The situation gets really more complicated in the
spatially-extended setting as (2.8) is intrinsically infinite dimensional. It is unclear if there
exists a condition (that would be weaker than (2.3)) ensuring the existence of a (possibly
non unique) solution to (2.8) for general W .

However, an important point is the following: provided we have obtained the existence of
such X∞, unique or not, solution to (2.8) (which is again a straightforward task for (2.26)
but may be complicated for (2.8)), points (b) (the convergence Xt → X∞ in Theorem 2.8)
at least for h exponential and (c) (the long-term stability result in Theorem 2.13) remain
valid under the weaker condition

sup
x

|∂XF (X∞(x), η∞(x))| ‖h‖1 r∞ < 1. (2.28)

Condition (2.28) is weaker than (2.3) in the sense that it is only local, around X∞,
whereas (2.3) is global (note that in the the homogeneous case (2.28) translates into
|f ′(X∞)| ‖h‖1 < 1, to compare with (2.27)). The only modification one has to make in
the statements of Theorems 2.8 and 2.13 is that they are now essentially local, i.e. valid
provided the initial condition X0 and XN,0 are sufficiently close to X∞. More precisely,
an alternative statement of item (ii) of Theorem 2.8 would be:

Proposition 2.18. Suppose that Hypothesis 2.1 is true and that we are in the exponential
case (2.4). Assume the existence of some X∞ ∈ L2(I) solution to (2.8) such that (2.28)
is satisfied. Then, there exists some ε0 > 0 such that whenever ‖X0 −X∞‖2 < ε0, one
has Xt −−−→

t→∞
X∞ in L2(I).

However, this extension of point (b) is only valid when h is exponential. A convergence
result under (2.28) for general h (not necessarily exponential) remains open: as it is, the
proof of Theorem 2.8 uses in an essential way the uniform condition (2.3). In a same way,
the corresponding local stability result concerning XN is then

Theorem 2.19. Choose some tf > 0 and m ≥ 1. Assume Hypotheses 2.1 and 2.6.
Assume the existence of some X∞ ∈ L2(I) solution to (2.8) such that (2.28) is satisfied.
Let ε0 > 0 given by Proposition 2.18 and assume that ‖X0 −X∞‖2 < ε0. Suppose that for
all ε > 0, P (‖XN (0) −X0‖2 > ε) −−−−→

N→∞
0. Then P-a.s., for any ε > 0 (2.17) is true, for

some tε independent of N .

Remark in particular that the operator L in Proposition 2.11 (whose spectral properties
are the main key to the long term stability result) is only expressed in terms of G =
∂XF (X∞, η∞), that is the exact local quantity appearing in (2.28). In particular, under
(2.28), the spectral gap γ in (2.15) becomes γ = α − supx |∂XF (X∞(x), η∞(x))| > 0 and
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the rest of the proof follows from the same arguments. We stress also that this result
never requires the fixed-point X∞ to be unique (it is indeed the case under the present
condition (2.3) but it is never used in the proof of the long-term stability result, that is
essentially a result of local nature, around X∞).

2.4. Link with the literature. Several previous works have complemented the propa-
gation of chaos result mentioned in (1.4) in various situations: Central Limit Theorems
(CLT) have been obtained in [23, 26] for homogeneous mean-field Hawkes processes (when
both time and N go to infinity) or with age-dependence in [14]. One should also men-
tion the functional fluctuation result recently obtained in [33], also in a pure mean-field
setting. A result closer to our case with spatial extension is [17], where a functional CLT
is obtained for the spatial profile XN around its limit. Some insights of the necessity of
considering stochastic versions of the NFE (1.3) as second order approximations of the
spatial profile are in particular given in [17]. Note here that all of these works provide
approximation results of quantities such that λN or XN that are either valid on a bounded
time interval [0, T ] or under strict growth condition on T (see in particular the condition
T
N → 0 for the CLT in [26]), whereas we are here concerned with time-scales that grow
polynomially with N .

The analysis of mean-field interacting processes on long time scales has a significant his-
tory in the case of interacting diffusions. The important issue of uniform propagation of
chaos has been especially studied mostly in reversible situations (see e.g. the case of gran-
ular media equation [6]) but also more recently in some irreversible situations (see [19]).
There has been in particular a growing interest in the long-time analysis of phase oscilla-
tors (see [30] and references therein for a comprehensive review on the subject). We do
not aim here to be exhaustive, but as the techniques used in this work present some formal
similarities, let us nonetheless comment on the analysis of the simplest situation, i.e. the
Kuramoto model. One is here interested in the longtime behavior of the empirical measure
µN,t :=

1
N

∑N
i=1 δθi,t of the system of interacting diffusions (θ1, . . . , θN ) solving the system

of coupled SDEs dθi,t = −K
N

∑N
j=1 sin(θi,t− θj,t)dt+dBi,t. Standard propagation of chaos

techniques show that µN converges weakly on a bounded time interval [0, T ] to the solu-

tion µt to the nonlinear Fokker-Planck (NFP) equation ∂tµt = 1
2∂

2
θµt+K∂θ

(
µt(sin ∗µt)

)
.

The simplicity of the Kuramoto model lies in the fact that one can easily prove the ex-
istence of a phase transition for this model: when K ≤ 1, µ ≡ 1

2π is the only (stable)
stationary point of the previous NFP (subcritical case), whereas it coexists with a stable
circle of synchronised profiles when K > 1 (supercritical case). A series of papers have
analysed the longtime behavior of the empirical measure µN of the Kuramoto model (and
extensions) in both the subcritical and supercritical cases (see in particular [4, 37, 29, 20]
and references therein). The main arguments of the mentioned papers lie in a careful
analysis of two contradictory phenomena that arise on a long-time scale: the stability of
the deterministic dynamics around stationary points (that forces µN to remain in a small
neighborhood of these points) and the presence of noise in the microscopic system (which
makes µN diffuse around these points). In particular, the work that is somehow formally
closest to the present article is [20], where the long-time stability of µN is analysed in both
sub and supercritical cases for Kuramoto oscillators interacting on an Erdős-Rényi graph.
We are here (at least formally) in a similar situation to the subcritical case of [20]: the
deterministic dynamics of the spatial profile XN (given by (1.11)) has a unique stationary
point which possesses sufficient stability properties. The point of the analysis relies then
on a time discretization and some careful control on the diffusive influence of noise that
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competes with the deterministic dynamics. The main difference (and present difficulty
in the analysis) with the diffusion case in [20] is that our noise (Poissonnian rather than
Brownian) is multiplicative (whereas it is essentially additive in [20]). This explains in
particular the stronger dilution conditions that we require in Hypothesis 2.6 (compared to
the optimal NρN → ∞ in [20]) and also the fact that we only reach polynomial time scales
(compared to the sub-exponential scale in [20]). There is however every reason to believe
that the stability result of Theorem 2.13 would remain valid up to this sub-exponential
time scale.

Note here that we deal directly with the control of the Poisson noise. Another pos-
sibility would have been to use some Brownian approximation of the dynamics of XN .
Some results in this direction have been initiated in [26] for spatially-extended Hawkes
processes exhibiting oscillatory behaviors: some diffusive approximation of the dynamics
of the (equivalent of) the spatial profile is provided (see [26, Section 5]). Note however
that this approximation is based on the comparison of the corresponding semigroups and
is not uniform in time. Hence, it is unclear how one could exploit these techniques for our
case. Some stronger (pathwise) approximations between Hawkes and Brownian dynamics
have been further proposed in [16], based on Komlós, Major and Tusnády (KMT) cou-
pling techniques [28]. Recently, Prodhomme [43] used similar KMT coupling techniques
applied to finite dimensional Markov chains and found the Gaussian approximation to re-
main precise for very large periods of time. However these results are valid for Zd-valued
continous-time Markov chains, and it is unclear how they can be applied in our situation
(with infinite dimension and space extension). The proof we propose is direct and does not
rely on such Brownian coupling. Another recent work by Erny et al. [27] about Hawkes
processes with mean field interactions in a diffusive regime extended also the propagation
of chaos to longer time periods, but the scaling used there is different from ours. This
diffusion scaling can also be found in [42]. To the author’s knowledge, this is the first
result on large time stability of Hawkes process (not mentioning the issue of the random
graph of interaction, we believe that our results remain also relevant in the pure mean-field
case, see Theorem 2.16).

2.5. Strategy of proof and organization of the paper. Section 3 is devoted to prove
the convergence result as t → ∞ of Theorem 2.8. This in particular requires some spectral
estimates on the operator L defined in Proposition 2.11 that are gathered in Section 3.1.

The main lines of proof for Theorem 2.13 are given in Section 4. The strategy of proof
is sketched here:

(1) The starting point of the analysis is a semimartingale decomposition of YN :=
XN −X, detailed in Section 4.1. The point is to decompose the dynamics of YN

in terms of, at first order, the linear dynamics (2.11) governing the behavior of the
deterministic profile X, modulo some drift terms coming from the graph and its
mean-field approximation, some noise term and finally some quadratic remaining
error coming from the nonlinearity of F .

(2) A careful control on each of these terms in the semimartingale expansion on a
bounded time interval are given in the remaining of Section 4.1. The proof of these
estimates are respectively given in Section 5 (for the noise term) and Section 6 (for
the drift term).

(3) The rest of Section 4 is devoted to the proof of Theorem 2.13, see Section 4.2. The
first point is that for any given ε > 0, one has to wait a deterministic time tε > 0,
so that the deterministic profile Xt reaches an ε-neighborhood of X∞. It is easy to
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see from the spectral gap estimate (2.14) that this tε is actually of order − log(ε)
γ .

Then, using Proposition 2.12, the microscopic process XN is itself ε-close to X∞

with high-probability.
(4) The previous argument is the starting point of an iterative procedure that works

as follows: the point is to see that provided XN is initially close to X∞, it will
remain close to X∞ on some [0, T ] for some sufficiently large deterministic T > 0.
The key argument is that on a bounded time interval, the deterministic linear
dynamics dominates upon the contribution of the noise, so that one has only to
wait some sufficiently large T so that the deterministic dynamics prevails upon the
other contributions.

(5) The rest of the proof consists in an iterative procedure from the previous argument,
taking advantage of the Markovian structure of the dynamics of XN . The time
horizon at which one can pursue this recursion is controlled by moment estimates
on the noise, proven in Section 5.

The rest of the paper is organised as follows: Section 7 collects the proofs for the finite
time behavior of Proposition 2.12 whereas some technical estimates are gathered in the
appendix.

3. Asymptotic behavior of (Xt)

This section is related to the proof of Theorem 2.8.

3.1. Estimates on the operator L.

Proof of Proposition 2.4. The continuity and compactness of TW come from the bounded-
ness of W . The structure of the spectrum of TW is a consequence of the spectral theorem
for compact operators. The equality between the spectral radii is postponed to Lemma
A.8 where a more general result is stated (see also Proposition 4.7 of [1] for a similar
result). �

Proof of Proposition 2.11. Let us introduce the operator

U : L2(I) −→ L2(I)
g 7−→ U(g) = TW (Gg),

(3.1)

we have then L = −αId+ U . By Hypothesis 2.1, G is bounded. Then, for any g ∈ L2(I)
using Cauchy-Schwarz inequality, ‖U(g)‖22 ≤ ‖W‖22‖G‖2∞‖g‖22. The operator U is then
compact and thus has a discrete spectrum. Moreover, r2(U) = r∞(U), see Lemma A.8,
and r∞(U) ≤ r∞(TW )‖G‖∞ as for any g ∈ L∞ and x ∈ I, |Ug(x)| ≤ ‖TW ‖∞‖Gg‖∞ ≤
‖TW ‖∞‖G‖∞‖g‖∞. Then L also has a discrete spectrum, which is the same as U but
shifted by α. Since r2(U) = r∞(U) (see Lemma A.8), for any µ ∈ σ(L) \ {0}, |µ + α| ≤
r∞(U) thus Re(µ) ≤ −α+ r∞(U) ≤ −α+ r∞‖∂uF‖∞ < 0 by (2.3). The estimate (2.14)
follows then from functional analysis (see e.g. Theorem 3.1 of [41]). �

3.2. About the large time behavior of Xt.

Proof of Theorem 2.8. We prove that

• there exists a unique function ℓ : I 7→ R
+ solution of (2.9), continuous and bounded

on I, and that
• (λt)t≥0 converges uniformly when t → ∞ towards ℓ.
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It gives then that X∞ := ‖h‖1TW ℓ is the unique solution of (2.8). Then, as Xt(x) =∫
I W (x, y)

∫ t
0 h(t− s)λs(y)ds dy, as (λt) is uniformly bounded, and as h is integrable and

λt → ℓ uniformly, we conclude by dominated convergence that uniformly on y,
∫ t
0 h(t −

s)λs(y)ds −−−→
t→∞

‖h‖1ℓ(y). As TW is continuous, the result follows: Xt converges uniformly

towards X∞. We show first that (λt) is uniformly bounded. Let λt(x) = sups∈[0,t] λs(x),

we have then with (1.13), for s ∈ [0, t]

λs(x) ≤ F (0, 0) + ‖F‖L|ηs(x)|+ ‖∂XF‖∞
∫

I
W (x, y)

∫ s

0
h(s − u)λu(y)dudy

≤ F (0, 0) + ‖F‖L sup
s,x

|ηs(x)|+ ‖∂XF‖∞‖h‖1TWλt(x),

hence λt(x) ≤ CF,η + ‖∂XF‖∞‖h‖1TWλt(x). An immediate iteration gives then λt(x) ≤
CF,η,n0,h + ‖∂XF‖n0

∞‖h‖n0
1

∣∣T n0
W λt(x)

∣∣, so that, by (2.3) and choosing n0 sufficiently large

such that ‖∂XF‖n0
∞‖h‖n0

1 ‖TW ‖n0 < 1, we obtain that ‖λt‖∞ < C, where C is independent
of t. Passing to the limit as t → ∞, this implies that (λt)t>0 is then uniformly bounded,
i.e. supt≥0 supx∈I |λt(x)| =: ‖λ‖∞ < ∞.

We show next that (λt) converges pointwise. We start by studying the supremum limit
of λt, denoted by ℓ(x) := lim supt→∞ λt(x) = infr>0 supt>r λt(x) =: infr>0Λ(r, x). Then
for any r > 0 and t > r:

λt(x) = F

(∫

I
W (x, y)

∫ r

0
h(t− s)λs(y)ds dy +

∫

I
W (x, y)

∫ t

r
h(t− s)λs(y)ds dy, ηt(x)

)

≤ F

(∫

I
W (x, y)

∫ r

0
h(t− s)λs(y)ds dy +

∫

I
W (x, y)Λ(r, y)

∫ t

r
h(t− s)ds dy, ηt(x)

)

by monotonicity of F in the first variable and by positivity of W and h. As
∫ t
r h(t−s)ds ≤

‖h‖1, it gives

λt(x) ≤ F

(∫

I
W (x, y)

∫ r

0
h(t− s)λs(y)ds dy + ‖h‖1

∫

I
W (x, y)Λ(r, y)dy, ηt(x)

)
,

and as h(t) → 0, by dominated convergence
∫
I W (x, y)

∫ r
0 h(t− s)λs(y)ds dy −−−→

t→∞
0 and

by continuity and monotonicity of F , we obtain

ℓ(x) ≤ F
(
‖h‖1

(
TW ℓ

)
(x), η∞(x)

)
. (3.2)

Note that ‖ℓ‖∞ ≤ ‖λ‖∞ < ∞, by the first step of this proof. Denote in a same way
ℓ(x) := lim inft→∞ λt(x) = supr>0 inft>r λt(x) =: supr>0 v(r, x), for any t > 0 we have by
monotonocity of F in the first variable:

λt(x) = F

(∫ t
2

0

∫

I
W (x, y)h(t− s)λs(y)dyds +

∫ t

t
2

∫

I
W (x, y)h(t− s)λs(y)dyds, ηt(x)

)

≥ F

(∫ t

t
2

∫

I
W (x, y)h(t− s)v

(
t

2
, y

)
dyds, ηt(x)

)

= F

(∫ t
2

0
h(u)du

∫

I
W (x, y)v

(
t

2
, y

)
dy, ηt(x)

)
.

Taking lim inft→∞ on both sides, by monotone convergence, we obtain

ℓ(x) ≥ F (‖h‖1 (TW ℓ) (x), η∞(x)) . (3.3)
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Combining (3.2) and (3.3), setting H : l ∈ L∞ 7→ F (‖h‖1TW l, η∞) ∈ L∞, we have shown

Hℓ ≤ ℓ ≤ ℓ ≤ Hℓ. (3.4)

For any l and l′ in L∞(I) and any x ∈ I, we have

|Hl(x)−Hl′(x)| ≤
∣∣F (‖h‖1 (TW l) (x), η∞(x))− F

(
‖h‖1

(
TW l′

)
(x), η∞(x)

)∣∣

≤ ‖∂XF‖∞ ‖h‖1
∣∣(TW (l − l′)

)
(x)
∣∣ .

By iteration we show that ‖Hn0 l − Hn0l′‖∞ ≤ ‖∂uF‖n0
∞ ‖h‖n0

1 ‖T n0
W ‖‖l − l′‖∞, so that,

choosing again n0 sufficiently large, Hn0 is a contraction mapping by (2.3). Hence, by
(3.4), one has necessarily that for all x ∈ I ℓ(x) = ℓ(x) < +∞ thus (λt) converges
pointwise towards ℓ = ℓ = ℓ the unique fixed point of H which satisfies (2.9).

We show now that the family (λt)t≥0 is equicontinuous so that the pointwise convergence

will imply uniform convergence on the compact set I. For any (x, y) ∈ I and t ≥ 0, we
have

|λt(x)− λt(y)| = |F (Xt(x), ηt(x))− F (Xt(y), ηt(y)|
≤ ‖F‖L (|Xt(x)−Xt(y)|+ |ηt(x)− ηt(y)|) .

With (2.1), we have

|ηt(x)− ηt(y)| ≤ |ηt(x)− η∞(x)|+ |η∞(x)− η∞(y)|+ |η∞(y)− ηt(y)|
≤ 2δt + ‖η∞‖L|x− y|,

and as λ is bounded, we have

|Xt(x)−Xt(y)| =
∣∣∣∣
∫

I
(W (x, z)−W (y, z))

∫ t

0
h(t− s)λs(z)dsdz

∣∣∣∣

≤ ‖λ‖∞‖h‖1
∫

I
|W (x, z)−W (y, z)| dz. (3.5)

Then |λt(x)−λt(y)| ≤ CF,λ,h,W

(
δt + |x− y|+

∫
I |W (x, z)−W (y, z)| dz

)
. Fix ε > 0, with

(2.1), one can find T such that CF,λ,h,W δt ≤
ε

2
for any t ≥ T , and as W is uniformly contin-

uous on I2, one can find η > 0 such that CF,λ,h,W

(
|x− y|+

∫
I |W (x, z)−W (y, z)| dz

)
≤ ε

2
when |x − y| ≤ η. We can divide [0, 1] in intervals [zk, zk+1] such that for any k,
zk+1 − zk ≤ η. Then, for any x ∈ [0, 1], one can find zk such that |zk − x| ≤ η, and
|λt(x) − ℓ(x)| ≤ |λt(x) − λt(zk)| + |λt(zk) − ℓ(zk)| + |ℓ(zk) − ℓ(x)|. By pointwise conver-
gence, |λt(zk) − ℓ(zk)| ≤ ε for t large enough (but independent of the choice of x), and
|ℓ(zk) − ℓ(x)| ≤ ε by taking the limit when t → ∞ in |λt(zk) − λt(x)| ≤ ε. It gives
then |λt(x)− ℓ(x)| ≤ 3ε hence supx∈I |λt(x)− ℓ(x)| −−−→

t→∞
0, i.e. (λt) converges uniformly

towards ℓ. Similarly to (3.5), for any x, x′ ∈ I,

∣∣X∞(x)−X∞(x′)
∣∣ ≤ ‖h‖1‖ℓ‖∞

∫

I

∣∣W (x, y)−W (x′, y)
∣∣ dy

which gives, as W is uniformly continous, the continuity of X∞. �

4. Large time behavior of XN (t)

The aim of the present section is to prove Theorem 2.13. To study the behavior of
‖XN (t)−X∞‖2, let

YN := XN −X∞. (4.1)
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The first step is to write the semimartingale decomposition of YN , written in a mild
form (see Section 4.1). The proper control on the drift and noise terms are given in
Propositions 4.2 and 4.3. In Section 4.2, we give the proof of Theorem 2.13, based in
particular on the convergence on a bounded time interval in Proposition 2.12.

4.1. Mild formulation.

Proposition 4.1. The process (YN (t))t≥0 satisfies the following semimartingale decom-

position in D([0, T ], L2(I)), written in a mild form: for any 0 ≤ t0 ≤ t

YN (t) = e(t−t0)LYN (t0) + φN (t0, t) + ζN (t0, t) (4.2)

where (recall (1.7) the partition of I in N segments of equal length):

φN (t0, t) =

∫ t

t0

e(t−s)LrN (s)ds (4.3)

with

rN (t)(x) = TW (gN (t)) (x)+

N∑

i=1


 1

NρN

N∑

j=1

ξ
(N)
ij F (XN,j(t−), ηt(xj))−

∫

I
W (x, y)F (XN (t, y), ηt(y))dy


1BN,i

(x),

(4.4)

gN (t)(y) :=

∫ 1

0
(1− r)∂2

xF (X∞(y) + rYN (t)(y), (1 − r)η∞(y) + rηt(y))YN (t)(y)2dr+

∫ 1

0
(1−r) (ηt(y)− η∞(y))·∂2

ηF (X∞(y) + rYN (t)(y), (1 − r)η∞(y) + rηt(y)) (ηt(y)− η∞(y)) dr

+

∫ 1

0
2(1−r)∂2

x,ηF (X∞(y) + rYN (t)(y), (1 − r)η∞(y) + rηt(y))·(ηt(y)− η∞(y))YN (t)(y)dr

+ ∂ηF (X∞(y), η∞(y)) · (ηt(y)− η∞(y)) , (4.5)

and

ζN (t0, t) =

∫ t

t0

e(t−s)LdMN (s) (4.6)

with

MN (t) =

N∑

i=1

N∑

j=1

wij

N

(
ZN,j(t)−

∫ t

0
λN,j(s)ds

)
1BN,i

. (4.7)

φN is the drift term and ζN is the noise term coming from the jumps of the process XN .

Proof of Proposition 4.1. From (1.10) and (1.11), as we are in the exponential case (2.4),
we obtain that XN verifies

dXN (t) = −αXN (t)dt+
N∑

i=1

N∑

j=1

wij

N
dZN,j(t)1BN,i

. (4.8)
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The centered noise MN defined in (4.7) verifies

dMN (t) :=

N∑

i=1

N∑

j=1

wij

N
(dZN,j(t)− F (XN,j(t−), ηt(xj))dt) 1BN,i

,

and is a martingale in L2(I). Thus recalling the definition of X∞ in (2.8) and by inserting

the term
∑N

i=1

∑N
j=1

wij

N
F (XN,j(t−), ηt(xj))dt1BN,i

in (4.8), we obtain

dYN (t) = −αYN (t)+dMN (t)+

N∑

i=1




N∑

j=1

wij

N
F (XN,j(t−), ηt(xj))


1BN,i

dt−TWF (X∞, η∞)dt.

(4.9)
A Taylor’s expansion gives

F (XN (t, y), ηt(y))−F (X∞(y), η∞(y)) = ∂XF (X∞(y), η∞(y)) (XN (t, y)−X∞(y))+gN (t)(y),

with gN given in (4.5). Hence, we have with G defined in (2.12)

−TWF (X∞, η∞)(x) = −
∫

I
W (x, y)F (XN (t, y), ηt(y))dy + TW (GYN (t)) + TW gN (t)(x),

hence coming back to (4.9) and recognizing the operator L (2.13)

dYN (t) = LYN (t) + dMN (t) +

N∑

i=1




N∑

j=1

wij

N
F (XN,j(t−), ηt(xj))


 1BN,i

dt

− TWF (XN (t, ·), ηt(·))dt+ TW gN (t).

We recognize rN defined in (4.4), and obtain exactly

dYN (t) = LYN (t)dt+ rN (t)dt+ dMN (t). (4.10)

Then the mild formulation (4.2) is a direct consequence of Lemma 3.2 of [47]: the unique
strong solution to (4.10) is indeed given by (4.2). �

Proposition 4.2 (Noise perturbation). Let m ≥ 1 and T > t0 ≥ 0. Under Hypotheses
2.1 and 2.6, there exists a constant C = C(T,m,F, η0) > 0 such that P-almost surely for
N large enough:

E

[
sup
s≤T

‖ζN (t0, s)‖2m2

]
≤ C

(NρN )m
.

The proof is postponed to Section 5.

Proposition 4.3 (Drift term). Under Hypothesis 2.1, for any t ≥ t0 > 0, P-almost surely
if N is large enough,

‖φN (t0, t)‖2 ≤ Cdrift

(∫ t

t0

e−(t−s)γ‖YN (s)‖22ds+GN +

∫ t

t0

e−γ(t−s)
(
δ2s + δs

)
ds

)
, (4.11)

where Cdrift = CW,F,α, γ is defined in (2.15), δs is defined in (2.1) and GN = GN (ξ) is an
explicit quantity to be found in the proof that tends to 0 as N → ∞.

The proof is postponed to Section 6.
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4.2. Proof of the large time behaviour. We prove here Theorem 2.13, based on the
results of Section 4.1. The approach followed is somehow formally similar to the strategy
of proof developed in [20] for the diffusion case.

Proof of Theorem 2.13. Choose m ≥ 1 and tf > 0. Let

ε0 =
γ

6Cdrift
, (4.12)

where γ is defined in (2.15) and the constant Cdrift comes from Proposition 4.3 above.
Note that it suffices to consider ε small enough, such that ε < ε0: tε defined below increases
as ε ց 0, so that it suffices to take tε = tε0 whenever ε ≥ ε0. As (Xt) converges uniformly
towards X∞ (Theorem 2.8), there exists t1ε < ∞ such that

‖Xt −X∞‖2 ≤
ε

4
, t ≥ t1ε. (4.13)

Moreover, with (2.1), we also have that
∫ t
0 e

−γ(t−s)
(
δ2s + δs

)
ds −−−→

t→∞
0, hence there exists

t2ε < ∞ such that

Cdrift

∫ t

0
e−γ(t−s)

(
δ2s + δs

)
ds ≤ ε

18
, t ≥ t2ε. (4.14)

We set now tε = max(t1ε, t
2
ε). Let T such that

e−γT <
1

3
, T > tf . (4.15)

The strategy of proof relies on the following time discretisation. The point is to control
‖XN (t)−X∞‖2 on [tε, TN ] with

TN := aNT + tε, with aN := ⌈(NρN )m⌉, (4.16)

which will imply the result (2.17) as [tε, (NρN )mtf ] ⊂ [tε, TN ] since T > tf . We decompose
below the interval [tε, TN ] into aN intervals of length T . We define the following events,
with 0 ≤ ta ≤ tb (recall that YN (t) = XN (t)−X∞)

AN
1 (t, ε) :=

{
‖YN (t)‖2 ≤

ε

2

}
for t ≥ 0, (4.17)

AN
2 (ε) :=

{
sup

t∈[tε,tε+T ]
‖ζN (tε, t)‖2 ≤

ε

18

}
, (4.18)

E(ta, tb) :=

{
max

(
2 ‖YN (ta)‖2 , sup

t∈[ta,tb]
‖YN (t)‖2 , 2 ‖YN (tb)‖2

)
≤ ε

}
. (4.19)

By (4.13), and as Proposition 2.12 gives that P
(
supt∈[0,tε] ‖YN (t)‖2 >

ε

4

)
−−−−→
N→∞

0, we

have by triangle inequality

P
(
AN

1 (tε, ε)
)
−−−−→
N→∞

1. (4.20)

Step 1. We have from the definition (4.19) of E(ta, tb) that

P

(
sup

t∈[tε,TN ]
‖YN (t)‖2 ≤ ε

)
≥ P (E(tε, TN )) = P

(
E(tε, TN )|AN

1 (tε, ε)
)
P
(
AN

1 (tε, ε)
)
.

(4.21)
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Moreover,

P
(
E(tε, TN )|AN

1 (tε, ε)
)

= P
(
E(tε, tε + aNT )|AN

1 (tε, ε)
)

≥ P
(
E(tε, tε + aNT ) ∩E(tε, tε + (aN − 1)T )|AN

1 (tε, ε)
)

= P
(
E(tε, tε + aNT )|E(tε, tε + (aN − 1)T ) ∩AN

1 (tε, ε)
)
P
(
E(tε, tε + (aN − 1)T )|AN

1 (tε, ε)
)
.

Recall that we are in the exponential case (2.4), so that (XN (t))t is a Markov process.
Thus by Markov property

P
(
E(tε, tε + aNT )|E(tε, tε + (aN − 1)T ) ∩AN

1 (tε, ε)
)

=P (E(tε + (aN − 1)T, tε + aNT )|E(tε, tε + (aN − 1)T ))

=P
(
E(tε + (aN − 1)T, tε + aNT )

∣∣∣
{
‖YN (tε + (aN − 1)T )‖2 ≤

ε

2

})

=P
(
E(tε + (aN − 1)T, tε + aNT )

∣∣AN
1 (tε + (aN − 1)T, ε)

)

P
(
E(tε + (aN − 1)T, tε + aNT )|AN

1 (tε + (aN − 1)T, ε)
)
means that, under an initial con-

dition at tε + (aN − 1)T , we look at the probability that YN stays below ε on the interval

[tε+(aN −1)T, tε+aNT ] of size T and comes back below
ε

2
at the final time tε+aNT . By

Markov’s property, it is exactly P
(
E(tε, tε + T )|AN

1 (tε, ε)
)
. An immediate iteration gives

then

P
(
E(tε, TN )|AN

1 (tε, ε)
)
≥ P

(
E(tε, tε + T )|AN

1 (tε, ε)
)aN . (4.22)

By (4.20), from now on we consider that we are on this event AN
1 (tε, ε) and omit this

notation for simplicity.
Step 2. We show that

AN
2 (ε) ⊂ E(tε, tε + T ). (4.23)

Let us place ourselves in AN
2 (ε). As we are also underAN

1 (tε, ε), we have indeed ‖YN (tε)‖2 ≤
ε

2
for the first condition of E(tε, tε + T ). As YN verifies (4.1), it can be written for t ≥ tε

YN (t) = eL(t−tε)YN (tε) + φN (tε, t) + ζN (tε, t). (4.24)

For any t ∈ [tε, tε + T ],

‖φN (tε, t)‖2 ≤ Cdrift

(∫ t

tε

e−(t−s)γ‖YN (s)‖22ds+GN +

∫ t

t0

e−γ(t−s)
(
δ2s + δs

)
ds

)

≤ Cdrift

(∫ t

tε

e−(t−s)γ‖YN (s)‖22ds
)
+

ε

9
(4.25)

where the first inequality comes from Proposition 4.3, and the second is true for N large
enough using GN → 0 and (4.14). Coming back to (4.24), using that by Proposition 2.11

∥∥∥eL(t−tε)YN (tε)
∥∥∥
2
≤ e−γ(t−tε) ‖YN (tε)‖2 , (4.26)

and using (4.25), we have on AN
1 (tε, ε) ∩AN

2 (ε)

‖YN (t)‖2 ≤
ε

2
+ Cdrift

(∫ t

tε

e−(t−s)γ‖YN (s)‖22ds
)
+

ε

9
+

ε

18
.
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Let δ > 0 such that δ ≤ min

(
ε

6
,

γ

9Cdrift

)
. Recall that ‖YN (·)‖2 is not a continuous

function, it jumps whenever a spike of the process (ZN,1, · · · , ZN,N ) occurs, but the size

jump never exceeds
1

N
, and for N large enough

1

N
≤ δ

2
. Then, one can apply Lemma A.9

and obtain that for all N large enough,

sup
t∈[tε,tε+T ]

‖YN (t)‖2 ≤
ε

2
+ 3δ ≤ ε. (4.27)

It remains to prove that ‖YN (tε + T )‖2 ≤
ε

2
. We obtain from (4.24), (4.25) and (4.26) for

t = tε + T on AN
1 (tε, ε) ∩AN

2 (ε)

‖YN (tε + T )‖2 ≤ e−γT ε

2
+

ε

6
+ Cdrift

∫ tε+T

tε

e−(tε+T−s)γ‖YN (s)‖22ds.

Using the a priori bound (4.27)

‖YN (tε + T )‖2 ≤ e−γT ε

2
+

ε

12
+ ε2

Cdrift

γ
≤ e−γT ε

2
+

ε

6
+

ε

6
≤ ε

2
,

where we recall the particular choices of T and ε < ε0 in (4.15) and (4.12). This concludes
the proof of (4.23).
Step 3. We obtain with (4.22) and Markov’s inequality,

P (E(tε, TN )) ≥ P (E(tε, tε + T ))aN ≥ P(AN
2 (ε))aN

=

(
1−P

(
sup

t∈[tε,tε+T ]
‖ζN (tε, t)‖2 >

ε

18

))aN

≥


1− 182m

′
E

[
supt∈[tε,tε+T ] ‖ζN (tε, t)‖2m

′

2

]

ε2m′




aN

,

where we have taken m′ > m. With Proposition 4.2, it gives

P (E(tε, TN )) ≥
(
1− C

(ε2NρN )m
′

)aN

= exp

(
aN ln

(
1− C

(ε2NρN )m
′

))
.

By definition (4.16), aN = o (NρN )m
′

, the right term tends to 1 as N goes to ∞ under
Hypothesis 2.6. By (4.21), we conclude that

P

(
sup

t∈[tε,TN ]
‖XN (t)−X∞‖2 ≤ ε

)
−−−−→
N→∞

1.

This concludes the proof of Theorem 2.13. �

5. Proofs - Noise perturbation

In this section, we prove Proposition 4.2 concerning the control of the noise perturbation
ζN (t0, t) defined in (4.6). For simplicity of notation, we assume that t0 = 0. Recall the
expression of (ZN,j)1≤j≤N in (1.8). Introduce the compensated measure π̃j(ds, dz) :=
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πj(ds, dz)− dsdz, so that with the linearity of (etL)t≥0, we obtain that ζN can be written
as

ζN (0, t) =

N∑

j=1

∫ t

0

∫ ∞

0
e(t−s)Lχj(s, z)π̃j(ds, dz), (5.1)

with χj(s, z) :=

(
N∑

i=1

1BN,i

wij

N

)
1z≤λN,j(s) ∈ L2(I). The proof of Proposition 4.3 relies

on a adaptation of an argument given in [47] (Theorem 4.3), where a similar quantity to
(5.1) is considered for N = 1.

5.1. Control of the moments of the process ZN,i.

Proposition 5.1. Let m ≥ 1 and T > 0. Under Hypotheses 2.1 and 2.6, P-almost surely

sup
N≥1

E


 1

N

N∑

j=1

ZN,j(T )
m


 < ∞.

Proof. Let N ≥ 1. We have for any i ∈ J1, NK

E [ZN,i(T )
m] ≤ E

[((
ZN,i(T ))−

∫ T

0
λN,i(t)dt

)
+

∫ T

0
λN,i(t)dt

)m
]

≤ 2m−1E

[(
ZN,i(T )−

∫ T

0
λN,i(t)dt

)m
]
+ 2m−1E

[(∫ T

0
λN,i(t)dt

)m
]

≤ 2m−1CE

[(∫ T

0
λN,i(t)dt

)m
2

]
+ (2T )m−1E

[∫ T

0
λN,i(t)

mdt

]
, (5.2)

where we used Jensen’s inequality and Burkholder-Davis-Gundy Inequality on the mar-

tingale
(
ZN,i(T )−

∫ T
0 λN,i(t)dt

)
. Similarly, we obtain

E

[(∫ T

0
λN,i(t)dt

)m
2

]
≤ T

m
2
−1E

[∫ T

0
(λN,i(t))

m
2 dt

]
.

We focus now on the term E
[∫ T

0 λN,i(t)
kdt
]
for k ≥ 1. From the definition of λN,i (1.9),

by Lipschitz continuity of F and with Jensen’s inequality

E

[∫ T

0
λN,i(t)

kdt

]
≤ 2k−1TF (0, ηt(xi))

k

+ 2k−1‖F‖kLE



∫ T

0


 1

N

N∑

j=1

∫ t−

0
wije

−α(t−s)dZN,j(s)




k

dt


 .

Let Si :=
∑N

j=1

wij

N
. By (A.2), we have that P-almost surely, lim supN→∞ sup1≤i≤N Si ≤ 2.

We obtain with discrete Jensen’s inequality that for any t ≥ 0

 1

N

N∑

j=1

∫ t−

0
wije

−α(t−s)dZN,j(s)




k

≤ Sk
i




N∑

j=1

wij

NSi
ZN,j(t)




k

≤ Sk−1
i

N∑

j=1

wij

N
ZN,j(t)

k.
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We obtain then

E

[∫ T

0
λN,i(t)

kdt

]
≤ CT,F,η0,k + Ck,F

N∑

j=1

wij

N
E

[∫ T

0
ZN,j(t)

kdt

]
,

thus, going back to (5.2), with C = CT,F,η0,m

E


 1

N

N∑

j=1

ZN,j(T )
m


 ≤ C

N

N∑

i=1

(
E

[∫ T

0
λN,i(t)

m
2 dt

]
+ CE

[∫ T

0
λN,i(t)

mdt

])

≤ C


1 +

N∑

i,j=1

wij

N2
E

[∫ T

0
ZN,j(t)

m
2 dt

]
+

N∑

i,j=1

wij

N2
E

[∫ T

0
ZN,j(t)

mdt

]
 .

With (A.2), it gives that, P-almost surely for N large enough

E


 1

N

N∑

j=1

ZN,j(T )
m


 ≤ C


1 +

∫ T

0
E


 1

N

N∑

j=1

ZN,j(t)
m
2


 dt+

∫ T

0
E


 1

N

N∑

j=1

ZN,j(t)
m


 dt


 .

As for any t ≥ 0

E

[
1

N

N∑

i=1

ZN,i(t)

]
=

1

N

N∑

i=1

E

[∫ t

0
λN,i(s)ds

]
≤ CT,η0,F+CT,η0,F

∫ t

0
E


 1

N

N∑

j=1

ZN,j(s)


 ds,

Grönwall’s lemma gives that sup
t≤T

E

[
1

N

N∑

i=1

ZN,i(t)

]
< ∞ (independently of N) and sim-

ilarly an immediate iteration gives that for any k ≥ 0, sup
N≥1

E


 1

N

N∑

j=1

ZN,j(T )
2k


 < ∞

which concludes the proof. �

5.2. Proof of Proposition 4.2.

Proof. We divide the proof in different steps. Fix m ≥ 1. We prove Proposition 4.2 for
the choice t0 = 0, but it remains the same for a general initial time t0 ≥ 0.
Step 1. The functional φ : L2(I) → R given by φ(v) = ‖v‖2m2 is of class C2 (recall that
ζN ∈ L2(I)) so that by Itô formula on the expression (5.1) we obtain

φ (ζN (t)) =

∫ t

0
φ′ (ζN (s))L (ζN (s)) ds +

N∑

j=1

∫ t

0

∫ ∞

0
φ′ (ζN (s−))χj(s, z)π̃j(ds, dz)

+

N∑

j=1

∫ t

0

∫ ∞

0

[
φ (ζN (s−) + χj(s, z))− φ (ζN (s−))− φ′ (ζN (s−))χj(s, z)

]
πj(ds, dz)

:= I0(t) + I1(t) + I2(t). (5.3)

We have then for any v, h, k ∈ L2(I), φ′(v)h = 2m‖v‖2m−2
2 〈v, h〉 ∈ R and φ′′(v)(h, k) =

2m(2m− 1)‖v‖2m−4
2 〈v, k〉〈v, h〉 + 2m‖v‖2m−2〈h, k〉.

Step 2. We have I0(t) =
∫ t
0 2m‖ζN (s)‖2m−2

2 〈ζN (s),L(ζN (s))〉ds. From Proposition 2.11,
L generates a contraction semi-group hence for any s ≥ 0, 〈ζN (s),L(ζN (s))〉 ≤ 0 by
Lumer-Philipps Theorem (see Section 1.4 of [41]). Then for any t ≥ 0 we have I0(t) ≤ 0.
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Step 3. About I1 in (5.3), with αj(s, z) := 2m‖ζN (s−)‖2m−2
2 〈ζN (s−), χj(s, z)〉 ∈ R,

I1(t) =

N∑

j=1

∫ t

0

∫ ∞

0
αj(s, z)π̃j(ds, dz).

I1 is then a real martingale. Using that the (πj)1≤j≤N are independent so that there are
almost surely no simultaneous jumps and hence [π̃j, π̃j′ ] = 0 if j 6= j′,

[I1]t =
N∑

j=1

∫ t

0

∫ ∞

0
αj(s, z)

2πj(ds, dz)

=

N∑

j=1

∫ t

0

∫ ∞

0

(
2m‖ζN (s−)‖2m−2

2 〈ζN (s−), χj(s, z)〉
)2

πj(ds, dz)

≤ 4m2 sup
0≤s≤t

(
‖ζN (s)‖4m−2

2

) N∑

j=1

∫ t

0

∫ ∞

0
‖χj(s, z)‖22πj(ds, dz).

Then, by Burkholder-Davis-Gundy inequality, for some C > 0,

E

[
sup
s≤t

|I1(s)|
]
≤ C2mE


 sup
0≤s≤t

(
‖ζN (s)‖2m−1

2

)



N∑

j=1

∫ t

0

∫ ∞

0
‖χj(s, z)‖22πj(ds, dz)




1
2


 .

Applying Hölder inequality with parameter 2m−1
2m + 1

2m = 1 for the random vari-

ables sup0≤s≤t

(
‖ζN (s)‖2m−1

2

)
and

(∑N
j=1

∫ t
0

∫∞
0 ‖χj(s, z)‖22πj(ds, dz)

) 1
2
, we obtain that

E
[√

[I1]t

]
is upper bounded by

2m

(
E

[
sup
0≤s≤t

(
‖ζN (s)‖2m2

)])2m−1
2m


E






N∑

j=1

∫ t

0

∫ ∞

0
‖χj(s, z)‖22πj(ds, dz)




m




1
2m

.

Let ε > 0 to be chosen later. From Young’s inequality, for any a, b ≥ 0, we can write

ab =
(
ε

2m−1
2m a

)(
ε

−(2m−1)
2m b

)
≤ 2m−1

2m

(
ε

2m−1
2m a

) 2m
2m−1

+ 1
2m

(
ε

−(2m−1)
2m b

)2m
= 2m−1

2m εa
2m

2m−1 +

1
2mε−(2m−1)b2m. Then this gives for the choice a =

(
E
[
sup0≤s≤t

(
‖ζN (s)‖2m2

)]) 2m−1
2m and

b =
(
E
[(∑N

j=1

∫ t
0

∫∞
0 ‖χj(s, z)‖22πj(ds, dz)

)m]) 1
2m

:

E
[√

[I1]t

]
≤ (2m− 1)εE

[
sup
0≤s≤t

(
‖ζN (s)‖2m2

)]

+ ε−(2m−1)E






N∑

j=1

∫ t

0

∫ ∞

0
‖χj(s, z)‖22πj(ds, dz)




m
 .
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We have then shown that, for the constant C given by Burkholder-Davis-Gundy Inequality,

E

[
sup
s≤T

|I1(s)|
]
≤ C(2m− 1)εE

[
sup

0≤s≤T

(
‖ζN (s)‖2m2

)
]

+ Cε−(2m−1)E






N∑

j=1

∫ T

0

∫ ∞

0
‖χj(s, z)‖22πj(ds, dz)




m
 . (5.4)

Step 4. Let us focus now on I2 in (5.3):

I2(t) =

N∑

j=1

∫ t

0

∫ ∞

0

[
φ (ζN (s−) + χj(s, z)) − φ (ζN (s−))− φ′ (ζN (s−))χj(s, z)

]
πj(ds, dz).

For any jump (s, z) of the Poisson measure πj, from Taylor’s Lagrange formula there exists
τs ∈ (0, 1) such that

φ (ζN (s−) + χj(s, z)) − φ (ζN (s−))− φ′ (ζN (s−))χj(s, z)

=
1

2
φ′′ (ζN (s−) + τsχj(s, z)) (χj(s, z), χj(s, z)) .

As φ′′(v)(h, k) = 2m(2m−1)‖v‖2m−4
2 〈v, k〉〈v, h〉+2m‖v‖2m−2〈h, k〉 for any v, h, k ∈ L2(I),

one has with Cauchy–Schwarz inequality that

φ′′ (ζN (s−) + τsχj(s, z)) (χj(s, z))
2 ≤ 4m2‖ζN (s−) + τsχj(s, z)‖2m−2

2 ‖χj(s, z)‖22.

But as ‖x+ τy‖22 ≤ max
(
‖x‖22, ‖x+ y‖22

)
for any x, y ∈ L2(I) and τ ∈ (0, 1), we have here

‖ζN (s−) + τsχj(s, z)‖2m−2
2 ≤ max

(
‖ζN (s−)‖2m−2

2 , ‖ζN (s−) + χj(s, z)‖2m−2
2

)
,

and as ‖ζN (s−)‖2m−2
2 ≤ sups≤t ‖ζN (s)‖2m−2

2 and ‖ζN (s−)+χj(s, z)‖2m−2
2 = ‖ζN (s)‖2m−2

2 ≤
sups≤t ‖ζN (s)‖2m−2

2 , thus

E

[
sup
s≤t

|I2(s)|
]
≤ 2m2E


sup

s≤t
‖ζN (s)‖2m−2

2

N∑

j=1

∫ t

0

∫ ∞

0
‖χj(s, z)‖22πj(ds, dz)


 .

We proceed now similarly as for I1. From Hölder inequality, as 2m−2
2m + 1

m = 1 we know that

for any A,B random non-negative variables, E [AB] ≤
(
E
[
A

2m
2m−2

]) 2m−2
2m

(E [Bm])
1
m . It

leads for the choice A = sup0≤s≤t

(
‖ζN (s)‖2m−2

2

)
andB =

∑N
j=1

∫ t
0

∫∞
0 ‖χj(s, z)‖22πj(ds, dz)

to E
[
sups≤t |I2(s)|

]
is upper bounded by

2m2

(
E

[
sup
0≤s≤t

(
‖ζN (s)‖2m2

)]) 2m−2
2m


E






N∑

j=1

∫ t

0

∫ ∞

0
‖χj(s, z)‖22πj(ds, dz)




m




1
m

.

With the same ε introduced for I1, from Young’s inequality, for any a, b ≥ 0, we can write

ab =
(
ε

2m−2
2m a

)(
ε

−(2m−2)
2m b

)
≤ 2m−2

2m

(
ε

2m−2
2m a

) 2m
2m−2

+ 1
m

(
ε

−(2m−2)
2m b

)m
= 2m−2

2m εa
2m

2m−2 +



LONG-TERM STABILITY OF INTERACTING HAWKES PROCESSES ON RANDOM GRAPHS 27

1
mε−(2m−2)bm. For the choice

a =

(
E

[
sup
0≤s≤t

(
‖ζN (s)‖2m2

)]) 2m−2
2m

and

b =


E






N∑

j=1

∫ t

0

∫ ∞

0
‖χj(s, z)‖22πj(ds, dz)




m




1
m

,

it gives that E
[
sups≤t |I2(s)|

]
is upper bounded by

m(2m− 2)εE

[
sup
0≤s≤t

(
‖ζN (s)‖2m2

)]
+ 2mε−(2m−2)E






N∑

j=1

∫ t

0

∫ ∞

0
‖χj(s, z)‖22πj(ds, dz)




m
 .

(5.5)

Taking the expectation in (5.3) and combining (5.4) and (5.5), we obtain that

E

[
sup
s≤T

‖ζN (s)‖2m2

]
≤ ε (C(2m− 1) +m(2m− 2))E

[
sup

0≤s≤T

(
‖ζN (s)‖2m2

)
]

+
(
Cε−(2m−1) + 2mε−(2m−2)

)
E






N∑

j=1

∫ T

0

∫ ∞

0
‖χj(s, z)‖22πj(ds, dz)




m
 . (5.6)

Step 5. We can now fix ε such that ε (C(2m− 1) +m(2m− 2)) ≤ 1
2 so that (5.6) leads to

E

[
sup
s≤T

‖ζN (s)‖2m2

]
≤ 2CE






N∑

j=1

∫ T

0

∫ ∞

0
‖χj(s, z)‖22πj(ds, dz)




m
 , (5.7)

where C > 0 depends only on m.

Step 6. Let AN := E
[(∑N

j=1

∫ T
0

∫∞
0 ‖χj(s, z)‖22πj(ds, dz)

)m]
. We have

‖χj(s, z)‖22 =

∫

I

(
N∑

i=1

1BN,i
(x)

wij

N
1z≤λN,j(s)

)2

dx = 1z≤λN,j(s)

N∑

i=1

ξij
N3ρ2N

,

which leads to, with the definition of ZN,j in (1.8)

AN = E






N∑

i,j=1

∫ T

0

∫ ∞

0
1z≤λN,j(s)

ξij
N3ρ2N

πj(ds, dz)




m


≤
(

1

NρN

)m

E






N∑

i,j=1

ξij
N2ρN

ZN,j(T )




m
 .
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With (A.2), Jensen’s discrete inequality and (5.7), it leads to

AN ≤
(

1

NρN

)m

E






N∑

j=1

1

N

(
sup
j

N∑

i=1

ξij
NρN

)
ZN,j(T )




m


≤ C

(NρN )m
E


 1

N

N∑

j=1

ZN,j(T )
m


 ,

hence the result with Proposition 5.1. �

6. Proofs - Drift term

In this section, we prove Proposition 4.3 concerning the control of the drift term per-
turbation φN (t0, t) defined in (4.3).

6.1. Notation. We introduce the following constants

Θt,i,1 :=
1

NρN

N∑

j=1

(
ξ
(N)
ij − ρNW (xi, xj)

)
F (XN,j(t−), ηt(xj)), (6.1)

Θt,i,2 :=
1

N

N∑

j=1

W (xi, xj) (F (XN,j(t−), ηt(xj))− F (XN,j(t), ηt(xj))) , (6.2)

Θt,i,3 :=
1

N

N∑

j=1

W (xi, xj)F (XN,j(t), ηt(xj))−
∫

I
W (xi, y)F (XN (t, y), ηt(y))dy, (6.3)

and the auxiliary function in L2(I)

Θt,i,4(x) :=

∫

I
(W (xi, y)−W (x, y))F (XN (t, y), ηt(y))dy. (6.4)

From the expression of rN in (4.4), we have then

rN (t) =

N∑

i=1

(
4∑

k=1

Θt,i,k

)
1BN,i

+ TW (gN (t)) , (6.5)

and we can divide φN defined in (4.3) in several terms φN (t) =
4∑

k=0

φN,k(t) with

φN,0(t) :=

∫ t

t0

e(t−s)LTW (gN (s)) ds, (6.6)

φN,k(t) :=

∫ t

t0

e(t−s)L
N∑

i=1

1

N
Θs,i,k1BN,i

ds for k ∈ J1, 4K, . (6.7)

6.2. Preliminary results.

Lemma 6.1. Denoting by ỸN (s)(v) := YN (s)

(⌈Nv⌉
N

)
, we have

sup
s≥0

‖ỸN (s)− YN (s)‖2 −−−−→
N→∞

0. (6.8)
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Proof. A direct computation gives, for any s ≥ 0,

‖ỸN (s)− YN (s)‖22 =
∑

j

∫

BN,j

(XN,j(s)−X∞(xj)−XN (s)(y) +X∞(y))2 dy.

By definition of XN (s) in (1.11), XN = XN,j on BN,j hence

‖ỸN (s)− YN (s)‖22 =
∑

j

∫

BN,j

(X∞(y)−X∞(xj))
2 dy.

Then (6.8) is a straightforward consequence of the uniform continuity of X∞ on the com-
pact I (see Theorem 2.8). It still holds under the hypotheses of Section 2.3.4 by decom-
posing the sum on each interval Ck. �

We will often use

1

N

N∑

j=1

|YN (s)(xj)|2 = ‖ỸN (s)‖22 ≤
1

2

(
1 + ‖ỸN (s)‖42

)
≤ 1

2

(
2 + ‖YN (s)‖42

)
, (6.9)

the last inequality being true for N large enough (independently of s) using Lemma 6.1.

Lemma 6.2. Under Hypothesis 2.1,

RW
N,k −−−−→

N→∞
0, k ∈ {1, 2}, SW

N −−−−→
N→∞

0, (6.10)

where RW
N,k and SW

N are respectively defined in (2.24) and (2.25).

Proof. Fix ε > 0. As W is uniformly continuous on I, there exists η > 0 such that
|W (x, y) −W (x, z)| ≤ ǫ for any (x, y, z) ∈ I3 with |y − z| ≤ η. Then, for N large enough
(such that 1

N ≤ η, we have directly that RW
N,1 ≤ ǫ and RW

N,2 ≤ ǫ hence the result. We can

do the same for SW
N . �

Lemma 6.3. Under Hypothesis 2.1, for any t > t0 ≥ 0,

‖φN,0(t)‖2 ≤ CF,W

∫ t

t0

e−γ(t−s)
(
‖YN (s)‖22 + δs + δ2s

)
ds. (6.11)

Proof of Lemma 6.3. By Proposition 2.11 we have ‖φN,0(t)‖2 ≤
∫ t
t0
e−γ(t−s) ‖TW gN (s)‖2 ds.

As for any x ∈ I, |TW gN (s)(x)| ≤
∫
I W (x, y) |gN (s)(y)| dy, and as

|gN (s)(y)| ≤
∥∥∂2

XF
∥∥
∞
YN (t)(y)2 +

∥∥∂2
ηF
∥∥
∞
|ηt(y)− η∞(y)|2

+ 2
∥∥∂2

X,ηF
∥∥
∞
|YN (t)(y)| |ηt(y)− η∞(y)|+ ‖∂ηF‖∞ |ηt(y)− η∞(y)| ,

with Hypothesis 2.1 it gives

‖TW gN (s)‖22 =
∫

I

(∫

I
W (x, y)gN (s)(y)dy

)2

dx

≤ CF

∫

I

(∫

I
W (x, y)

(
YN (s)(y)2 + δ2s + YN (s)(y)δs + δs

)
dy

)2

dx

≤ CF,W

(
‖YN (s)‖42 + ‖YN (s)‖22δ2s + δ2s + δ4s

)

≤ CF,W

(
3

2
‖YN (s)‖42 +

3

2
δ2s + δ4s

)
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as W is bounded. We obtain then, as
√
a+ b ≤ √

a+
√
b,

‖φN,0(t)‖2 ≤ CF,W

∫ t

t0

e−γ(t−s)
(
‖YN (s)‖22 + ‖YN (s)‖2δs + δs + δ2s

)
ds.

Then (6.11) follows as ‖YN (s)‖2 ≤
1

2

(
1 + ‖YN (s)‖22

)
and sups δs < ∞. �

Lemma 6.4. Under Hypotheses 2.1 and 2.6, P-almost surely for N large enough and for
any t > t0 ≥ 0,

‖φN,1(t)‖2 ≤ CF

∫ t

t0

e−(t−s)γ ‖YN (s)‖22 ds +GN,1, (6.12)

where GN,1 = GN,1(ξ) is explicit in N and tends to 0 as N → ∞. Moreover, if we suppose
F bounded, we have a better bound

sup
t>0

‖φN,1(t)‖2 ≤
CF√
Nρ2N

. (6.13)

Proof of Lemma 6.4. Proposition 2.11 gives that

‖φN,1(t)‖2 ≤ K

∫ t

t0

e−(t−s)γ‖γN (s)‖2ds (6.14)

with

γN (s) :=

N∑

i=1

Θi,s,11BN,i
=

N∑

i,j=1

1

NρN
ξijF (XN,j(s−), ηs(xj))1BN,i

. (6.15)

where we have used the notation

ξij = ξ
(N)
ij −WN (xi, xj), (6.16)

Forgetting about the term F (XN,j(s−), ηs(xj)) in (6.15), γN is essentially an empirical

mean of the independent centered variables ξij and thus should be small as N → ∞. One
difficulty here is that concentration bounds (e.g. Bernstein inequality) for weighted sums
such as

∑
j ξijui,j (for some deterministic fixed weight ui,j) are not directly applicable,

as ui,j = F (XN,j(s−), ηs(xj))1BN,i
depends in a highly nontrivial way on the variables

ξ
(N)
i,j themselves. A strategy would be to use Grothendieck inequality (see Theorem A.1).

We refer here to [20, 22] where the use of such Grothendieck inequality (and extensions)
has been implemented in a similar context of interacting diffusions on random graphs.
However here, a supplementary difficulty lies in the fact that F need not be bounded
(recall that a particular example considered here concerns the linear case where F (x, η) =
x + µ). Hence the application of Grothendieck inequality is not straightforward when F
is unbounded. For this reason, we give below two different controls on γN : a general one,
without assuming that F is bounded and a second (sharper) one, when F is bounded (using
Grothendieck inequality). In the first case, we get around the difficulty of unboundedness
of F by introducing F (X∞(xj), η∞(xj)) which is bounded, since X∞ is.
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First begin with the general control on γN : we can write

γN (s) =

N∑

i,j=1

1

NρN
ξij (F (XN,j(s−), ηs(xj))− F (X∞(xj), η∞(xj))) 1BN,i

+
N∑

i,j=1

1

NρN
ξijF (X∞(xj), η∞(xj))1BN,i

=: γN,1(s) + γN,2. (6.17)

Denoting by ∆Fj := F (XN,j(s−), ηs(xj))−F (X∞(xj), η∞(xj)), we have, as 〈1BN,i
,1BN,i′

〉 =
1i=i′

N
and with Sjj′ :=

1

N

N∑

i=1

ξij ξij′, ‖γN,1(s)‖22 =
1

N2ρ2N

N∑

j,j′=1

∆Fj∆Fj′
1

N
Sjj′. Define the

following quantity Smax
N := sup1≤j 6=j′≤N

∣∣Sjj′
∣∣. The purpose of Lemma A.5 is exactly to

control Smax
N , see in particular (A.3). We have

‖γN,1(s)‖22 =


 1

N2ρ2N

N∑

j 6=j′=1

∆Fj∆Fj′
Sjj′

Smax
N


Smax

N +
1

N3ρ2N

N∑

i,j=1

∆F 2
j ξij

2

≤ Smax
N


 1

Nρ2N

N∑

j=1

|∆Fj |2

+

1

N2ρ2N

N∑

j=1

∆F 2
j .

As |∆Fj‖ ≤ ‖F‖L (|YN (s−)(xj)|+ δs), we obtain as s 7→ δs is bounded

‖γN,1(s)‖22 ≤ CF

(∥∥∥ỸN (s−)
∥∥∥
2

2
+ 1

)(
Smax
N

ρ2N
+

1

Nρ2N

)
,

hence using (6.9) and the fact that ‖YN (s−)‖2 ≤ ‖YN (s)‖2 + C
NρN

,

‖γN,1(s)‖22 ≤ CF

(
‖YN (s)‖42 + 1

)(Smax
N

ρ2N
+

1

Nρ2N

)
. (6.18)

For the second term of (6.17), we have

‖γN,2‖22 =
1

N

N∑

i=1


 1

NρN

N∑

j=1

ξijF (X∞(xj), η∞(xj))




2

=
1

N3ρ2N

N∑

i=1

N∑

j,j′=1

ξij ξij′F (X∞(xj), η(xj))F (X∞(xj′), η∞(xj′)).

Let αi,j,j′ :=
F (X∞(xj), η∞(xj))F (X∞(xj′), η∞(xj′))

‖F (X∞, η∞)‖2∞
∈ [0, 1], Rk :=

k∑

i,j,j′=1
j 6=j′

αi,j,j′ξij ξij′ ,

and Fk = σ (ξij, 1 ≤ i, j ≤ k). We have then ‖γN,2‖22 =
CF,X∞

N3ρ2N

N∑

i,j=1

αi,j,jξij
2
+
CF,X∞

N3ρ2N
RN ≤

CF,X∞

Nρ2N
+

CF,X∞

N3ρ2N
RN . We show next that (Rk)1≤k≤N is a (Fk)-martingale. Let ∆Rk =
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Rk+1 −Rk. For any k ≥ 1 (note that R1 = 0), we have

∆Rk = Rk+1 −Rk =

k∑

j,j′=1
j 6=j′

αk+1,j,j′ξk+1,j ξk+1,j′ +
∑

1≤i≤k+1
1≤j≤k

(
αi,j,k+1 + αi,k+1,j′

)
ξi,k+1 ξij,

and thus E [∆Rk|Fk] = 0 as E
[
ξij ξij′ |Fk

]
= 0 if j 6= j′ and at least one of the indexes

i, j, j′ is equal to k+1 by independence of the family of random variables (ξij)i,j. Moreover,

as each |ξi,j| ≤ 1 and |αi,j,k| ≤ 1, it gives |∆Rk| ≤ 3k2 + k. Theorem A.2 gives then that

P

(∣∣∣∣
CF,X∞

N3ρ2N
RN

∣∣∣∣ ≥ x

)
= P

(
|RN | ≥ xN3ρ2N

CF,X∞

)

≤ 2 exp


−

(
xN3ρ2N
CF,X∞

)2

2
∑N

k=1 (3k
2 + k)2




= 2exp

(
− x2N6ρ4N
C2
F,X∞

P (N)

)
,

with P (N) = 2N(N + 1)

(
9

5

(
N +

1

2

)(
N2 +N − 1

3

)
+

3N(N + 1)

2
+

2N + 1

6

)
∼N→∞

18

5
N5. For the choice x2 =

C2
F,X∞

P (N)

N6−2τρ4N
with τ in (2.6), (x2 ∝ 1

N1−2τρ4N
) it gives

P



∣∣∣∣
CF,X∞

N3
RN

∣∣∣∣ ≥
√

C2
F,X∞

P (N)

N6−2τρ4N


 ≤ 2 exp

(
−N2τ

)
,

which is summable hence by Borel-Cantelli Lemma, there exists O ∈ F such that P(O) = 1

and on O, there exists Ñ < ∞ such that if N ≥ Ñ ,

∣∣∣∣
CF,X∞

N3
RN

∣∣∣∣ ≤
√

C2
F,X∞

P (N)

N6−2τρ4N
∝

1

N1/2−τρ2N
, hence P-a.s. for N large enough

‖γN,2‖22 ≤ C

(
1

Nρ2N
+

1

N1−2τρ4N

)
(6.19)

Coming back to (6.17), combining (6.18) and (6.19) and a control of Smax
N from Lemma

A.5, we have P-a.s. for N large enough

‖γN (s)‖22 ≤ CF

(
‖YN (s)‖42 + 1

)( 1

N1/2−τρ2N
+

1

Nρ2N

)
+ CF

(
1

Nρ2N
+

1

N1−2τρ4N

)
,

hence taking the square root and using (6.14),

‖φN,1(t)‖2 ≤ CF

∫ t

t0

e−(t−s)γ ‖YN (s)‖22 ds +GN,1,

where GN,1 = CF

(
1

Nρ2N
+

1

N1−2τρ4N
+

1

N1/2−τρ2N

)
→ 0 under Hypothesis 2.6.
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Let us now turn to the sharper control on γN defined in (6.15) when F is bounded.
Coming back to (6.17), we have

‖γN (s)‖22 =
∫ 


N∑

i,j=1

1

NρN
ξijF (XN,j(s−), ηs(xj)) 1BN,i

(x)




2

dx

=
1

N

N∑

i=1




N∑

j=1

1

NρN
ξijF (XN,j(s−), ηs(xj))




2

=
1

N3ρ2N

N∑

i,j,k=1

ξij ξikF (XN,j(s−), ηs(xj))F (XN,k(s−), ηs(xk))

=

(‖F‖∞
NρN

)2 1

N

N∑

j,k=1

αjkFjFk,

with αjk :=
∑N

i=1 ξij ξik and Fj :=
F (XN,j(s−), ηs(xj))

‖F‖∞
. Grothendieck inequality (see

Theorem A.1) gives then that there exists K > 0 such that

‖γN (s)‖22 ≤ K
1

N

(‖F‖∞
NρN

)2

sup
sj ,tk=±1

∑

j,k

αjksjtk

≤ CF

N3ρ2N
sup

sj ,tk=±1

N∑

i,j,k=1

ξij ξiksjtk.

Fix some vectors of signs s = (si)1≤i≤N and t = (tj)1≤j≤N . Let A =
(
ξij
)
1≤i,j≤N

, then
N∑

i,j,k=1

ξij ξiksjtk = 〈t, A∗As〉 where 〈, 〉 denotes the scalar product in R
N and A∗ the

transpose of A. As for any sign vector t, ‖t‖2 =
∑N

k=1 t
2
k = N , and ‖A∗A‖ = ‖A‖2op, we

obtain as |〈t, A∗As〉| ≤ ‖t‖‖A∗As‖ ≤ N‖A‖2op:

‖γN (s)‖22 ≤
CF

N3ρ2N
N‖A‖2op =

CF

N2ρ2N
‖A‖2op.

From Theorem A.3, there exist Ca and Cb positive constants such that for any x ≥ Ca,

P

(
‖A‖op > x

√
N
)
≤ Ca exp (−CbxN) .

We apply it for x = Ca, hence, by Borel-Cantelli Lemma as exp(−CN) is summable, there

exists Õ ∈ F such that P(Õ) = 1 and on Õ, there exists Ñ < ∞ such that if N ≥ Ñ ,

‖A‖op ≤ Ca

√
N . We obtain then that

‖γN (s)‖22 ≤ CF

Nρ2N

P-a.s. for N large enough, which concludes the proof in the bounded case with (6.14) as
∫ t
t0
e−(t−s)γds ≤ 1

γ
. �
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Lemma 6.5. Under Hypothesis 2.1, there exists CF > 0 such that for any t > t0 ≥ 0,

‖φN,2(t)‖2 ≤
CF

NρN
.

Proof of Lemma 6.5. Recall the definition of φN,2(t) in (6.7) and Θt,i,2 in (6.2), it directly
comes from the Lipschitz continuity of F and the fact that ZN,1, · · · , ZN,N do not jump
simultaneously. �

Lemma 6.6. Under Hypothesis 2.1, for any t > t0 ≥ 0,

‖φN,3(t)‖2 ≤ CF,X∞,η,W

∫ t

t0

e−(t−s)γ
(
‖YN (s)‖22 + δs

)
ds+GN,2, (6.20)

where GN,2 is explicit in N and tends to 0 as N → ∞. Moreover, if we suppose F bounded,
we have

‖φN,3(t)‖2 ≤ C

(∫ t

t0

e−(t−s)γδsds+
√

RW
N,2 +

1

N

)
, (6.21)

with RW
N,2 defined in (2.24).

Proof of Lemma 6.6. We have, with Θs,i,3 defined in (6.3), Θs,i,3 ≤ es,i,1 + es,i,2 + es,i,3
with

es,i,1 :=

N∑

j=1

∫

BN,j

(W (xi, xj)−W (xi, y)) (F (XN (s, xj), ηs(xj))− F (X∞(xj), ηs(xj))) dy

es,i,2 :=
N∑

j=1

∫

BN,j

(W (xi, xj)−W (xi, y))F (X∞(xj), ηs(xj)) dy

es,i,3 :=

N∑

j=1

∫

BN,j

W (xi, y) (F (XN (s, xj), ηs(xj))− F (XN (s, xj), ηs(y))) dy.

We upper-bound each term. We have as F is Lipschitz continuous

es,i,1 ≤
N∑

j=1

|F (XN (s, xj), ηs(xj))− F (X∞(xj), ηs(xj))|
∣∣∣∣∣

∫

BN,j

(W (xi, xj)−W (xi, y)) dy

∣∣∣∣∣

≤
N∑

j=1

‖F‖L |YN (s)(xj)|
∣∣∣∣∣

∫

BN,j

(W (xi, xj)−W (xi, y)) dy

∣∣∣∣∣ ,

which is upper-bounded by

CF




N∑

j=1

∣∣∣∣∣

∫

BN,j

(W (xi, xj)−W (xi, y)) dy

∣∣∣∣∣




1
2



N∑

j=1

|YN (s)(xj)|2
∣∣∣∣∣

∫

BN,j

(W (xi, xj)−W (xi, y)) dy

∣∣∣∣∣




1
2
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by discrete Jensen’s inequality. We have N
∣∣∣
∫
BN,j

(W (xi, xj)−W (xi, y)) dy
∣∣∣ ≤ C as W is

bounded, hence

es,i,1 ≤ CF,W




N∑

j=1

∣∣∣∣∣

∫

BN,j

(W (xi, xj)−W (xi, y)) dy

∣∣∣∣∣




1
2

 1

N

N∑

j=1

|YN (s)(xj)|2



1
2

≤ CF




N∑

j=1

∣∣∣∣∣

∫

BN,j

(W (xi, xj)−W (xi, y)) dy

∣∣∣∣∣




1
2 ∥∥∥ỸN (s)

∥∥∥
2
.

We have then

1

N

N∑

i=1

e2s,i,1 ≤
CF

N

N∑

i=1




N∑

j=1

∣∣∣∣∣

∫

BN,j

(W (xi, xj)−W (xi, y)) dy

∣∣∣∣∣



∥∥∥ỸN (s)

∥∥∥
2

2

≤ CFR
W
N,1

∥∥∥ỸN (s)
∥∥∥
2

2
,

where RW
N,1 is defined in (2.24).

For the second term, we have as x 7→ sups F (X∞(x), ηs(x)) is bounded

1

N

N∑

i=1

e2s,i,2 =
1

N

N∑

i=1




N∑

j=1

∫

BN,j

(W (xi, xj)−W (xi, y))F (X∞(xj), ηs(xj)) dy




2

≤ CF

N

N∑

i=1

N∑

j=1

∫

BN,j

|W (xi, xj)−W (xi, y)|2 dy ≤ CFR
W
N,2,

where RW
N,2 is defined in (2.24).

For the third term, as F is Lipschitz continuous

es,i,3 ≤
N∑

j=1

∫

BN,j

W (xi, y)‖F‖L|ηs(xj)− ηs(y)|dy

≤
N∑

j=1

∫

BN,j

W (xi, y)‖F‖L (|ηs(xj)− η∞(xj)|+ |η∞(xj)− η∞(y)|) dy

≤ CF,X,W

(
δs +

1

N

)
.

We obtain then with (6.9)

1

N

N∑

i=1

Θ2
s,i,2 ≤

3

N

N∑

i=1

(
e2s,i,1 + e2s,i,2 + e2s,i,3

)

≤ CF,X∞,X,W

(
RW

N,1

(
1 + ‖YN (s)‖42

)
+RW

N,2 + δ2s +
1

N2

)
.
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With (6.7) and Proposition 2.11, ‖φN,3(t)‖2 ≤
∫ t
t0
e−(t−s)γ‖∑N

i=1 Θs,i,31BN,i
‖2ds, and as

‖∑N
i=1Θs,i,31BN,i

‖22 =
1

N

∑N
i=1Θ

2
s,i,3, the result follows with

GN,2 =
√

RW
N,1 +RW

N,2 +
1

N
,

and Lemma 6.2.
When F is bounded, similarly we show that

1

N

N∑

i=1

Θ2
s,i,3 ≤ CF,X∞,η,W

(
RW

N,2 + δ2s +
1

N2

)
,

hence the result. �

Lemma 6.7. Under Hypothesis 2.1, for any t > t0 ≥ 0,

‖φN,4(t)‖2 ≤ CF,X∞,W

∫ t

t0

e−(t−s)γ
(
‖YN (s)‖22 + δs

)
ds+GN,3, (6.22)

where GN,3 is explicit in N and tends to 0 as N → ∞. Moreover, if we suppose F bounded,
we have

sup
t≥0

‖φN,4(t)‖2 ≤
√

SW
N , (6.23)

where SW
N is defined in (2.25).

Proof of Lemma 6.7. We have

‖
N∑

i=1

Θs,i,41BN,i
‖22 =

∫

I

(
N∑

i=1

Θs,i,4(x)1BN,i
(x)

)2

dx

=

N∑

i=1

∫

BN,i

(∫

I
(W (xi, y)−W (x, y))F (XN (s, y), ηs(y)) dy

)2

dx

≤
N∑

i=1

∫

BN,i

(∫

I
(W (xi, y)−W (x, y))2 dy

)(∫

I
(F (XN (s, y), ηs(y)))

2 dy

)
dx,

with Cauchy Schwarz’s inequality. We can recognize SW
N defined in (2.25), and we have

that, as F is Lipschitz continuous and y 7→ F (X∞(y), η∞(y)) is bounded,
∫

I
F (XN (s, y), ηs(y))

2 dy

≤
∫

I
(F (XN (s, y), ηs(y))− F (X∞(y), ηs(y)))

2 dy +

∫

I
F (X∞(y), ηs(y))

2 dy

≤ ‖F‖2L
∫

I
YN (s)(y)2dy + ‖F (X∞, η∞)‖2∞ ≤ CF,W

(
‖YN (s)‖22 + 1

)
≤ CF,W

(
‖YN (s)‖42 + 1

)
.

As before, (6.7) and Proposition 2.11 give that ‖φN,4(t)‖2 ≤
∫ t
t0
e−(t−s)γ‖∑N

i=1Θs,i,41BN,i
‖2ds

and ‖∑N
i=1 Θs,i,41BN,i

‖22 ≤ CF,WSW
N

(
‖YN (s)‖42 + 1

)
hence the result withGN,3 = CF,W

√
RN,3

and Lemma 6.2. When F is bounded, we directly have ‖∑N
i=1Θs,i,41BN,i

‖22 ≤ SW
N hence

(6.23) as
∫ t
t0
e−(t−s)γds ≤ 1

γ
. �
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6.3. Proof of Proposition 4.3. Proposition 4.3 is then a direct consequence of (6.6)
and (6.7), of the controls given by Lemmas 6.3, 6.4, 6.5, 6.6 and 6.7, with GN = GN,1 +
GN,2 +GN,3, and of Lemma 6.2 to have GN → 0.

7. About the finite time behavior

In this section, we prove Proposition 2.12.

7.1. Main technical results. In the following, we denote by ŶN (t) := XN (t)−Xt.

Proof of Proposition 2.12. Let t ≤ T . Recall the definition of XN (t) in (1.11) and Xt in
(1.12). Proceeding exactly as in the proof of Proposition 4.1, and recalling the definition
of MN (t) in (4.7), we have

dŶN (t) = −αŶN (t)dt+ dMN (t)+

N∑

i,j=1

1BN,i

wij

N
F (XN,j(t−), ηt(xj)) dt−TWF (Xt, ηt) dt

= −αŶN (t)dt+dMN (t)+
4∑

k=1

N∑

i=1

Θt,i,k1BN,i
dt+TW (F (XN,j(t−), ηt(xj))− F (Xt, ηt)) dt

with the notations introduced in (6.1) - (6.4). It gives then, as ŶN (0) = 0,

ŶN (t) =

∫ t

0
e−α(t−s)r̂N (s)ds+

∫ t

0
e−α(t−s)dMN (s) =: φ̂N (t) + ζ̂N (t)

with

r̂N (t) =

4∑

k=1

N∑

i=1

Θt,i,k1BN,i
+ TW (F (XN (t−), ηt)− F (Xt, ηt)) .

Note that we obtain a similar expression as for YN in Proposition 4.1, but with e−αt instead
of the semi-group etL. We use then the two following results, similar to Propositions 4.2
and 4.3.

Proposition 7.1. Let T > 0. Under Hypothesis 2.1, there exists a constant C =
C(T, F, ‖η‖∞) > 0 such that P-almost surely for N large enough:

E

[
sup
s≤T

‖ζ̂N (s)‖2
]
≤ C√

NρN
.

Proposition 7.2. Under Hypotheses 2.1 and 2.6, for any t > 0,

‖φ̂N (t)‖2 ≤ C

(∫ t

0
e−α(t−s)‖ŶN (s)‖2ds+ ĜN

)
, (7.1)

where ĜN is an explicit quantity to be found in the proof that tends to 0 as N → ∞.

Their proofs are postponed to the following subsection. Hence we obtain
∥∥∥ŶN (t)

∥∥∥
2
≤ C

(
ĜN +

∥∥∥ζ̂N (t)
∥∥∥
2
+

∫ t

0
e−α(t−s)

∥∥∥ŶN (s)
∥∥∥
2
ds

)
,

which gives with Grönwall lemma

sup
t≤T

∥∥∥ŶN (t)
∥∥∥
2
≤ C

(
ĜN + sup

t≤T

∥∥∥ζ̂N (t)
∥∥∥
2

)
.
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With Proposition 7.1, it leads to

E

[
sup
t≤T

∥∥∥ŶN (t)
∥∥∥
2

]
≤ C

(
ĜN +

1√
NρN

)
,

hence the result (2.16) as (2.6) implies
1√
NρN

→ 0 and ĜN → 0. �

7.2. Proofs of Propositions 7.1 and 7.2.

Proof of Proposition 7.1. We do as for Proposition 4.2, and apply Îto’s formula on

ζ̂N (t) =
N∑

j=1

∫ t

0

∫ ∞

0
e−α(t−s)χj(s, z)π̃j(ds, dz).

The term I0(t) in (5.3) becomes −α
∫ t
0

∥∥∥ζ̂N (s)
∥∥∥
2
ds which is still non-positive. About I1(t)

and I2(t), the proof remains the same aside from the fact that we now consider ζ̂N instead
of ζN . �

To prove 7.2, we introduce an auxilliary quantity as in Lemma 6.1.

Lemma 7.3. Let Y N (s)(v) := ŶN (s)

(⌈Nv⌉
N

)
. Then for any T ≥ 0

sup
0≤s≤T

‖Y N (s)− ŶN (s)‖2 −−−−→
N→∞

0. (7.2)

Proof. It plays the role of ỸN (s) introduced in Lemma 6.1. Similarly to what has been
done before, we have

∥∥∥ŶN (s)− Y N (s)
∥∥∥
2

2
=

N∑

j=1

∫

BN,j

(
ŶN (s)(y)− Y N (s)(y)

)2
dy =

N∑

j=1

∫

BN,j

(Xs(xj)−Xs(y))
2 dy

which tends to 0 by uniform continuity ofX on [0, T ]×I. It still holds under the hypotheses
of Section 2.3.4 by decomposing the sum on each interval Ck. �

Proof of Proposition 7.2. We divide φ̂ as in (6.7) and study each contribution. About

φ̂N,0(t) :=
∫ t
0 e

−α(t−s)TW (F (XN (s), ηs)− F (Xs, ηs)) ds, we have

‖TW (F (XN (s), ηs)− F (Xs, ηs))‖22 ≤ CW,F

(∫

I
‖F‖L |XN (s)(y) −Xs(y)| dy

)2

≤ CW,F

∥∥∥ŶN (s)
∥∥∥
2

2
,

which gives
∥∥∥φ̂N,0(t)

∥∥∥
2
≤ CW,F

∫ t

0
e−α(t−s)

∥∥∥ŶN (s)
∥∥∥
2
ds.

About φ̂N,1(t) :=
∫ t
0 e

−α(t−s)
∑N

i=1
Θs,i,1

N 1BN,i
ds, we do as in Lemma 6.4. Instead of

inserting the terms F (X∞(xj), η∞(xj)) in (6.17) we insert the terms F (Xs(xj), ηs(xj)),
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that is

γN (s) ≤
N∑

i,j=1

1

N
κN,iξij (F (XN,j(s−), ηs(xj))− F (Xs(xj), ηs(xj))) 1BN,i

+

N∑

i,j=1

1

N
κN,iξijF (Xs(xj), ηs(xj))1BN,i

=: γ̂N,1(s) + γ̂N,2(s).

The treatment of γ̂N,1 is similar of γN,1: we make Y N (s−) appear instead of ỸN and

obtain ‖γ̂N,1(s−)‖22 ≤ CF

(∥∥∥ŶN (s)
∥∥∥
2

2
+ 1

)(
Smax
N

ρ2N
+

1

Nρ2N

)
with (7.2). About γ̂N,2, we

do as γN,2 as supt∈[0,T ],x∈I F (Xt(x), ηt(x)) < ∞ and obtain that P-almost surely if N is

large enough, ‖γ̂N,2‖22 ≤ C

(
1

Nρ2N
+

1

N1−2τρ4N

)
. We have then that, P-almost surely if

N is large enough,

∥∥∥φ̂N,1(t)
∥∥∥
2
≤ CF

∫ t

t0

e−α(t−s)
∥∥∥ŶN (s)

∥∥∥
2
ds+GN,1,

where GN,1 → 0.

About φ̂N,2(t), we proceed as Lemma 6.5 to show that ‖φ̂N,2(t)‖2 ≤ CF

NρN
. About

φ̂N,k(t) :=
∫ t
0 e

−α(t−s)
∑N

i=1
Θs,i,k

N 1BN,i
ds for k ∈ {3, 4}, we proceed similarly, doing as in

6.6 and 6.7 but instead of inserting the terms F (X∞(xj), η∞(xj)) we insert the terms
F (Xs(xj), ηs(xj)): then there is no δs terms. We obtain then

‖φ̂N,3(t)‖2 ≤ C

∫ t

t0

e−α(t−s)
∥∥∥ŶN (s)

∥∥∥
2
ds+GN,2,

and

‖φ̂N,4(t)‖2 ≤ C

∫ t

t0

e−α(t−s) ‖YN (s)‖2 ds+GN,3,

where both GN,2 and GN,3 tends to 0. Note that we can obtain better bounds when F is

bounded. By putting all the terms φ̂N,k together, we get (7.1). �

Appendix A. Auxiliary results

A.1. Concentration results.

Theorem A.1 (Grothendieck’s inequality as in [20]). Let {aij}i,j=1,··· ,n be a n × n real
matrix such that for all si, tj ∈ {−1, 1}

n∑

i,j=1

aijsitj ≤ 1.

Then, there exists a constant KR > 0, such that for every Hilbert space (H, 〈·, ·〉H ) and
for all Si and Tj in the unit ball of H

n∑

i,j=1

aij〈Si, Tj〉H ≤ KR.
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Theorem A.2 (Azuma–Hoeffding inequality). Let (Mn) be a martingale with M0 = 0.
Assume that for all 1 ≤ k ≤ n, |∆Mk| ≤ ck a.s. for some constants (ck). Then for all
x ≥ 0

P (|Mn| ≥ x) ≤ 2 exp

(
− x2

2
∑n

k=1 c
2
k

)
. (A.1)

Theorem A.3 (Upper tail estimate for iid ensembles, Corollary 2.3.5 of [44]). Suppose
that M = (mij)1≤i,j≤n, where n is a (large) integer and the mij are independent centered
random variables uniformly bounded in magnitude by 1. Then there exist absolute constants
C, c > 0 such that

P
(
‖M‖op > x

√
n
)
≤ C exp (−cxn)

for any x ≥ C.

Lemma A.4. Under Hypothesis 2.6, we have P-almost surely if N is large enough:

sup
1≤j≤N

(
N∑

i=1

ξ
(N)
ij

NρN

)
≤ 2, sup

1≤i≤N




N∑

j=1

ξ
(N)
ij

NρN


 ≤ 2. (A.2)

Proof. It is a direct consequence of Corollary 8.2 of a previous work [1], in the case wN =
ρN , κN = 1

ρN
, WN (xi, xj) = ρNW (xi, xj) with W bounded. �

Lemma A.5. Let N ≥ 1, for j 6= j′ in J1, NK, let Sjj′ :=
1

N

N∑

i=1

ξij ξij′ with ξ defined in

Definition 1.1, and Smax
N := sup1≤j 6=j′≤N

∣∣Sjj′
∣∣. Then, under Hypothesis 2.6, P-a.s.

lim sup
N→∞

Smax
N ≤ N τ− 1

2 (A.3)

where τ ∈ (0, 12) comes from Hypothesis 2.6.

Proof. When j and j′ are fixed and j 6= j′,
(
Xi := ξij ξij′

)
1≤i≤N

is a family of independent

random variables with |Xi| ≤ 1, E[Xi] = 0 and E[X2
i ] ≤ 1. Bernstein’s inequality gives

then for any t > 0

P

(∣∣∣∣∣

N∑

i=1

ξij ξij′

∣∣∣∣∣ > t

)
≤ 2 exp

(
−1

2

t2

N + t
3

)

hence for the choice t = N
1
2
+τ with τ ∈ (0, 12),

P

(∣∣∣∣∣

N∑

i=1

ξij ξij′

∣∣∣∣∣ > N
1
2
+τ

)
≤ 2 exp

(
−1

2

N2τ

1 + 1
3N

− 1
2
+τ

)
≤ 2 exp

(
−1

4
N2τ

)

as 1 + 1
3N

− 1
2
+τ ≤ 2. With an union bound

P

(
sup
j 6=j′

∣∣Sjj′
∣∣ > 1

N
1
2
−τ

)
≤ 2N2 exp

(
−1

4
N2τ

)
.

We apply then Borel Cantelli’s lemma and obtain (A.3). �
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Lemma A.6. Fix N > 1 and (Yl)l=1,...,n real valued random variables defined on a prob-

ability space (Ω,F ,P). Suppose that there exists ν > 0 such that, almost surely, for all
l = 1, . . . , n− 1, Yl ≤ 1, E [Yl+1 |Yl ] = 0 and E

[
Y 2
l+1 |Yl

]
≤ ν. Then

P
(
n−1(Y1 + . . . + Yn) ≥ x

)
≤ exp

(
−n

x2

2ν
B
(x
ν

))

for all x ≥ 0, where

B(u) := u−2 ((1 + u) log (1 + u)− u) . (A.4)

Proof. A direct application of [25, Corollary 2.4.7] gives that

P
(
n−1(Y1 + . . .+ Yn) ≥ x

)
≤ exp

(
−nH

(
x+ v

1 + v
| v

1 + v

))
,

whereH(p|q) := p log(p/q)+(1−p) log((1−p)/(1−q)) for p, q ∈ [0, 1]. Then, the inequality

H
(
x+v
1+v | v

1+v

)
≥ x2

2vB
(
x
v

)
(see [25, Exercise 2.4.21]) gives the result. �

Corollary A.7. Let (Zij)i,j be a family of independent Bernoulli variables, with E[Zij] =

mij. Let (βij)ij be a sequence such that for any i, j, βi,j ∈ (0, 1].Then, for all x ≥ 0

P


 1

N2

N∑

i,j=1

βij

(
(Zij −mij)

2 − E (Zij −mij)
2
)
≥ x


 ≤ exp

(
−N2x2

2
B(x)

)
.

Proof. Fix a bijection φN : J1, N2K → J1, NK × J1, NK. For any k ∈ J1, N2K and (i, j) =

φN (k), let Rk = βij

(
(Zij −mij)

2 − E (Zij −mij)
2
)
. As the (mij)i,j are independent, the

family of randon variables (Rk)1≤k≤N2 is also independent. As Rk ≤ 1 a.s., E [Rk+1|Rk] =

0 and E
[
R2

k+1|Rk

]
≤ 1, Lemma A.6 implies that for any x ≥ 0,

P


 1

N2

N2∑

k=1

Rk ≥ x


 ≤ exp

(
−N2x2

2
B(x)

)

where B is defined in (A.4). �

A.2. Other technical results.

Lemma A.8. Let K be a kernel from I2 → R+ such that supx∈I
∫
I K(x, y)2dy < ∞. Let

TK : g 7→ TKg :=
(
x →

∫
I K(x, y)dy

)
be the operator associated to K, that can be defined

from L2(I) → L2(I) and from L∞(I) → L∞(I). We assume that T 2
K : L2(I) → L2(I) is

compact. Then

r2(TK) = r∞(TK).

Proof. First note that for both r = r2 and r = r∞, we have, for all p ≥ 1, r(T p
K)

1
p =

(
limn→∞

∥∥T pn
K

∥∥ 1
n

) 1
p

= limn→∞

∥∥T pn
K

∥∥ 1
pn = r(TK), so that r(T p

K) = r(TK)p. Hence

r2(T
2
K) = r∞(T 2

K) gives r2(TK) = r∞(TK).
Denote by σ∞(T 2

K) and σ2(T
2
K) the corresponding spectrum of T 2

K (in L∞(I) and L2(I)
respectively). Let us prove that r2(T

2
K) = r∞(T 2

K) by proving σ∞(T 2
K) = σ2(T

2
K). To do

so, first note that T 2
K : L∞(I) → L∞(I) is compact: consider (fn)n a bounded sequence

of L∞(I). It is then also bounded in L2(I), and as TK : L2(I) → L2(I) is compact, there
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exists a subsequence
(
fφ(n)

)
such that TKfφ(n) converges in L2(I) to a certain g. Then for

any x ∈ I,

|T 2
Kfφ(n) − TKg|(x) ≤

∫

I
K(x, y)

∣∣TKfφ(n)(y)− g(y)
∣∣ dy ≤ CK‖TKfφ(n) − g‖2 −−−→

n→∞
0,

thus T 2
K : L∞(I) → L∞(I) is compact. Now we prove that σ∞(T 2

K) = σ2(T
2
K): let

µ ∈ σ2(T
2
K) \ {0}, there exists g ∈ L2(I) such that µg = T 2

Kg. As

∣∣T 2
Kg(x)

∣∣ =
∣∣∣∣
∫

I
K(x, y)

∫

I
K(y, z)g(z) ν(dz)ν(dy)

∣∣∣∣ ≤ CK‖g‖2 < ∞,

g = 1
µT

2
Kg ∈ L∞(I) and µ ∈ σ∞(T 2

K). Conversely, let µ ∈ σ∞(T 2
K) \ {0}, there exists

g ∈ L∞(I) such that µg = T 2
Kg. As L∞(I) ⊂ L2(I), µ ∈ σ2(T

2
K). Hence r2(T

2
K) = r∞(T 2

K)
and (2.2) follows. �

Lemma A.9 (Quadratic Grönwall’s lemma). Let f be a non-negative function piecewise
continuous with finite number of distinct jumps of size inferior to θ on [t0, T ], let g be
a non-negative continuous function and h ∈ L1([t0, T ]). For any t ∈ [t0, T ], assume f
satisfies

f(t) ≤ f(t0) + g(t) +

∫ t

t0

h(t− s)f(s)2ds.

Then, for δ <
1

9‖h‖1
, if θ ≤ δ

2
and if supt∈[t0,T ] g(t) ≤ δ, we have

sup
t∈[t0,T ]

f(t) ≤ f(t0) + 3δ.

Proof. Let A = {t ∈ [t0, T ], f(t) > f(t0) + 3δ}, suppose A 6= ∅. Let t∗ = inf{t ∈
[t0, T ], f(t) > f(t0)+3δ}. If there is no jump at t0, by the initial conditions t∗ > t0, and if

there is a jump, f(t+0 ) ≤ f(t0)+
δ

2
hence we also have t∗ > t0. Moreover, for all t ∈ [t0, t

∗),

f(t) ≤ f(t0)+ δ+9δ2
∫ t
t0
h(t− s)ds ≤ f(t0)+2δ. If there is a jump at t∗, it is of amplitude

θ ≤ δ

2
hence f(t∗) ≤ f(t0) +

5δ

2
< f(t0) + 3δ which is a contradiction. If there is no jump

at t∗, by local continuity we have f(t∗) ≤ f(t0)+ δ+9δ2
∫ t∗

t0
h(t− s)ds ≤ f(t0)+ 2δ which

is also a contradiction. We conclude then that supt∈[t0,T ] f(t) ≤ f(t0) + 3δ. �
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