On symmetries of singular foliations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

On symmetries of singular foliations

Ruben Louis
  • Fonction : Auteur
  • PersonId : 1152210

Résumé

This paper shows that a weak symmetry action of a Lie algebra $\mathfrak{g}$ on a singular foliation $\mathcal F$ induces a unique up to homotopy Lie $\infty$-morphism from $\mathfrak{g}$ to the DGLA of vector fields on a universal Lie $\infty$-algebroid of $\mathcal F$. Such a Lie $\infty$-morphism was studied by R. Mehta and M. Zambon as $L_\infty$-algebra action. We deduce from this general result several geometrical consequences. For instance, we give an example of a Lie algebra action on an affine sub-variety which cannot be extended on the ambient space. Last, we introduce the notion of bi-submersion towers over a singular foliation and lift symmetries to those.
Fichier principal
Vignette du fichier
Sym_biblio.pdf (527.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03738952 , version 1 (26-07-2022)
hal-03738952 , version 2 (20-04-2023)

Identifiants

Citer

Ruben Louis. On symmetries of singular foliations. 2023. ⟨hal-03738952v2⟩
52 Consultations
33 Téléchargements

Altmetric

Partager

More