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ON SYMMETRIES OF SINGULAR FOLIATIONS

RUBEN LOUIS

Abstract. This paper shows that a weak symmetry action of a Lie algebra g on a singular

foliation F induces a unique up to homotopy Lie ∞-morphism from g to the DGLA of vector

fields on a universal Lie ∞-algebroid of F . Such a morphism is known as L∞-algebra action in

[24]. We deduce from this general result several geometrical consequences. For instance, we give

an example of a Lie algebra action on an affine sub-variety which cannot be extended on the

ambient space. Last, we introduce the notion of bi-submersion towers over a singular foliation

and lift symmetries to those.
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Introduction

Singular foliations arise frequently in differential or algebraic geometry. Here, following [1, 5,

8, 9, 19], we define a singular foliation on a smooth, complex, algebraic, real analytic manifold

M with sheaf of functions O to be a subsheaf F : U −→ F(U) of the sheaf of vector fields

X, which is closed under the Lie bracket and locally finitely generated as a O-module. By

Hermann’s theorem [15], this is enough to induce a partition of the manifold M into immersed

submanifolds of possibly different dimensions, called leaves of the singular foliation. Singular

foliations appear for instance as orbits of Lie group actions with possibly different dimensions
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2 RUBEN LOUIS

or as symplectic leaves of a Poisson structure. When all the leaves have the same dimension, we

recover the usual “regular foliations”[10, 25].

The purpose of this paper is to look at symmetries of singular foliations. Let (M,F) be

a foliated manifold. A global symmetry of a singular foliation F on M is a diffeomorphism

φ : M −→ M which preserves F , that is, φ∗(F) = F . The image of a leaf through a global

symmetry is again a leaf (not necessarily the same leaf).

For G a Lie group, a strict symmetry action of G on a foliated manifold (M,F) is a smooth

action G ×M −→ M that acts by global symmetries [14]. Infinitesimally, it corresponds to a

Lie algebra morphism g −→ X(M) between the Lie algebra (g, [· , ·]g) of G and the Lie algebra of

symmetries of F , i.e., vector fields X ∈ X(M) such that [X,F ] ⊆ F . A strict symmetry action

of G on M goes down to the leaf space M/F , even though the latter space is not a manifold.

The opposite direction is more sophisticated, since a strict symmetry action of G on M/F does

not induce a strict action over M in general. However, it makes sense to consider linear maps

̺ : g −→ X(M) that satisfy [̺(x),F ] ⊂ F for all x ∈ g, and which are Lie algebra morphisms

up to F , namely, ̺([x, y]g) − [̺(x), ̺(y)] ∈ F for all x, y ∈ g. The latter linear maps are called

“weak symmetry actions”. These actions induce a “strict action”on the leaf space i.e., a Lie

algebra morphism g −→ X(M/F), whenever M/F is a manifold, and an action of G on M/F ,

at least if G is connected.

Now, on a priori different subject. Let us emphasize on the following observation: An in-

finitesimal action of a Lie algebra g on a manifold M is a Lie algebra morphism g −→ X(M).

Replacing M by a Lie ∞-algebroid (E,Q) seen as a Q-manifold, one expects to define Lie alge-

bra actions on (E,Q) as Lie ∞-algebra morphisms g[1] −→ X(E,Q)[1], the latter space being a

DGLA of vector fields on that Q-manifold [17]. Such Lie ∞-morphisms were studied by Mehta

and Zambon [24] as “L∞-algebra actions”, and various results about those are given. In partic-

ular, these authors give several equivalent definitions and interpretations of those. It is easy to

check that such a Lie∞-morphism induces a weak symmetry action of g on the singular foliation

induced by Q.

In [19, 22], it is shown that behind every singular foliation or more generally any Lie-Rinehart

algebra [20] there exists a Lie ∞-algebroid structure which is unique up to homotopy called the

universal Lie ∞-algebroid. Here is a natural question: what does a symmetry of a singular

foliation F induce on a universal Lie ∞-algebroid of F? Theorem 2.4 of this paper gives

an answer to that question. It states that any weak symmetry action of a Lie algebra on a

singular foliation F can be lifted to a Lie ∞-morphism valued in the DGLA of vector fields on

a universal Lie ∞-algebroid of F . Furthermore, Theorem 2.4 says this lift is unique modulo

homotopy equivalence. This goes in the same direction as [14] which already underlined Lie-2-

group structures associated to strict symmetry action of Lie groups.

This result gives several geometric consequences. Here is an elementary question: can a Lie

algebra action g → X(W ) on an affine variety W ⊂ Cd be extended to a Lie algebra action

g → X(Cd) on Cd? Said differently: it is trivial that any vector field on W extends to Cd, but

can this extension be done in such a manner that it preserves the Lie bracket? Although no

“∞-oids”appears in this question, which seems to be a pure algebraic geometry question, we

claim that the answer goes through Lie ∞-algebroids and singular foliations. More precisely,

the idea is then to say that any g-action on W induces a weak symmetry action on the singular

foliation IWX(Cd) of all vector fields vanishing on W (here IW is the ideal that defines W ). By

Theorem 2.4, we know that it is possible to lift any weak symmetry action of singular foliation
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into a Lie∞-morphism. The second order Taylor coefficient of that Lie∞-morphism, composed

with the projection on vector fields of arity −1, is of the form ιη(x,y) where η : ∧
2 g −→ Γ(E−1)

satisfies ̺([x, y]g)− [̺(x), ̺(y)] = ρ(η(x, y)), (here ρ : E−1 −→ TM is the anchor map of a univer-

sal Lie∞-algebroid (E,Q) of F and ιe stands for the vertical vector field associated to a section

e ∈ Γ(E−1)). But is it possible to build such a Lie∞-morphism where the arity −1 of the second

order Taylor coefficient is zero? There are cohomological obstructions. In some specific cases,

obstruction classes appear on some cohomology, although in general the obstruction is rather

a Maurer-Cartan-like equations that may or may not have solutions. We show if this class is

non-zero, then we cannot manage to have η = 0, and then no strict action exists.

The outline of this paper is as follows: In Section 1 we present some definitions and facts

on weak symmetry actions of Lie algebras on singular foliations and give some examples. In

Section 2 we state the main results of this paper and present their proofs. In Section 3 we

describe the relation between weak symmetry actions and Lie ∞-algebroids that have some

special properties. In Section 4 we define an obstruction class for extending a Lie algebra action

on an affine variety to ambient space. In the last section of the paper, we introduce the notion of

“bi-submersion tower” over singular foliations that we denote by TB. The latter notion, as the

name suggests, is a family of “bi-submersions” which are built one over the other. The concept

of bi-submersion over singular foliations has been introduced in [1] and it is used in K-theory

[3] or differential geometry [2, 5, 13]. We show that such a bi-submersion tower over a singular

foliation F exists if and only if F admits a geometric resolution. Provided that it exists, we

show in Theorem 5.25 that any infinitesimal action of a Lie algebra g on the singular foliation

F lifts to the bi-submersion tower TB .

In Appendix A and B, we review Lie ∞-algebroid structures and their morphisms and homo-

topies in order to fix notations.
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1. Definitions and examples of weak and strict symmetry actions

Convention 1.1. Throughout this paper, M stands for a smooth or complex manifold, or an

affine variety over C. We will denote the sheaf of smooth or complex, or regular functions on M

by O and the sheaf of vector fields on M by X(M), and X[f ] stands for a vector field X ∈ X(M)

applied to f ∈ O. Also, K stands for R or C.

Definition 1.2. Let F ⊂ X(M) be a singular foliation on M .

• A diffeomorphism φ : M −→M is said to be a symmetry of F , if φ∗(F) = F .

• A vector field X ∈ X(M) is said to be an infinitesimal symmetry of F , if [X,F ] ⊂ F .

The Lie algebra of infinitesimal symmetries of F is denoted by s(F).

In particular, F ⊂ s(F), since [F ,F ] ⊂ F . The latter are called internal symmetries of F .
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Proposition 1.3. [1, 12] Let M be a smooth or complex manifold. The flow of an infinitesimal

symmetry of F , if it exists, is a symmetry of F .

As we will see in Section 2, one of the consequences of our future results is that any symmetry

X ∈ s(F) of a singular foliation F admits a lift to a degree zero vector field on any universal

NQ-manifold over F that commutes with the homological vector field Q. This allows us to have

an alternative proof and interpretation of Proposition 1.3.

Let (g, [· , ·]g) be a Lie algebra over K = R or C, depending on the context.

Definition 1.4. A weak symmetry action of the Lie algebra g on a singular foliation F on M

is a K-linear map ̺ : g −→ X(M) that satisfies:

• ∀x ∈ g, [̺(x),F ] ⊆ F ,

• ∀x, y ∈ g, ̺([x, y]g)− [̺(x), ̺(y)] ∈ F .

When x 7−→ ̺(x) is a Lie algebra morphism, we speak of strict symmetry action of g on F .

There is an equivalence relation on the set of weak symmetry actions which is defined as follows:

two weak symmetry actions, ̺, ̺′ : g −→ X(M) are said to be equivalent if there exists a linear

map ϕ : g −→ F such that ̺− ̺′ = ϕ.

Remark 1.5. It is important to notice that when F is a regular foliation and M/F is a

manifold, any weak symmetry action of a Lie algebra g on F induces a strict action of g over

M/F . Definition 1.4 is a way of extending this idea to all singular foliations.

Here is a list of examples.

Example 1.6. Let π : M −→ N be a submersion. Since any vector field on N comes from

a π-projectable vector field on M , any Lie algebra morphism g −→ X(N) can be lifted to a

weak symmetry action g −→ X(M) on the regular foliation Γ(ker dπ), and any two such lifts are

equivalent.

Furthermore, any weak action of a Lie algebra g on a singular foliation F on N can be lifted

to a class of weak symmetry actions on the pull-back foliation π−1(F), (see Definition 1.9 in

[1]).

Example 1.7. Let F be a singular foliation on M . For any point m ∈ M , the set F(m) =

{X ∈ F | X(m) = 0} is a Lie subalgebra of F . Put Im = {f ∈ C∞(M) | f(m) = 0}. The quo-

tient space gm =
F(m)

ImF
is a Lie algebra, since ImF ⊆ F(m) is a Lie ideal. The Lie algebra

gm is called the isotropy Lie algebra of F at m (see [4]). Let us denote, by [· , ·]gm , its Lie bracket.

(1) Consider ̺ : gm → F(m) ⊂ X(M) a section of the projection map,

ImF
�
� // F(m) // // gm

̺
qq

(1)

Then, [̺(x),ImF ] ⊂ ImF and ̺([x, y]gm)− [̺(x), ̺(y)] ∈ ImF . Hence, the map ̺ : gm →

X(M) is a weak symmetry action of the singular foliation ImF . A different section ̺′

of the projection map yields an equivalent weak symmetry action of gm on ImF . An

obstruction class for having a strict symmetry action equivalent to ̺ will be given later

in Section 4.
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(2) In particular, for k ≥ 1, let us denote by gkm the isotropy Lie algebra of the singular

foliation IkmF at m. Every section ̺k : g
k
m −→ X(M) of the projection map

Ik+1
m F �

� // IkmF
// // gkm

̺krr
(2)

is a weak symmetry action of the Lie algebra gkm on the singular foliation Ik+1
m F .

Example 1.8. The following example comes from [21], and follows the same patterns as in

Examples 1.6 and 1.7. Let (M,F) be a singular foliation on a smooth manifold M and L ⊂M

a leaf. Let [L,M ] be a neighborhood of L in M equipped with some projection π : M −→ L.

According to [21], upon replacing [L,M ] by a smaller neighborhood of L if necessary, there

exists an Ehresmann connections (that is a vector sub-bundle H ⊂ T [L,M ] with H ⊕ker(dπ) =

T [L,M ]) which satisfies that Γ(H) ⊂ F . Such an Ehresmann connection is called an Ehresmann

F-connection and induces a C∞(L)-linear section ̺H : X(L) −→ Fproj of the surjection Fproj −→

X(L), where Fproj stands for vector fields of F π-projectable on elements of X(L). The section

̺H is a weak symmetry action of X(L) on the transverse foliation T := Γ(ker dπ) ∩ F . When

the Ehresmann connection H is flat, ̺H is bracket-preserving, and defines a strict symmetry of

X(L) on the transverse foliation T .

Example 1.9. Consider, for a fixed k ∈ N0, the singular foliation Fk := Ik0X(R
d) of all vector

fields on Rd vanishing at order k at the origin. The action of the Lie algebra gl(Rd) on Rd which

is given by

gl(R) −→ X(Rd), (aij)1≤i,j≤d 7−→
∑

1≤i,j≤d

aijxi
∂

∂xj

is a strict symmetry of g on Fk.

Example 1.10. Let ϕ := (ϕ1, . . . , ϕr) be a r-tuple of homogeneous polynomial functions in d

variables over K. Consider the singular foliation Fϕ (see [20] Section 3.2.1) which is generated

by all polynomial vector fields X ∈ X(Kd) that satisfy X[ϕi] = 0 for all i ∈ {1, . . . , r}. The

action K → X(Kd), λ 7→ λ
−→
E , is a strict symmetry of K on Fϕ. Here,

−→
E stands for the Euler

vector field.

Example 1.11. LetW be an affine variety realized as a subvariety of Cd and IW ⊂ C[x1, . . . , xd]

its vanishing ideal. Let us denote by X(W ) := Der(C[x1, . . . , xd]/IW ) the Lie algebra of vector

fields on W . Let FW := IWX(Cd) the singular foliation made of vector fields vanishing on W .

Since every vector field on W can be extended to a vector field on Cd tangent to W , every

Lie algebra morphism ̺ : g −→ X(W ) extends to a linear map ˜̺: g −→ X(Cd) that makes this

diagram commutes,

X(Cd)

����
g

˜̺
==④④④④④④④④④

̺
// X(W )

For x, y ∈ g, the extension ˜̺ satisfies: ˜̺(x)[IW ] ⊂ IW , so that [˜̺(x),IWX(Cd)] ⊂ IWX(Cd). We

have ˜̺([x, y]g)− [˜̺(x), ˜̺(y)] ∈ IWX(Cd) because ˜̺ is a Lie algebra morphism when restricted to

W . Hence, ˜̺ is a weak symmetry action of g on FW . Two different extensions give equivalent

symmetry actions. Here is a natural question: Can we extend the Lie algebra action of g on W

to a Lie algebra action on Cd? This example shows that this question can be reformulated as:
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is any extension ˜̺ of ̺ equivalent to a strict symmetry action? Corollary 4.12 of Section 4 gives

an obstruction class of extending this weak symmetry action to a strict one.

2. A Lie ∞-morphism lifting a weak symmetry of a foliation

We refer the reader to Appendix A for the notion of universal Lie ∞-algebroids of a singular

foliation and for notations. We denote them by (E,Q) and their functions by E . The triple

(X•(E), [· , ·] , adQ) is a differential graded Lie algebra, where X•(E) stands for the module of

graded vector fields (=graded derivations of E) on E, the bracket [· , ·] is the graded commutator

of derivations and adQ := [Q, · ].

Also, see Appendix B for the notion of Lie ∞-morphism of differential graded Lie algebras

and for notations.

We now state the main theorem of the paper. In Appendix B, Proposition B.13 shows

that a Lie ∞-morphism between a Lie algebra g and the DGLA of graded vector fields of a

Lie ∞-algebroid (E,Q), induces a weak symmetry action of g on the basic singular foliation

F = ρ(Γ(E−1)) of (E,Q). In this section, we show that any weak symmetry action of a Lie

algebra g on a singular foliation F arises this way.

Convention 2.1. From now on and in the sequel, the Lie algebra (g, [· , ·]g) (possibly of infinite

dimension) is concentrated in degree 0 so that g shifted by 1, namely g[1], is concentrated in

degree −1. The Lie bracket [· , ·]g : g[1]× g[1] −→ g[1] of g[1] is of degree +1.

Convention 2.2. In this paper, vector bundles are of finite rank. Lie ∞-algebroids are of finite

rank except in Theorem 3.3 we notice that the result holds true without this assumption.

Definition 2.3. Let F be a singular foliation on M and (E,Q) a Lie ∞-algebroid over F .

Consider a weak symmetry action ̺ : g −→ X(M) of g on F .

• We say that a Lie ∞-morphism of differential graded Lie algebras

Φ: (g[1], [· , ·]g) (X•(E)[1], [· , ·] , adQ) (3)

lifts the weak symmetry action ̺ to (E,Q) if for all x ∈ g, f ∈ O, Φ0(x)(f) = ̺(x)[f ].

• When Φ exists, we say then Φ is a lift of ̺ on (E,Q).

We now state the main theorem of this paper.

Theorem 2.4. Let F a be a singular foliation on a smooth manifold (or an affine variety) M

and g a Lie algebra. Let ̺ : g −→ X(M) be a weak symmetry action of g on F . The following

assertions hold:

(1) for any universal Lie ∞-algebroid (E,Q) of the singular foliation F , there exists a Lie

∞-morphism Φ: (g[1], [· , ·]g) (X•(E)[1], [· , ·] , adQ) that lifts ̺ to (E,Q),

(2) any two such Lie ∞-morphisms are homotopy equivalent over the identity of M ,

(3) any two such lifts of any two equivalent weak symmetry actions of g on F are homotopy

equivalent over the identity of M .

Remark 2.5. Lie∞-morphisms in item 1 of Theorem 2.4 are called g-actions on (E,Q) in [24].

Remark 2.6. Item 1 in Theorem 2.4 implies that
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(1) there exists a linear map Φ0 : g[1] −→ X0(E)[1] such that

Φ0(x)[f ] = ̺(x)[f ], and [Q,Φ0(x)] = 0, ∀x ∈ g[1], f ∈ O. (4)

Φ0 is not a graded Lie algebra morphism, but there exist a linear map Φ1 : ∧
2 g[1] −→

X−1(E)[1] such that for all x, y, z ∈ g[1],

Φ0([x, y]g)− [Φ0(x),Φ0(y)] = [Q,Φ1(x, y)].

Also,

Φ1 ([x, y]g, z)− [Φ0(x),Φ1(y, z)]+ 	 (x, y, z) = [Q,Φ2(x, y, z)]

for some linear map Φ2 : ∧
3 g[1] −→ X−2(E)[1]. These compatibility conditions continue

to higher multilinear maps.

(2) For every element x ∈ g and i ≥ 1, there is a degree zero map ∇x ∈ Der(E) (i.e.

∇x(fe) = f∇x(e) + ̺(x)[f ]e, for f ∈ O, e ∈ Γ(E)) depending linearly on x, such that
〈
Φ0(x)

(0)(α), e
〉
= ̺(x)[〈α, e〉] − 〈α,∇x(e)〉 , for all α ∈ Γ(E∗), e ∈ Γ(E) (5)

where Φ0(x)
(0) stands for the arity zero component of Φ0(x). Therefore, by using Equa-

tions (4), (5) and the dual correspondence between Lie ∞-algebroids and NQ-manifolds

[6, 23, 28], we obtain these compatibility conditions:

ℓ1 ◦ ∇x = ∇x ◦ ℓ1 and ρ ◦ ∇x = ad̺(x) ◦ ρ,

ℓ1 stands for the corresponding unary bracket of (E,Q). Also, for X ∈ X(M), adX :=

[X, · ]. In general, the map g[1] −→ Der(E), x 7→ ∇x is not a Lie algebra morphism even

when the action ̺ is strict. In fact, there exists a bilinear map γ : ∧2 g[1] −→ End(E)[1]

of degree 0 that satisfies

∇[x,y]g − [∇x,∇y] = γ(x, y) ◦ ℓ1 − ℓ1 ◦ γ(x, y) + ℓ2(η(x, y), · ), (6)

here ℓ2 is the corresponding 2-ary bracket of (E,Q), and η : ∧2 g −→ Γ(E−1) is such

that ̺([x, y]g)− [̺(x), ̺(y)] = ρ(η(x, y)).

Corollary 2.7. Let (E,Q) be a universal Lie ∞-algebroid of a singular foliation F . For any

symmetry X ∈ X(M) of F , there exists a degree zero vector field Z ∈ X0(E)

(1) that commutes with Q, i.e., such that [Z,Q] = 0,

(2) and that extends X in the sense that the following diagrams commute

C∞(M)

X
��

p∗
// Γ (S•(E∗))

Z
��

C∞(M)
p∗

// Γ (S•(E∗))

and Γ (S•(E∗))

Z
��

ι∗ // C∞(M)

X
��

Γ (S•(E∗))
ι∗ // C∞(M)

(7)

where p : E −→M is the projection map and ι : M →֒ E the zero section.

Remark 2.8. Geometrically, Equation (7) means that p∗(Z) = X and Z|M = X.

Proof. To construct Z, it suffices to apply Theorem 2.4 for g = R and take Z to be the image

of 1 through Φ0 : R[1] −→ X0(E)[1]. �

Remark 2.9. In particular, Corollary 2.7 has the following consequences:
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(1) for any admissible t, the flow ΦZt : E −→ E of Z being an isomorphism of Lie ∞-

algebroids, it induces an isomorphism of vector bundles E−1 −→ E−1. Since [Q,Z] = 0,

the following diagram commutes,

Γ(E−1)

ρ

��

(ΦZ
t )(0)

// Γ(E−1)

ρ

��
X(M)

(ϕX
t )∗

// X(M)

where φXt is the flow of X at t.

(2) Consequently, for any open set U ⊂M which is stable under ϕXt , there exists an invertible

matrix Mt
X with coefficients in O(U) that satisfies

(
φXt
)
∗




X1

...

Xn


 = Mt

X




X1

...

Xn


 ,

for some generators X1, . . . ,Xn of F over U . As announced earlier, we recover Proposi-

tion 1.3, that is,
(
φXt
)
∗
(F) = F .

Let (E,Q) and (E′, Q′) be two universal Lie ∞-algebroids of F . A direct consequence of Ri-

cardo Campos’s Theorem 4.1 in [7] is that the differential graded Lie algebras (X•(E)[1], [· , ·] , adQ)

and
(
X•(E

′)[1], [· , ·] , adQ′

)
are homotopy equivalent over the identity of M . This leads to the

following statement.

Corollary 2.10. Let ̺ : g −→ X(M) be a weak symmetry action of a Lie algebra g on F . Then,

there exist Lie∞-morphisms, Φ: g[1] (X•(E)[1], [· , ·] , adQ) and Ψ: g[1] 
(
X•(E

′)[1], [· , ·] , adQ′

)

that lift ̺, and Φ,Ψ make the following diagram commute up to homotopy

g[1]

Φ

ww w7
w7
w7
w7
w7
w7
w7
w7

Ψ

(((h(h
(h

(h
(h

(h
(h

(h
(h

(X•(E)[1], [· , ·] , adQ) oo ∼ ///o/o/o/o/o/o/o/o/o/o
(
X•(E

′)[1], [· , ·] , adQ′

)
.

(8)

Proof. The composition of Φ with the horizontal map in the diagram (8) is a lift of the action ̺.

It is necessarily homotopy equivalent to Ψ by item 2 in Theorem 2.4. �

2.1. Cohomology of longitudinal graded vector fields. In this section, we study the co-

homology of longitudinal vector fields, which will help in proving the main results stated in the

beginning of Section 2.

Let F be a singular foliation on M .

Definition 2.11. Let E be a splitted graded manifold overM with sheaf of function E = Γ(S(E∗)).

A vector field L ∈ X(E) is said to be a longitudinal vector field for F if there exists vector fields

X1, . . . ,Xk ∈ F and functions Θ1, . . . ,Θk ∈ E such that,

L(f) =

k∑

i=1

Xi[f ]Θi, ∀f ∈ O. (9)

Example 2.12. Here are some examples.
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(1) Vertical1 vector fields are longitudinal.

(2) For any Q-manifold (E,Q) over a manifold M . The homological vector field Q ∈ X(E)

is a longitudinal vector field for its basic singular foliation F := ρ(Γ(E−1)).

(3) Longitudinal vector fields are precisely of the form
∑k

i=1ΘiXi + V , for X1, . . . ,Xk ∈

F , Θ1, . . . ,Θk ∈ E and V ∈ X(E) a vertical vector field on E.

(4) For (E,Q) a Q-manifold and F := ρ(Γ(E−1)) its basic singular foliation. For any

extension of a symmetry X ∈ s(F) of F to a degree zero vector field X̂ ∈ X(E), the

degree +1 vector field [Q, X̂ ] is longitudinal for F .

Let us show this last point using local coordinates (x1, . . . , xn) on M and a local triv-

ialization ξ1, ξ2, . . . of graded sections in Γ(E∗). The vector fields Q and X̂ take the

form:

Q =
∑

j

∑

k, |ξk|=1

Qjk(x)ξ
k ∂

∂xj
+
∑

j

∑

k,ι1,...,ιk

1

k!
Qjι1,...,ιk(x)ξ

1 ⊙ · · · ⊙ ξk
∂

∂ξj

X̂ = X +
∑

j

∑

k,ι1,...,ιk

1

k!
Xj
ι1,...,ιk

(x)ξ1 ⊙ · · · ⊙ ξk
∂

∂ξj

(10)

where X =

n∑

i=1

Xi(x)
∂

∂xi
. By using Equation (10) we note that all the terms of [Q, X̂ ]

are vertical except maybe for the ones where the vector field X appears. For k ≥ 1, the

vector field [Qjι1,...,ιkξ
1 ⊙ · · · ⊙ ξk ∂

∂ξj
,X] is vertical; and for every fixed k, one has




n∑

j=1

Qjkξ
k ∂

∂xj
,X


 = ξk




n∑

j=1

Qjk
∂

∂xj
,X


 .

Now,




n∑

j=1

Qjk
∂

∂xj
,X


 ∈ F , since X is a symmetry for F and

n∑

j=1

Qjk
∂

∂xj
∈ F .

Remark 2.13. Longitudinal vector fields are stable under the graded Lie bracket.

Let us make two points on vector fields on E.

(1) Sections of the graded vector bundle E are identified with derivations under the isomor-

phism mapping e ∈ Γ(E) 7−→ ιe ∈ X(E). This allows us to identify a vertical vector field

with (maybe infinite) sums of tensor products of the form Θ⊗ e with Θ ∈ E , e ∈ Γ(E).

(2) A TM -connection ∇ on the graded bundle E, i.e., a collection of TM -connections ∇i

on E−i for i ≥ 1, induces for X ∈ X(M) a vector field of degree zero ∇̃X ∈ X(E) by

setting for f ∈ O, ∇̃X(f) := X[f ] and ∇̃X(ξ) := ∇
i,∗
X (ξ) for every homogeneous element

ξ ∈ Γ(E∗
−i), where ∇

i,∗
X is the dual TM -connection. Upon choosing a TM -connection on

E as above, we give a N0×Z− grading to vector fields on E by the identification below:

Xk(E) ≃
⊕

j≥1

Ek+j ⊗O Γ(E−j) ⊕ Ek ⊗O X(M) (11)

≃ ⊕j≥1Γ(S(E
∗)k+j ⊗E−j) ⊕ Γ(S(E∗)k ⊗ TM)

for all k ∈ Z. Therefore, one can realize a vector field P ∈ Xk(E) as a sequence

P = (p0, p1, . . .), where p0 ∈ Γ(S(E∗)k ⊗ TM) and pi ∈ Γ(S(E∗)k+i ⊗ E−i) for i ≥ 1

are called components of P . In the diagram (13), P = (p0, p1, . . .) is represented as an

element of the anti-diagonal and pi is on column i. We say that P is of depth n ∈ N if

1We say a vector field on E is vertical if it is O-linear.
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pi = 0 for all i < n. In particular, vector fields of depth greater or equal to 1 are vertical.

Under the isomorphism (11), the differential map adQ takes the form

D = Dh +
∑

s≥0

Dvs (12)

with D2 = 0. Here, Dh = id⊗ d or id⊗ ρ, and

Dvs : Γ(S(E∗)k ⊗ E−i)→ Γ(S(E∗)k+s+1 ⊗ E−i−s)

for i ≥ 0, s ≥ 0, where E0 := TM . We denote the latter complex by (L,D). The maps

Dvs , for s ≥ 1, are represented as up-left-pointing arrows, and Dv0 by vertical arrows, in

the following diagram, whose lines are complexes of O-modules given by the differential

map Dh:

...
...

...

· · · // Γ(S(E∗)k+2 ⊗ E−2)

Dv0

OO

Dh=id⊗d // Γ(S(E∗)k+2 ⊗ E−1)

Dv0

OO

Dh=id⊗ρ
// Γ(S(E∗)k+2 ⊗ TM)

Dv0

OO

· · · // Γ(S(E∗)k+1 ⊗ E−2)

Dv1

__❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
. . . Dv0

OO

Dh=id⊗d // Γ(S(E∗)k+1 ⊗ E−1)

Dv2

Dv1

]]❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
. . . Dv0

OO

Dh=id⊗ρ
// Γ(S(E∗)k+1 ⊗ TM)

Dv1ff▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
. . . Dv0

OO

· · · // Γ(S(E∗)k ⊗ E−2)

__❄
❄❄
❄
❄
❄
❄
❄❄
❄
❄
❄
❄❄
❄
❄
❄
❄
❄❄
. . . Dv0

OO

Dh=id⊗d // Γ(S(E∗)k ⊗ E−1)

Dv2

ee

Dv1
ff◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

. . . Dv0

OO

Dh=id⊗ρ
// Γ(S(E∗)k ⊗ TM)

dd

Dv1

ff◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
. . . Dv0

OO

...

Dv0

OO

...

Dv0

OO

...

Dv0

OO

column 2 column 1 column 0
(13)

Remark 2.14. For j ≥ 0, Θ ∈ E and ξ ∈ Γ(E−j) one has Dv0(Θ⊗ ξ) = Q(Θ)⊗ ξ+ (−1)|Θ|Θ⊙

Dv0(1⊗ ξ) and Dvi(Θ⊗ ξ) + (−1)|Θ|Dvi(1⊗ ξ) for every i ≥ 1. Here, E0 := TM .

Under this correspondence, we understand longitudinal vector fields as the following.

Lemma 2.15. A graded vector field P = (p0, p1, . . . , ) ∈ L is longitudinal if p0 ∈ E ⊗O F .

The following theorem is crucial for the rest of this paper.

Theorem 2.16. Let (E,Q) be a universal Q-manifold of F .

(1) Longitudinal vector fields form an acyclic complex.

More precisely, any longitudinal vector field on E which is an adQ-cocycle is the image

through adQ of some vertical vector field on E.

(2) More generally, if a vector field on E of depth n is an adQ-cocycle, then it is the image

through adQ of some vector field on E of depth n+ 1.

Proof. (E,Q) is a universal Q-manifold of F implies that lines in (13) are exact when we restrict

the 0-th column to sections in E ⊗O F . It is now a diagram chasing phenomena. Let P =

(p0, p1, . . . , ) ∈ L be a longitudinal element which is a D-cocycle. By longitudinality there exists

an element b1 ∈ Γ(S(E∗) ⊗ E−1) such that (id ⊗ ρ)(b1) = p0. Set P1 = (0, b1, 0, . . .), that is,



ON SYMMETRIES OF SINGULAR FOLIATIONS 11

we extend b1 by zero on Γ(S(E∗) ⊗ E≤−2) and Γ(S(E∗) ⊗ TM). It is clear that P −D(P1) =

(0, p′1, p
′
2, . . .) is also a D-cocycle of depth 1. In particular, we have Dh(p′1) = 0 by exactness

there exists b2 ∈ Γ(S(E∗) ⊗ E−2) such that Dh(b2) = p′1. As before put P2 = (0, 0, b2, 0, . . .).

Similarly, P − D(P1) − D(P2) = (0, 0, p′′2 , p
′′
3 , . . .) is a D-cocycle. By recursion, we end up to

construct P1, P2, . . . that satisfy P −D(P1) −D(P2) + · · · = 0, that is, there exists an element

B = (0, b1, b2, . . .) ∈ L such that D(B) = P . This proves item 1.

To prove item 2 it suffices to cross out in the diagram (13) the columns numbered 0, . . . , n− 1,

which does not break exactness. The proof now follows as for item 1. �

In particular, we deduce from item 1 of Theorem 2.16 the following exact subcomplex.

Corollary 2.17. Let (E,Q) be a universal Q-manifold of F . The subcomplex VQ of (X(E), adQ)

made of vertical vector fields P ∈ X(E) that satisfy P ◦Q(f) = 0 for all f ∈ O is acyclic.

Proof. Let P ∈ X(E) be a vertical vector field which is a adQ-cocycle. Notice that we have

automatically P ◦ Q(f) = 0 for all f ∈ O: indeed, P is a adQ-cocycle implies [Q,P ](f) = 0

for all f ∈ O. Equivalently, P ◦Q(f) = (−1)|P |Q ◦ P (f). Since P is vertical, P (f) = 0, which

proves that P ◦Q(f) = 0. By Theorem 2.16 there exists a vertical vector field P̃ ∈ X(E) such

that [Q, P̃ ] = P . Moreover, P̃ ∈ VQ, since for all f ∈ O,

0 = [Q, P̃ ](f) = (−1)|P̃ |P̃ ◦Q(f).

This completes the proof. �

The following remark will be used in the proof of Theorem 2.4.

Remark 2.18. For a cocycle P ∈ VQ of degree 0 one has P (−1) = 0 (for degree reason). By

Corollary 2.17, P is the image by adQ of an element, P̃ ∈ VQ i.e., such that [Q, P̃ ] = P . Also,

one can choose P̃ (−1) = 0: we have

[Q(0), P̃ (−1)] = [Q, P̃ ](−1) = P (−1) = 0.

By exactness of adQ(0) (see [19]), we have P̃ (−1) = [Q(0), ϑ] for some O-linear map

ϑ ∈ Hom
(
Γ(E∗),Γ(S0(E∗))

)

of degree −2. Put P̄ := P̃ − [Q,ϑ], where ϑ is extended to a derivation of arity −1. Clearly,

[Q, P̄ ] = P and P̄ (−1) = P̃ (−1) − [Q,ϑ](−1) = P̃ (−1) − [Q(0), ϑ] = 0.

Therefore, P = adQ(P̄ ) with P̄
(−1) = 0.

2.2. Proof of the main results. This section is devoted to the proof of the main results stated

in Section 2. For the notations, see Appendix A and B.

We start with the following lemma.

Lemma 2.19. Assume (E,Q) is a universal Lie ∞-algebroid over M . Let Φ̄ : (S•
Kg[1], Qg) −→

(S•
KX(E)[1], Q̄) be a coalgebra morphism which is a Lie ∞-morphism up to arity n ≥ 1, i.e.,(

Φ̄ ◦Qg − Q̄ ◦ Φ̄
)(i)

= 0 for all integer i ∈ {0, . . . , n}. Then, Φ̄ can be extended to a∞-morphism

up to arity n+ 1.

Proof. For convenience, we omit the variables. The identity,

Q̄ ◦
(
Φ̄ ◦Qg − Q̄ ◦ Φ̄

)
+
(
Φ̄ ◦Qg − Q̄ ◦ Φ̄

)
◦Qg = 0
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taken in arity n+ 1 yields,

0 =
(
Q̄ ◦ (Φ̄ ◦Qg − Q̄ ◦ Φ̄)

)(n+1)
= Q̄(0) ◦ (Φ̄ ◦Qg − Q̄ ◦ Φ̄)

(n+1)

= [Q, (Φ̄ ◦Qg − Q̄ ◦ Φ̄)
(n+1)],

since Q
(0)
g = 0 and

(
Φ̄ ◦Qg − Q̄ ◦ Φ̄

)(i)
= 0 for i ∈ {0, . . . , n}. It is clear that for all n ≥ 0 the

map
(
Φ̄ ◦Qg − Q̄ ◦ Φ̄

)(n+1)
: Sn+2

K (g[1]) −→ X−n(E)[1] takes values in vertical vector fields on

E because vector fields of degree n ≥ 1 are vertical for degree reasons. By virtue of Corollary

2.17 there exists a vector field ζ ∈ X−n−1(E)[1] of degree −n− 1 such that

[Q, Φ̄(n+1) + ζ] = Φ̄(n) ◦Q
(1)
g − Q̄

(1) ◦ Φ̄(n). (14)

By replacing the arity n+1 of Φ̄ by Φ̄(n+1) + ζ, and keeping the other arities fixed, one obtains

a new map Ψ̄: (S•
Kg[1], Qg) −→ (S•

KX(E)[1], Q̄) such that Ψ̄(j) := Φ̄(j) for j 6= n + 1 and

Ψ̄(n+1) := Φ̄(n+1) + ζ. The map Ψ̄ satisfies

[Q, Ψ̄(n+1)] = Ψ̄(n) ◦Q
(1)
g − Q̄

(1) ◦ Ψ̄(n). (15)

This implies that
(
Ψ̄ ◦Qg − Q̄ ◦ Ψ̄

)(n+1)
= 0. By construction, Ψ̄ is a Lie ∞-morphism up to

arity n + 1, i.e., that satisfies
(
Ψ̄ ◦Qg − Q̄ ◦ Ψ̄

)(i)
= 0 for all integer i ∈ {0, . . . , n + 1}. The

proof continues by recursion. �

Let F be a singular foliation, and (E,Q) a universal Lie ∞-algebroid of F . We start with the

following lemma.

Lemma 2.20. For every weak symmetry Lie algebra action of g on F there exists a linear map,

Φ0 : g[1]→ X0(E)[1], such that [Q,Φ0(x)] = 0 and Φ0(x)[f ] = ̺(x)[f ] for all x ∈ g[1], f ∈ O.

Proof. For x ∈ g, let ̺̂(x) ∈ X0(E) be any arbitrary extension of ̺(x) ∈ s(F) to a degree zero

vector field on E. Since ̺(x) is a symmetry of F , the degree +1 vector field [̺̂(x), Q] is also a

longitudinal vector field on E, see Example 2.12 item 3. In addition, [ ̺̂(x), Q] is a adQ-cocycle.

By item 1 of Theorem 2.16, there exists a vertical vector field Y (x) ∈ X0(E) of degree zero such

that

[Q,Y (x) + ̺̂(x))] = 0. (16)

Let us set for x ∈ g[1], Φ0(x) := Y (x) + ̺̂(x). By construction, we have, [Q,Φ0(x)] = 0 and

Φ0(x)[f ] = ̺(x)[f ] for all x ∈ g[1], f ∈ O. �

Proof of Theorem 2.4. Let us show item 1. Note that Lemma 2.20 gives the existence of a linear

map Φ0 : g[1] −→ X0(E)[1] such that, [Q,Φ0(x)] = 0 for all x ∈ g[1]. For x, y ∈ g[1], consider

Λ(x, y) = Φ0([x, y]g)− [Φ0(x),Φ0(y)]. (17)

Since ̺([x, y]g) − [̺(x), ̺(y)] ∈ F for all x, y ∈ g[1], and since ρ : Γ(E−1) −→ F surjective, we

have ̺([x, y]g)− [̺(x), ̺(y)] = ρ (η(x, y)) for some element η(x, y) ∈ Γ(E−1) depending linearly

on x and y. Now we consider the vertical vector field of degree −1, ιη(x,y) ∈ X−1(E) which is

defined on Γ(E∗) as:

ιη(x,y)(α) := 〈α, η(x, y)〉 for all α ∈ Γ(E∗),

and extended it by derivation on the whole space. For every f ∈ O,
(
Λ(x, y)− [Q, ιη(x,y)]

)
(f) = (̺([x, y]g)− [̺(x), ̺(y)] − ρ(η(x, y)) [f ] (by definition of Φ0)

= 0 (by definition of η)



ON SYMMETRIES OF SINGULAR FOLIATIONS 13

It is clear that Λ(x, y)+[Q, ιη(x,y)] is a adQ-cocycle. Also,
(
Λ(x, y) + [Q, ιη(x,y)]

)(−1)
= 0. Hence,

by Corollary 2.17 and Remark 2.18, Λ(x, y) + [Q, ιη(x,y)] is of the form [Q,Υ(x, y)] for some

vertical vector field Υ(x, y) ∈ X−1(E) of degree −1 with Υ(x, y)(−1) = 0. For all x, y ∈ g[1],

we define the Taylor coefficient Φ1 : ∧
2 g[1] −→ X−1(E)[1] as Φ1(x, y) := Υ(x, y) + ιη(x,y). By

construction, we have the following relation

Φ0([x, y]g)− [Φ0(x),Φ0(y)] = [Q,Φ1(x, y)], ∀x, y ∈ g[1]. (18)

So far, in the construction of the Lie ∞-morphism, we have shown the existence of a Lie ∞-

morphism Φ̄: S•
Kg[1] −→ S•

K (X(E)[1]) up to arity 1, that is (Φ̄ ◦Qg)
(i) = (Q̄ ◦ Φ̄)(i) for i = 0, 1.

The proof continues by recursion by applying directly Lemma 2.19. This proves item 1 of the

theorem. �

Before proving item 2 of Theorem 2.4 we will need the following lemma. For convenience, we

sometimes omit the variables in g. See Appendix B for the notations.

Lemma 2.21. For any two Lie ∞-morphisms Γ,Ω: (S•
K(g[1]), Qg) −→ (S•

K(X(E)[1]), Q̄) which

coincide up to arity n ≥ 0, i.e. Γ(i) = Ω(i), for 0 ≤ i ≤ n, their difference in arity n+1, namely,

Γ(n+1) − Ω(n+1) : Sn+2
K (g[1]) −→ X−n−1(E)[1]

is valued in adQ-coboundary.

Proof. Indeed, a direct computation yields

Q̄ ◦ (Γ−Ω) = (Γ− Ω) ◦Qg =⇒ Q̄(0) ◦ (Γ− Ω)(n+1) − ((Γ− Ω) ◦Qg)
(n+1)

︸ ︷︷ ︸
=0

= 0

=⇒ [Q,Γ(n+1) − Ω(n+1)] = 0

=⇒ Γ(n+1) − Ω(n+1) = [Q,H(n+1)] (by item 1 of Theorem 2.16)

for some linear map H(n+1) : Sn+2
K (g[1]) −→ X−n−2(E)[1]. �

Let us show item 2 of Theorem 2.4. Let Φ,Ψ: g[1]  X(E)[1] be two different lifts of the

action g −→ X(M). We denote by Φ̄, Ψ̄ : S•
K(g[1]) −→ S•

K(X(E)[1]) the unique comorphisms

given respectively by the Taylor’s coefficients




Φ̄(r) : Sr+1
K (g[1])

Φr−→ X−r(E)[1]

Ψ̄(r) : Sr+1
K (g[1])

Ψr−−→ X−r(E)[1]
, for r ≥ 0 (19)

For any x ∈ g[1], the degree zero vector field Φ0(x) − Ψ0(x) ∈ X0(E) is vertical. Moreover,

we have, [Q,Φ0(x) − Ψ0(x)] = 0. By Corollary 2.17 there exists a vector field H0 ∈ X−1(E) of

degree −1, such that Ψ0(x)− Φ0(x) = [Q,H0(x)]

g[1]

Ψ0−Φ0

��

H0

xxq q
q
q
q
q

X−1(E)[1]
adQ // X0(E)[1]

(20)

Consider the following differential equation




dΞt

dt = Q̄ ◦Ht +Ht ◦Qg, t ∈ [0, 1]

Ξ0 = Φ̄
(21)
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where (Ξt)t∈[0,1] is as in Definition B.9, and for t ∈ [0, 1], Ht is the unique Ξt-coderivation where

the only non-zero arity is H(0) = H0. Equation (21) gives a homotopy between Φ̄ and Ξ1. When

we consider the arity zero component in Equation (21), one obtains

dΞ
(0)
t

dt
= Q̄(0) ◦H

(0)
t +H

(0)
t ◦Q

(0)
g

= [Q,H0]

= Ψ0 − Φ0 = Ψ̄(0) − Φ̄(0).

Therefore, Ξ
(0)
t = Φ̄(0) + t(Ψ̄(0) − Φ̄(0)), and Φ̄ ∼ Ξ1 with Ψ̄(0) = Ξ

(0)
1 . Using Lemma 2.21, the

image of any element through the map Ψ̄(1)−Ξ
(1)
1 : S2

K(g[1]) −→ X−1(E)[1] is a adQ-coboundary.

Thus, Ψ̄(1) − Ξ
(1)
1 can be written as

Ψ̄(1) − Ξ
(1)
1 = [Q,H(1)], with H(1) : S2

K(g[1]) −→ X−2(E)[1]. (22)

Let us go one step further by considering the differential equation on [0, 1] given by




dΘt

dt = Q̄ ◦Ht +Ht ◦Qg

Ξ0 = Ξ̄1

(23)

Here Ht is the extension of H(1) as the unique Θt-coderivation where all its arities vanish

except the arity 1 which is given by H(1). In arity zero, (Θ
(0)
t )t∈[0,1] is constant and has value

Θ
(0)
1 = Ψ̄(0). In arity one we have,

dΘ
(1)
t

dt
= Q̄(0) ◦H

(1)
t

= [Q,H(1)] = Ψ̄(1) − Ξ
(1)
1 .

Hence, Θ
(1)
t = Φ̄(1)+ t(Ψ̄(1)−Ξ

(1)
1 ) with Ψ̄(i) = Θ

(i)
1 for i = 0, 1. We then continue this procedure

by gluing all these homotopies as in [20], p. 40-41. We will obtain at last a Lie ∞-morphism Ω

such that Φ̄ ∼ Ω and Ω(i) = Ψ̄(i) for i ≥ 0. That means Ω = Ψ̄, therefore Φ̄ ∼ Ψ. This proves

item 2. of Theorem 2.4.

Let us prove item 3 of Theorem 2.4. Given two equivalent weak symmetry actions ̺, ̺′ of g

on a singular foliation F , i.e., ̺, ̺′ differ by a linear map g −→ X(M) of the form x 7→ ρ(β(x))

for some linear map β : g −→ Γ(E−1). Let Φ,Φ′ : g[1]  (X•(E)[1], [· , ·] , adQ) be a lift into a

Lie ∞-morphism of the action ̺ and ̺′ respectively. One has for all x ∈ g[1] and f ∈ O,
(
Φ0(x)−Ψ0(x)− [Q, ιϕ(x)]

)
(f) = ρ(ϕ(x))[f ] − 〈Q(f), ϕ(x)〉

= 0.

Also,

[Q,Φ0(x)−Ψ0(x)− [Q, ιϕ(x)]] = [Q,Φ0(x)]− [Q,Ψ0(x)]− [Q, [Q, ιϕ(x)]]

= 0, (since [Q,Φ0(x)] = [Q,Ψ0(x)] = [Q, [Q, ιϕ(x)]] = 0).

By Corollary 2.17 there exists a vertical derivation Ĥ(x) ∈ X−1(E) of degree −1 depending

linearly on x ∈ g[1] such that

Φ0(x)−Ψ0(x) = [Q, Ĥ(x) + ιϕ(x)].

Let H(x) := Ĥ(x) + ιϕ(x), for x ∈ g[1]. The proof continues the same as for item 2 of Theorem

2.4
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2.3. Particular examples. We recall that for a regular foliation F on a manifold M (i.e.,

F = Γ(F ) for some involutive subvector bundle F ⊆ TM), the Lie algebroid E−1 = F [1] whose

sections form F , is a universal Lie ∞-algebroid of F . In particular, E−i = 0 for i ≥ 2. Its

corresponding Q-manifold is given by the leafwise De Rham differential on Γ(∧•F ∗). Also,

for any symmetry X ∈ s(F), i.e., any vector field X ∈ X(M) such that [X,F ] ⊂ F , the Lie

derivative LX : Γ(∧kT ∗M) −→ Γ(∧kT ∗M) along X induces a vector field in X0(E) i.e., a degree

zero derivation of Γ(S•(E∗)).

Example 2.22. Let F be a regular foliation on a manifold M . Every weak symmetry action

g −→ X(M), x 7−→ ̺(x), of F , can be lifted to Lie∞-morphism Φ: g[1] (X•(E)[1], [· , ·] , adQ)

given explicitly as follows:

x ∈ g[1] 7−→ Φ0(x) = L̺(x) ∈ X0(E)[1] (24)

x ∧ y ∈ ∧2g[1] 7−→ Φ1(x, y) = ιχ(x,y) ∈ X−1(E)[1] (25)

and
(
Φi : ∧

i+1 g[1] −→ X−i(E)
)
≡ 0, for all i ≥ 2, where χ(x, y) := ̺([x, y]g) − [̺(x), ̺(y)] for

x, y ∈ g.

Example 2.23. Let F be a singular foliation on a manifold M together with a strict symmetry

action ̺ : g −→ X(M) such that ̺(g) ⊂ F . Hence, C∞(M)̺(g) is a singular foliation which is

the image of the transformation Lie algebroid g ×M . The universality theorem (see [19, 20])

provides the existence of a Lie ∞-morphism ν : g[1] −→ E. Let us call its Taylor coefficients

νn : ∧
n+1 g[1] −→ E−n−1, n ≥ 0. We may take for example the 0-th and 1-th Taylor coefficients

of a Lie ∞-morphism that lifts ̺ as:

Φ0(x) := [Q, ιν0(x)] ∈ X0(E)[1], for x ∈ g[1].

Φ1(x, y) := [Q, ιν1(x,y)]
(−1) −

∑

k≥0

[[Q, ιν0(x)], ιν0(y)]
(k) ∈ X−1(E)[1], for x, y ∈ g[1].

Note that in this case the action ̺ is equivalent to zero, therefore by item 3 of Theorem 2.4 the

Lie ∞-morphism Φ is homotopic to zero.

3. Lifts of weak symmetry actions and Lie ∞-algebroids

In this section, we consider the Lie algebra g[1] as the trivial vector bundle over M with fiber

g[1].

The following proposition says that any lift of strict symmetry action of g on a singular

foliation F induces a Lie ∞-algebroids with some special properties and vice versa. See [24],

Proposition 3.3, for a proof of the following statement.

Proposition 3.1. Let (E,Q) be a Lie ∞-algebroid over a singular foliation F . Every Lie

∞-morphism Φ: (g[1], [· , ·]g)  (X•(E)[1], [· , ·] , adQ) with g of finite dimension induces a Lie

∞-algebroid (E ⊕ g[1], Q′) with

Q′ := dCE +Q+
∑

k≥1,i1,...,ik=1,...,dim(g)

1

k!
ξi1 ⊙ · · · ⊙ ξikΦk−1(ξi1 , . . . , ξik), (26)

where dCE is the Chevalley-Eilenberg complex of g, ξ1, . . . , ξdim(g) ∈ g∗ is the dual basis of some

basis ξ1, . . . , ξdim(g) ∈ g and for all k ≥ 0, Φk : S
k+1g[1] −→ X−k(E)[1] is the k-th Taylor coeffi-

cients of Φ.



16 RUBEN LOUIS

In the dual point of view, (26) corresponds to a Lie ∞-algebroid over the complex

· · ·
ℓ1−→ E−3

ℓ1−→ E−2
ℓ1−→ g[1]⊕ E−1

ρ′

−→ TM (27)

whose brackets satisfy

(1) the anchor map ρ′ sends an element x ⊕ e ∈ g[1] ⊕ E−1 to ̺(x) + ρ(e) ∈ ̺(g) + TF ,

where ̺ : g −→ X(W ) is the weak symmetry action induced by Φ,

(2) the binary bracket satisfies

ℓ2 (Γ(E−1),Γ(E−1)) ⊂ Γ(E−1) and ℓ2(Γ(E−1), x) ⊂ Γ(E−1), ∀x ∈ g[1]

(3) the g[1]-component of the binary bracket on constant sections of g[1] × M is the Lie

bracket of g[1].

Conversely, if there exists a Lie∞-algebroid (E′, Q′) whose underlying complex of vector bundles

is of the form (27) and that satisfies item 1, 2 and 3, then there is a Lie ∞-morphism

Φ: (g[1], [· , ·]g) (X•(E)[1], [· , ·] , adQ)

which is defined on a given basis ξ1, . . . , ξd of g by:

Φk−1(ξi1 , . . . , ξik) = pr ◦ [· · · [[Q′, ιξi1 ], ιξi2 ], . . . , ιξik ] ⊂ X(E)[1], k ∈ N, (28)

where pr stands for the projection map X(E′)[1] −→ X(E)[1].

Proof. We explain the idea of the proof. A direct computation gives the first implication.

Conversely, let us denote by Q′ the homological vector fields of Lie∞-algebroid whose underlying

complex of vector bundles is of the form (27). The map defined in Equation (28) is indeed a lift

into a Lie ∞-morphism of the weak symmetry action ̺:

• It is not difficult to check that for any ξ ∈ g[1], one has [Q,Φ0(ξ)] = 0.

• The fact that Φ defines a Lie ∞-morphism can be found using Voronov trick [28], i.e,

doing Jacobi’s identity inside the null derivation

0 = pr ◦ [· · · [[[Q′, Q′], ιξi1 ], ιξi2 ], . . . , ιξik ]. (29)

A direct computation of Equation (29) falls exactly on the requirements of Definition B.3.

�

Remark 3.2. Proposition 3.1 is stated in the finite dimensional context, i.e., it needs g to be

finite dimensional and requires the existence of a geometric resolution for the singular foliation

F . The next theorem proves that: given a weak symmetry action of a Lie algebra g (maybe of

infinite dimensional) on a Lie-Rinehart algebra F ⊂ X(M) (we do not require F being locally

finitely generated), such a Lie∞-algebroid (maybe of infinite dimension in the sense of Definition

1.14 in [20]) with the properties (1), (2) and (3) described at the sections level of the complex

(27) in Proposition 3.1 exists.

Theorem 3.3. Let ̺ : g −→ X(M) be a weak symmetry action on a singular foliation F . Let

((K−i)i≥1,d, ρ) be a free resolution2 of the singular foliation F over M . The complex of trivial

vector bundles over M

· · ·
d
−→ E−3

d
−→ E−2

d
−→ g[1]⊕ E−1

ρ′

−→ TM (30)

where Γ(E−1) = K−i, comes equipped with a Lie ∞-algebroid structure

2Possibly of infinite dimension or infinite length.
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(1) whose unary bracket is d and whose anchor map ρ′, sends an element x⊕ e ∈ g[1]⊕E−1

to ̺(x) + ρ(e) ∈ ̺(g) + TF ,

(2) the binary bracket satisfies

ℓ2 (Γ(E−1),Γ(E−1)) ⊂ Γ(E−1) and ℓ2(Γ(E−1),Γ(g[1])) ⊂ Γ(E−1),

(3) the g[1]-component of the binary bracket on constant sections of g[1] × M is the Lie

bracket of g.

For a proof, see Appendix C.

Remark 3.4. When we have ̺(g)∩ TmF = 0 for all m in M , Equation (30) is a free resolution

of the singular foliation C∞(M)̺(g) + F and we can apply directly the Theorem 2.1 in [20].

Otherwise, we need to show there is no obstruction in degree −1 while doing the construction

of the brackets if the result still needs to hold.

4. On weak and strict symmetries: an obstruction theory

In this section, we apply theorems in Section 2 to define a class obstructing the existence of

strict symmetry action equivalent to a given weak symmetry action. We apply these results to

the problem of extending a strict Lie algebra action on an affine sub-variety to the ambient space.

Let us start with some generalities that we will use throughout of this section. Assume we

are given

• a Lie algebra g with Lie bracket [· , ·]g,

• a universal Lie ∞-algebroid (E,Q) of a singular foliation F ,

• a weak symmetry action ̺ : g −→ X(M) of g on a singular foliation F , together with

η : ∧2 g −→ Γ(E−1) such that x, y ∈ g

̺([x, y]g)− [̺(x), ̺(y)] = ρ(η(x, y)). (31)

Theorem 2.4 states that ̺ : g→ X(M) admits a lift to a Lie ∞-morphism

Φ: (g[1], [· , ·]g) (X•(E)[1], [· , ·] , adQ). (32)

Equivalently, if g is of finite dimension, the Lie ∞-morphism (32) corresponds (by Proposition

3.1) to a Lie ∞-algebroid (E′, Q′) over M such that

• (E,Q) is included as a sub-Lie ∞-algebroid in a Lie algebroid (E′, Q′) over M ,

• its underlying complex is, E′
−1 := g[1]⊕ E−1, and for any i ≥ 2, E′

−i = E−i, namely

· · ·
d=ℓ1−→ E−3

d=ℓ1−→ E−2
d=ℓ1−→ g[1]⊕ E−1

ρ′

−→ TM, (33)

• we have,

ℓ′2(x⊕ 0, y ⊕ 0) = [x, y]g ⊕ η(x, y)

and

ℓ′2(x,Γ(E−1)) ⊂ Γ(E−1)

for all x ∈ g[1].

Remark 4.1. It is important to notice that the Lie ∞-algebroid (E′, Q′) can be constructed

even if g and (E,d) are of infinite dimensions (see Theorem 3.3).
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Remark 4.2. In Equation (33), the complex (E, ℓ1) can be chosen to be minimal at a point

m ∈ M , i.e., ℓ1|m = 0, provided that a geometric resolution of F exists. By Proposition 4.14

in [19] the isotropy Lie algebra gm = F(m)
ImF of the singular foliation F at the point m ∈ M is

isomorphic to ker(ρm). This allows to denote the latter space also by gm.

Lemma 4.3. Let m ∈M be a fixed point of the g-action ̺. Assume that the underlying complex

(E, ℓ1) is minimal at a point m, i.e., ℓ1|m = 0. The map

ν : g −→ End (gm) , x 7−→ ℓ′2(x , ·)|m (34)

satisfies

(a) ν([x, y]g)− [ν(x), ν(y)] + ℓ2( ·, η(x, y))|m = 0,

(b) ν(z)
(
η(x, y)|m

)
− η([x, y]g, z)|m+ 	 (x, y, z) = 0.

Proof. The map ν in (34) is well-defined since ̺|m = 0 and gm = ker ρm. The Jacobi identity on

elements x, y ∈ g[1], e ∈ Γ(E−1), evaluated at the point m, implies that

ν([x, y]g)(e|m)− [ν(x), ν(y)](e|m) + ℓ2(η(x, y), e)|m = 0.

This proves item (a). Likewise, Jacobi identity on elements x, y, z ∈ g[1] together with ℓ1|m = 0

give:

ℓ′2(ℓ
′
2(x, y), z)|m+ 	 (x, y, z) = 0 =⇒ ℓ′2([x, y]g, z)|m + ℓ′2(η(x, y), z)|m+ 	 (x, y, z) = 0,

=⇒ ν(z)
(
η(x, y)|m

)
− η([x, y]g, z)|m+ 	 (x, y, z) = 0.

Here we have used the definition of ℓ′2 on degree −1 elements and Jacobi identity for the bracket

[· , ·]g. This proves item (b). �

By Lemma 4.3, gm is equipped with a g-module structure when η(x, y)|m is for all x, y ∈ g

valued in the center of the isotropy Lie algebra gm. The following proposition is built on this

last point. It defines an obstruction class mentioned earlier in the introduction of the paper

as an obstruction of the possibility of turning a weak symmetry action into a strict symmetry

action. Recall that η is defined by Equation (31). Notice that if m ∈ M is a fixed point of the

g-action ̺, then this implies in particular that η(x, y)|m ∈ ker ρm.

Proposition 4.4. Let m ∈M be a fixed point of the g-action ̺. Assume that

• the underlying complex (E, ℓ1) of (E,Q) is minimal at m,

• for all x, y ∈ g, η(x, y)|m is valued in the center3 Z(gm) of gm.

Then,

(1) For every x ∈ g[1], ℓ′2(x, · ) preserves Z(gm), and the restriction of the 2-ary bracket

ℓ′2 : g⊗ Z(gm) −→ Z(gm)

endows Z(gm) with a g-module structure which does not depend neither on the choice

of a weak symmetry action ̺ nor of a universal Lie ∞-algebroid of F , nor of the Lie

∞-morphism Φ: g[1] X(E)[1].

(2) the restriction of the map η : ∧2 g −→ E−1 at m

η|m : ∧2 g −→ Z(gm)

is a 2-cocycle for the Chevalley-Eilenberg complex of g valued in Z(gm),

3In particular, when the 2-ary bracket ℓ2 is zero at m when applied to two elements of degree −1, i.e., gm is

Abelian, we have Z(gm) = gm.
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(3) the cohomology class of this cocycle does not depend on the representatives of the equiv-

alence class of ̺, nor on the choices made in the construction,

(4) if ̺ is equivalent to a strict symmetry action, then η|m is exact.

Proof. (E, ℓ1) being minimal at m, ℓ′2|m satisfies the Jacobi identity. In particular, for every

x ∈ g[1], ℓ′2(x, · )|m preserves Z(gm). By item (a) of Lemma 4.3, the restriction of the 2-ary

bracket

ℓ′2 : g⊗ Z(gm) −→ Z(gm)

endows Z(gm) with a g-module structure, since ℓ2(·, η(x, y))|m = 0 by assumption. It is easy to

see that if we change the action ̺ to ̺+ ρ ◦ β for some vector bundle morphism β : g −→ E−1

such that β|m : g −→ Z(gm), the new 2-ary bracket between sections of g[1] and E−1 constructed

as in the proof of Theorem 3.3 is modified by (x, e) 7→ ℓ′2(x, e) + ℓ2(β(x), e). The second term of

the latter vanishes at m, by definition of β|m. As a result, the action of ℓ′2 on Z(gm) does not

depend on the choices made in the construction. This proves item 1.

Item 2 follows from item (b) of Lemma 4.3 that tells that η|m : ∧2 g −→ Z(gm) is a 2-cocycle

for the Chevalley-Eilenberg complex of g valued in Z(gm).

Let ̺′ be a weak symmetry action of g on F which is equivalent to ̺, i.e., there exists a vector

bundle morphism β : g −→ E−1 (with β|m : g −→ Z(gm)) such that ̺′(x) = ̺(x)+ρ(β(x)) for all

x ∈ g. Let η′ : ∧2 g −→ E−1 be such that ̺′([x, y]g)− [̺′(x), ̺′(y)] = ρ(η′(x, y)) for all x, y ∈ g.

Following the constructions in the proof of Theorem 3.3, this implies that

η′(x, y) = η(x, y)+β([x, y]g)− ℓ
′
2(x, β(y))+ ℓ

′
2(y, β(x))− ℓ2(β(x), β(y))), for all x, y ∈ g. (35)

Equation (35) implies that η′(x, y)|m − η(x, y)|m = dCE(β|m)(x, y), where dCE stands for the

Chevalley-Eilenberg differential. As a consequence, η′|m and η|m define the same class in the

Chevalley-Eilenberg complex of g valued in Z(gm). This proves item 3 and 4. �

Remark 4.5. Even when ℓ2|m 6= 0, we can have some obstruction, but they are not given

by cohomology classes because they are not given by linear equations. More precisely, it is

obvious that the weak symmetry action ̺ is not equivalent to strict one if the Maurer-Cartan-

like equation (35) has no solution β with η′|m = 0.

The following is a direct consequence of Proposition 4.4.

Corollary 4.6. Let m ∈ M be a fixed point for the g-action ̺. Assume that the isotropy Lie

algebra gm of F at m is Abelian. Then

(1) gm is a g-module.

(2) The bilinear map, η|m : ∧2 g→ gm, is a Chevalley-Eilenberg 2-cocycle of g valued in gm.

(3) Its class cl(η|m) ∈ H
2(g, gm) does not depend on the choices made in the construction.

(4) Furthermore, cl(η|m) is an obstruction of having a strict symmetry action equivalent

to ̺.

Example 4.7. We return to Example 1.7 and consider the gkm-action on Ik+1
m F . Every point

m ∈M is a fixed point for the gkm-action of item 2 of Example 1.7. Since the isotropy Lie algebra

gkm is Abelian for every k ≥ 2 the following assertions hold by Corollary 4.6:

(1) For each k ≥ 1, the vector space gk+1
m is a gkm-module.

(2) The obstruction of having a strict symmetry action equivalent to ̺k is a Chevalley-

Eilenberg cocycle valued in gk+1
m .

Here is a particular case of this example.
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Example 4.8. Let F := I30X(R
n) be the singular foliation generated by vector fields vanishing

to order 3 at the origin. The quotient g :=
I2
0X(R

n)

I3
0X(R

n)
is a trivial Lie algebra. There is a weak

symmetry action of g on F which assigns to an element in g a representative in I20X(R
n). In

this case, the isotropy Lie algebra of F at zero is Abelian and ℓ′2(g, g0)|0 = 0. Thus, the action

of g on g0 is trivial. One can choose η : ∧2 g −→ g0 such that η
(
x2i

∂
∂xi
, x2i

∂
∂xj

)
= 2eij , with

eij a constant section in a set of generators of degree −1 whose image by the anchor is x3i
∂
∂xj

.

Therefore, η|0

(
x2i

∂
∂xi
, x2i

∂
∂xj

)
6= 0. This implies that the class of η is not zero at the origin.

Therefore, by item 2 of Corollary 4.6 the weak symmetry action of g on F is not equivalent to

a strict one.

Also, we have the following consequence of Corollary 4.6 for Lie algebra actions on affine va-

rieties, as in Example 1.11. Before going to Corollary 4.12 let us write definitions and some facts.

Settings: Let W be an affine variety realized as a subvariety of Cd, and defined by some ideal

IW ⊂ C[x1, . . . , xd]. We denote by X(W ) := Der(OW ) the Lie algebra of vector fields on W ,

where OW is coordinates ring of W .

Definition 4.9. A point p ∈ W is said to be strongly singular if for all f ∈ IW , dpf ≡ 0 or

equivalently if for all f ∈ IW and X ∈ X(Cd), one has X[f ](p) ∈ Ip.

Example 4.10. Any singular point of a hypersurfaceW defined by a polynomial ϕ ∈ C[x1, . . . , xd]

is strongly singular.

The lemma below is immediate.

Lemma 4.11. In a strongly singular point, the isotropy Lie algebra of the singular foliation

F = IWX(Cd) is Abelian.

The following corollary answers the question of Example 1.11. Here, cl(η|p) is as in Corollary

4.6.

Corollary 4.12. Let ̺ : g −→ X(W ) be a Lie algebra morphism.

(1) Any extension ˜̺ as in Example 1.11 is a weak symmetry action for the singular foliation

F = IWX(Cd).

(2) Let p ∈W be a fixed point for the g-action ̺ which is also a strongly singular point p in

W . If class cl(η|p) does not vanish, then the Lie algebra morphism ̺ : g −→ X(W ) can

not be extended to a Lie algebra morphism ˜̺: g −→ X(Cd).

Proof. This first item follows from Example 1.11. By Lemma 4.11, the isotropy Lie algebra of

F = IWX(Cd) is Abelian in every strongly singular points of an affine variety W . Thus, item 2

of Corollary 4.12 follows from Corollary 4.6. �

Let us give examples of Lie algebra actions on an affine variety that do not extend to the

ambient space.

Example 4.13. Let W ⊂ C2 be the affine variety generated by the polynomial ϕ = FG with

F,G ∈ C[x, y] =: O. We consider the vector fields U = FXG, V = GXF ∈ X(C2), where XF

and XG are Hamiltonian vector fields w.r.t the Poisson structure {x, y} := 1. Note that U, V

are tangent to W , i.e. U [ϕ], V [ϕ] ∈ 〈ϕ〉. It is easily checked that [U, V ] = ϕX{F,G}.
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The action of the trivial Lie algebra g = R2 on W that sends its canonical basis (e1, e2) to

U , and V respectively, is a weak symmetry action on the singular foliation Fϕ := 〈ϕ〉X(C2) of

vector fields vanishing on W , and induces a Lie algebra map,

̺ : g −→ X(W ). (36)

A universal Lie ∞-algebroid of Fϕ is a Lie algebroid (see Example 3.19 of [20]) because,

0 // Oµ⊗O X(C2)
ϕ ∂

∂µ
⊗O id

// Fϕ

is a O-module isomorphism, (Fϕ is a projective module). Here, µ is a degree −1 variable, so that

µ2 = 0. The universal algebroid structure over that resolution is given on the set of generators

by:

ℓ2

(
µ⊗O

∂

∂x
, µ⊗O

∂

∂y

)
:=

∂ϕ

∂x
µ⊗O

∂

∂y
−
∂ϕ

∂y
µ⊗O

∂

∂x
(37)

and ℓk := 0 for every k ≥ 3. Since X{F,G} =
∂{F,G}

∂y

∂

∂x
−
∂{F,G}

∂x

∂

∂y
, we have

η(e1, e2) :=
∂{F,G}

∂y
µ⊗O

∂

∂x
−
∂{F,G}

∂x
µ⊗O

∂

∂y
. (38)

Take, for example, F (x, y) = y − x2 and G(x, y) = y + x2. The isotropy Lie algebra g(0,0) of

Fϕ is Abelian by Equation (37), i.e. ℓ2|(0,0) = 0. By Corollary 4.6 (1), g(0,0) is a R2-module. A

direct computation shows that the action on g(0,0) is not trivial, but takes values in O µ⊗O
∂

∂x
.

Besides, Equation (38) applied to {F,G} = 4x gives

η(e1, e2) = −4µ⊗O
∂

∂y
. (39)

If η|(0,0) were a coboundary of Chevalley-Eilenberg, we would have (in the notations of Proposi-

tion 4.4) that

η(x, y)|(0,0) = β([x, y]R2)− ℓ′2(x, β(y)) + ℓ′2(y, β(x)) ∈ O µ⊗O
∂

∂x
, for all x, y ∈ g (40)

for some linear map4 β : g −→ g(0,0). Therefore, Equation (40) has no solution in view of

Equation (39), since η|(0,0) 6= 0. In other words, its class cl(η) does not vanish at (0, 0). By

Corollary 4.12 (2), the action ̺ given in Equation (36) cannot be extended to the ambient

space.

5. Bi-submersion towers and symmetries

We end the paper by introducing the notion “bi-submersion towers”. The work contained

in this section is entirely original, except for the notion given in Definition 5.3 that arose in a

discussion between C. Laurent-Gengoux, L. Ryvkin, and I, and will be the object of a separate

study.

4Here, ℓ′2 is as Proposition 4.4.
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5.1. Definitions and existence. Let us firstly recall the definition of bi-submersion introduced

in [1].

Definition 5.1. Let M be a manifold endowed with a singular foliation F . A bi-submersion

B
s

**

t

44 M over F is a triple (B, s, t) where:

• B is a manifold,

• s, t : B →M are submersions, respectively called source and target,

such that the pull-back singular foliations s−1F and t−1F are both equal to the space of vector

fields of the form ξ + ζ with ξ ∈ Γ(ker(ds)) and ζ ∈ Γ(ker(dt)). Namely,

s−1F = t−1F = Γ(ker(ds)) + Γ(ker(dt)). (41)

In that case, we also say that (B, s, t) is a bi-submersion over (M,F).

Example 5.2. Let F be a singular foliation on a manifold M . Let x ∈ M . Let X1, . . . ,Xn be

vector fields in F whose class in Fx := F/IxF generate the latter. We know from [1] that there

is an open neighborhood W of (x, 0) ∈ M × Rn such that (W, t, s) is a bi-submersion over F ,

here

s(x, y) = x and t(x, y) = expx

(
n∑

i=1

yiXi

)
= ϕ

∑n
i=1 yiXi

1 (x) (42)

where for X ∈ X(M), ϕX1 denotes the time-1 flow of X. Such bi-submersions are called path

holonomy bi-submersions [4].

Now we can introduce the following definition.

Definition 5.3. A bi-submersion tower over a singular foliation F on M is a (finite or infinite)

sequence of manifolds and maps as follows

TB : · · ·

si+1
,,

ti+1

22 Bi+1

si
**

ti

44 Bi

si−1
**

ti−1

44 · · ·

s1
**

t1

44 B1

s0
++

t0

33 B0, (43)

together with a sequence Fi of singular foliations on Bi, with the convention that B0 =M and

F0 = F , such that

• for all i ≥ 1, Fi ⊂ Γ(ker dsi−1) ∩ Γ(ker dti−1),

• for each i ≥ 1, Bi+1

si
**

ti

44 Bi is a bi-submersion over Fi.

A bi-submersion tower over (M,F) shall be denoted as (Bi+1, si, ti,Fi)i≥0. The bi-submersion

tower over F in (43) is said to be of of length n ∈ N if Bj = Bn, sj = tj = id and Fj = {0} for

all j ≥ n.

Remark 5.4. Let us spell out some consequences of the axioms. For i ≥ 1, two points b, b′ ∈ Bi

of the same leaf of Fi satisfy si−1(b) = si−1(b
′) and ti−1(b) = ti−1(b

′). Also, for all b ∈ Bi, TbFi ⊂

(ker dsi−1)|b ∩ (ker dti−1)|b .

Let us explain how such towers can be constructed out of a singular foliation. Let F be a

singular foliation on M . Then,

(1) By Proposition 2.10 in [1], there always exists a bi-submersion B1

s0
**

t0

44 M over F .
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(2) The C∞(B1)-module Γ(ker ds0) ∩ Γ(ker dt0) is closed under Lie bracket. When it is

locally finitely generated, it is a singular foliation on B1. Then, it admits a bi-submersion

B2

s1
**

t1

44 B1 . We now have obtained the two first terms of a bi-submersion tower.

(3) We can then continue this construction provided that Γ(ker ds1) ∩ Γ(ker dt1) is locally

finitely generated as a C∞(B2)-module, and that it is so at each step5.

Definition 5.5. A bi-submersion tower TB = (Bi+1, si, ti,Fi) over (M,F) is called exact bi-

submersion tower over (M,F) when Fi+1 = Γ(ker(dsi)) ∩ Γ(ker(dti)) for all i ≥ 0. It is

called a path holonomy bi-submersion tower (resp. path holonomy atlas bi-submersion tower)

if Bi+1

si
**

ti

44 Bi is a path holonomy bi-submersion (resp. an Androulidakis-Skandalis’ path

holonomy atlas6 over Fi for each i ≥ 0. When a path holonomy bi-submersion tower is exact,

we speak of exact path holonomy bi-submersion tower.

The following theorem gives a condition which is equivalent to the existence of a bi-submersion

tower over a singular foliation. The proof uses Proposition 5.16 and Lemma 5.17 which are stated

in the next section.

Theorem 5.6. Let F be a singular foliation on M . The following items are equivalent:

(1) F admits a geometric resolution.

(2) There exists an exact path holonomy bi-submersion tower over (M,F).

Convention 5.7. For a submersion φ : M −→ N and a smooth map ψ : M −→ N , we denote

by ψΓ(ker dφ) the space of ψ-projectable vector fields in Γ(ker dφ) ⊂ X(M).

Proof. (1)⇒ (2) : Assume that F admits a geometric resolution (E,d, ρ). In particular, (E−1, ρ)

is an anchored bundle over F . We need to show by recursion on i ≥ 0 that Γ(ker dsi)∩Γ(ker dti)

is locally finitely generated because ker d(i+1) or ker ρ is locally finitely generated. We actually

repeat at each step i ≥ 0, the general fact that the pull-back complex of vector bundle by the

submersion ϕ = t0 ◦ t1 ◦ · · · ◦ ti : Bi+1 −→M

· · · // ϕ∗E−i−3
ϕ∗d(i+3)

// ϕ∗E−i−2
ϕ∗d(i+2)

// ϕ∗E−i−1
// TBi+1 (44)

remains exact at the sections level (at degree7 ≤ −1), since C∞(Bi+1) is a flat C∞(M)-module.

In addition, for i ≥ 1, the complex (44) defines a geometric resolution of Fi+1.

Let (B1, s0, t0) be a path holonomy bi-submersion over (M,F). Consider the map

R : Γ(t∗0E−1) −→
t0Γ(ker ds0) ⊂ X(B1) (45)

t∗0e 7−→
−→e

defined as in Proposition 5.16. By Lemma 5.17 (1), the map R in (45) comes from a vector

bundle morphism t∗0E−1 −→ ker ds0 and is surjective on an open subset V1 ⊂ B1, by item 2 of

Lemma 5.17. In particular the map R in (45) restricts to a surjective map

ker(t∗0ρ) −→ ker
(
dt0|Γ(ker ds0)

)
= Γ(ker ds0) ∩ Γ(ker dt0) ⊂ X(B1) (46)

5In the real analytic case, the module Γ(ker ds1)∩Γ(ker dt1) is locally finitely generated because of the noethe-

rianity of the ring of germs of real analytic functions [11, 26].
6See [1], Example 3.4 (3).
7We shall understand that the degree of elements of ϕ∗E−i−j is −j.
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By exactness in degree −1, ker ρ = d(2)(Γ(E−2)). Therefore, ker(t
∗
0ρ) is locally finitely generated.

By surjectivity of the map (46), Γ(ker ds0) ∩ Γ(ker dt0) =: F1 is also locally finitely generated

on V1, in particular F1 is a singular foliation on V1 ⊂ B1 (we may assume that B1 = V1). Thus,

one can take a path holonomy bi-submersion (B2, s1, t1) over (B1,F1). The proof continues the

same as the previous step.

Let us make a step further for clarity. The composition

Γ(E−2) 33 33
d(2) // im(d(2)) = ker ρ // // F1

together with E−2 is an anchored bundle over F1. Let ϕ = t0 ◦ t1. Just like in the first step,

define the surjective C∞(B2)-linear map,

Γ(ϕ∗E−2) −→
t1Γ(ker ds1) ⊂ X(B2) (47)

ϕ∗e 7−→ ←−e .

By Lemma 5.17 (2), the map 47 restricts (upon taking B2 smaller) to a surjective map

ker

(
Γ(ϕ∗E−2)

ϕ∗d(2)
−→ Γ(ϕ∗E−1)

)
−→ ker

(
dt1|Γ(ker ds1)

)
= Γ(ker ds1) ∩ Γ(ker dt1) ⊂ X(B2)

(48)

By exactness in degree −2, the C∞(M)-module

ker

(
Γ(E−2)

d(2)
−→ Γ(E−1)

)
= d(3)(Γ(E−3))

is (locally) finitely generated, hence F2 := Γ(ker ds1) ∩ Γ(ker dt1) is a singular foliation on B2.

Thus, one can take a path holonomy bi-submersion (B3, s2, t2) over (B2,F2). By recursion on

i ≥ 1, we use a path holonomy bi-submersion (Bi+1, si, ti) over (Bi,Fi) and construct an anchor

bundle over Fi by the composition

Γ(ϕ∗E−i−1) 22 22
ϕ∗d(i+1)

// im(ϕ∗d(i+1)) = ker(ϕ∗d(i)) // // Fi

with ϕ = t0 ◦ t1 ◦· · · ◦ ti−1 : Bi −→M and show as for i = 0, 1 that Fi+1 := Γ(ker dsi)∩Γ(ker dti)

is a singular foliation on Bi+1. The proof follows.

(2)⇒ (1) is proven by Lemma 5.8 and Remark 5.9 below. �

In the following lemma we deduce out of any bi-submersion tower over a singular foliation, a

complex of vector bundles over different base manifolds, and discuss exactness. In Remark 5.9,

we give conditions to have a complex vector bundles over M .

Lemma 5.8. Let F be a singular foliation on M . Assume that there exists a bi-submersion

tower TB = (Bi, ti, si,Fi)i≥0 over F . Then,

· · · // ker ds2

��

dt2 // ker ds1

��

dt1 // ker ds0

��

dt0 // TM

��
· · · // B3

t2

// B2
t1

// B1
t0

// M.

(49)

is a complex of vector bundles, which is exact at the sections level8 if TB is an exact bi-submersion

tower, i.e., if Fi = Γ(ker dsi−1) ∩ Γ(ker dti−1) for all i ≥ 1.

8Let us explain the notion of exactness at the level of sections when the base manifolds are not the same: what

we mean is that for all n ≥ 0, Γ(ker dtn)∩Γ(ker dsn) is equal to the tn+1-projectable vector fields in Γ(ker dsn+1).
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Proof. For any element b ∈ Bi+1 and any vector v ∈ ker dsi ⊂ TbBi+1 one has,

dti(v) ∈ Tti(b)Fi, (since Γ(ker dsi) ⊂ t
−1
i (Fi)).

=⇒ dti(v) ∈ (ker dsi−1 ∩ ker dti−1) |ti(b), by Definition 5.3.

=⇒ dti(v) ∈ ker dsi−1 and dti−1 ◦ dti(v) = 0, for all i ≥ 1.

This shows the sequence (49) is a well-defined complex of vector bundles.

Let us prove that it is exact when Fi = Γ(ker dsi−1) ∩ Γ(ker dti−1) for all i ≥ 1. Let ξ ∈

Γ (ker dsi−1) be a ti−1-projectable vector field that projects to zero, i.e. dti−1(ξ) = 0. This

implies that ξ ∈ Γ(ker dsi−1) ∩ Γ(ker dti−1) = Fi. Since ti is a submersion, there exists a ti-

projectable vector field ζ ∈ t−1
i (Fi) that satisfies dti(ζ) = ξ. The vector field ζ can be written as

ζ = ζ1 + ζ2 with ζ1 ∈ Γ (ker dti) and ζ2 ∈ Γ (ker dsi), because t
−1
i (Fi) = Γ(ker dsi) + Γ(ker dti).

One has, dti(ζ2) = ξ. A similar argument shows that the map, Γ(ker ds0)
dt0−→ t∗0F , is surjective.

This proves exactness in all degree. �

Remark 5.9. One of the consequence of Lemma 5.8 is that:

(1) If there exists a sequence of maps

M // ε0 // B1
// ε1 // B2

// ε2 // · · · (51)

where for all i ≥ 0, εi is a section for both si and ti then the pull-back of (49) on M

through the sections (εi)i≥0 i.e.,

· · ·
dt3// ε∗2,0 ker ds2

dt2 // ε∗1,0 ker ds1
dt1 // ε∗0 ker ds0

dt0 // TM (52)

is a complex of vector bundles, with the convention εn,0 = εn ◦ · · · ◦ ε0. If TB is an exact

bi-submersion tower then, (52) is a geometric resolution of F .

(2) In case that TB is an exact path holonomy bi-submersion tower, such a sequence (51)

always exists, since the bi-submersions (Bi+1, si, ti) are as in Example 5.2. For such

bi-submersions, the zero section x 7→ (x, 0) is a section for both si and ti.

Theorem 5.6 is now proven. Here is a consequence.

Corollary 5.10. Let F be a singular foliation on M . Assume that there exists an exact bi-

submersion tower TB = (Bi, ti, si,Fi)i≥0 over F of length n + 1. Then, the pull-back of the

sequence of vector bundles

ker dsn

--❬❬❬❬❬❬❬
❬❬❬❬❬

❬❬❬❬❬❬
❬❬❬❬❬❬

❬❬❬❬❬❬
❬❬❬❬❬❬

❬❬❬❬❬
❬❬❬❬❬❬

❬❬❬❬❬❬
❬❬❬
dtn // t∗n ker dsn−1

//

,,❨❨❨❨❨
❨❨❨❨

❨❨❨❨
❨❨❨❨

❨❨❨❨
❨❨❨❨

❨❨❨❨
❨❨❨❨

❨❨❨❨
❨ · · ·

++❲❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲
dt2 // t∗2,n ker ds1

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

dt1 // TBn+1 ×TM ker ds0

��

pr1 // TBn+1

vv♥♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

Bn+1
11

(53)

is a geometric resolution of the pull-back foliation t−1
0,n(F) ⊂ X(Bn+1), where pr1 is the projection

on TBn+1 and for i ≥ 1, ti,j is the composition ti ◦ · · · ◦ tj : Bj+1 → Bi.

Equivalently, it means that the pull-back of the vector bundles in (53) to any one of the manifold Bm with

m ≥ n is exact at the level of sections, i.e.,

Γ(t∗n+1,m ker dsn+1)
dtn+1 // Γ(t∗n,m ker dsn)

dtn // Γ(t∗n−1,m ker dsn−1 ) (50)

is a short exact sequence of C∞(Bm)-modules, with tn,m = tn ◦ · · · ◦ tm for all m ≥ n.
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Proof. By Lemma 5.8, the complex in Equation (53) is exact. By construction, the projection

of the fiber product TBn+1 ×TM ker ds0 to TBn+1 induces the singular foliation t−1
0,n(F). �

5.2. Lift of a symmetry to the bi-submersion tower. Let us investigate what an action

̺ : g→ X(M) of a Lie algebra g on a singular foliation (M,F) would induce on a bi-submersion

tower TB over F .

We start with some vocabulary and preliminary results.

Definition 5.11. Let (B, s, t) be a bi-submersion over a singular foliation F on a manifold M .

We call lift of a vector field X ∈ X(M) to the bi-submersion (B, s, t) a vector field X̃ ∈ X(B)

which is both s-projectable on X and t-projectable on X.

The coming proposition means that the notion of lift to a bi-submersion only makes sense for

symmetries of the singular foliation.

Proposition 5.12. If a vector field on M admits a lift to a bi-submersion (B, s, t) over a

singular foliation F , then it is a symmetry of F .

Proof. Let X̃ ∈ X(B) be a lift ofX ∈ X(M). Since X̃ is s-projectable, [X̃,Γ(ker ds)] ⊂ Γ(ker ds).

Since X̃ is t-projectable, [X̃,Γ(ker dt)] ⊂ Γ(ker dt). Hence:

[X̃, s−1(F)] = [X̃,Γ(ker ds) + Γ(ker dt)]

= [X̃,Γ(ker(ds)] + [X̃,Γ(ker dt)]

⊂ Γ(ker ds) + Γ(ker dt) = s−1(F).

In words, X̃ is a symmetry of s−1F . Since X̃ projects through s to X, X is a symmetry of F . �

We investigate the existence of lifts of symmetries of F to bi-submersions over F .

Remark 5.13. For X,Y ∈ s(F),

(1) the lift X̃ to a given bi-submersion is not unique, even when it exists. However, two

different lifts of a X ∈ s(F) to a bi-submersion (B, s, t) differ by an element of the

intersection Γ(ker(ds)) ∩ Γ(ker(dt)).

(2) the lift X̃ is a symmetry of Γ(ker(ds)) ∩ Γ(ker(dt)), i.e., [X̃,Γ(ker(ds)) ∩ Γ(ker(dt))] ⊂

Γ(ker(ds)) ∩ Γ(ker(dt)), since X̃ is s-projectable and t-projectable.

(3) If the lifts X̃ and Ỹ exist, then [̃X,Y ] exists and

[̃X,Y ]− [X̃, Ỹ ] ∈ Γ(ker ds) ∩ Γ(ker dt). (54)

As the following example shows, the lift of a symmetry to a bi-submersion may not exist.

Example 5.14. Consider the trivial foliation F := {0} onM . For any diffeomorphism φ : M −→

M , (M, id, φ) is a bi-submersion over F . Every vector field X ∈ X(M) is a symmetry of F . If

it exists, its lift has to be given by X̃ = X since the source map is the identity. But X̃ = X is

t-projectable if and only if X is φ-invariant. A non φ-invariant vector field X therefore admits

no lift to (M, id, φ).

However, internal symmetries, i.e., elements in F admit lifts to any bi-submersion.
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Proposition 5.15. Let (B, s, t) be a bi-submersion over a singular foliation F on a manifold

M . Every internal symmetry, i.e., every vector field in X ∈ F , admits a lift X̃ ∈ X(B) to

(B, s, t). Moreover, X̃ can be chosen to be of the form

X̃ := Xt
s +Xs

t

with Xt
s ∈ Γ(ker(ds)) and Xs

t ∈ Γ(ker(dt)).

Proof. Let X ∈ F . Since s : B −→ M is a submersion, there exists Xs ∈ X(B) s-projectable

on X. Since t is a submersion, there exists Xt ∈ X(B) t-projectable on X. By construction

Xs ∈ s−1(F) and Xt ∈ t−1(F). Using the property (41) of the bi-submersion (B, s, t), the

vector fields Xs and Xt decompose as



Xs = Xs

s +Xs
t with Xs

s ∈ Γ(ker(ds)), Xs
t ∈ Γ(ker(dt)),

Xt = Xt
s +Xt

t with Xt
s ∈ Γ(ker(ds)), Xt

t ∈ Γ(ker(dt)).

By construction, Xs
t is s-projectable to X and t-projectable to 0 while Xt

s is s-projectable to

0 and t-projectable to X. It follows that, X̃ := Xt
s + Xs

t , is a lift of X to the bi-submersion

(B, s, t). �

The proof we give for Theorem 5.6 uses the notion of left-invariant, resp. right-invariant,

vector fields on a bi-submersion over a singular foliation. We define the latter in the next

proposition. It uses the notion of anchored bundle over a singular foliation and almost Lie

algebroid, see [19, 25] for more details.

Proposition 5.16. Let (B, s, t) be a bi-submersion over a singular foliation F on a manifold

M . Let (A, ρ) be an anchored bundle over F , i.e., A −→M is a vector bundle and ρ : A −→ TM

is a vector bundle morphism such that ρ(Γ(A)) = F . There exists two maps

Γ(A) −→ X(B)

a 7−→ ←−a

a 7−→ −→a

(55)

fulfilling the following conditions:

(1) the vector field −→a ∈ X(B) (resp. ←−a ∈ X(B)) is t-related (resp. s-related) with ρ(a) ∈ F ,

(2) the vector field −→a (resp. ←−a ) is tangent to the fibers of s (resp. t),

(3)
−→
fa = t∗(f)−→a and

←−
fa = s∗(f)←−a for all a ∈ Γ(A), f ∈ C∞(M).

The vector fields ←−a (resp. −→a ) for a ∈ Γ(A) are called left-invariant (resp. right-invariant)

vector fields of (B, s, t).

Proof. By Proposition 5.15, given a section a ∈ Γ(A) the vector field ρ(a) ∈ F admits a lift

ρ̃(a) ∈ X(B) on (B, s, t) of the form

ρ̃(a) := ρ(a)ts + ρ(a)st

with ρ(a)ts ∈ Γ(ker(ds)) and ρ(a)st ∈ Γ(ker(dt)). Also, dt(ρ(a)ts) = ρ(a) and ds(ρ(a)st ) = ρ(a).

Let b ∈ B and Ub an open neighborhood of b. Let (a1, . . . , ar) be a local trivialization of A on

the open subset U = s(Ub) ⊂M . We define a map RU on local generators by

RU : ΓUb
(t∗A) −→ ΓUb

(ker(ds)) (56)

t∗ai 7−→ ρ(ai)
t
s



28 RUBEN LOUIS

and extend by C∞(Ub)-linearity. These maps can be glued using partitions of unity. More

precisely, let (χλ)λ∈Λ be a partition of unity subordinate to an open cover (Uλ)λ∈Λ by open sets

that trivialize the vector bundle A. We define a map R on Γ(t∗A) as
∑

λ∈Λ

χλRUλ
.

Now for a ∈ Γ(a) we define −→a := R(s∗a). The map ←−• is defined similarly. Item 1, 2 and 3 hold

by construction.

Assume that (A, ρ) is equipped with an almost Lie algebroid bracket [· , ·]A. For all a, b ∈ Γ(A)

one has

ds
(←−−−
[a, b]A − [←−a ,

←−
b ]
)
= ρ([a, b]A)− [ρ(a), ρ(b)]

= 0,

because ←−a is s-projectable to ρ(a) and ρ is a morphism of brackets. Since left-invariant vector

fields are tangent to the fibers of t, one has dt
(←−−−
[a, b]A − [←−a ,

←−
b ]
)
= 0. The proof is similar for

−−−→
[a, b]A − [−→a ,

−→
b ]. This ends the proof. �

The following lemma is important in the proof of Theorem 5.6.

Lemma 5.17. Let (B, s, t) be any bi-submersion over a singular foliation F on a manifold M ,

and (A, ρ) an anchored bundle over F .

(1) There exists vector bundle morphisms R : t∗A −→ ker ds and L : s∗A −→ ker dt inducing

(55).

(2) Let x ∈M . If (B, s, t) is a path holonomy bi-submersion over F near (x, 0) then, every

b ∈ B such that t(b) = x admits a neighborhood V such that every t-projectable vector

field of ΓV (ker ds) is of the form R(ξ) for some ξ ∈ ΓV (t
∗A).

Remark 5.18. In item 1 of Lemma 5.17, by “ inducing (55)”we mean that for every a ∈ Γ(A),
−→a := R(t∗a) and ←−a := L(s∗a).

Proof. Item 1 is obtained in the proof of Proposition 5.16. For instance, the C∞(B)-linear

map R : Γ(t∗A) −→ Γ(ker ds) defined in (56) corresponds to a morphism of vector bundles

t∗A −→ ker ds. Let us prove item 2. By assumption, B is a neighborhood of (0, x) in M × Rn

with n = rkx(F) = dim(Fx := F/IxF) near x ∈ M (see Example 5.2). Let b ∈ B and

Ub an open neighborhood of b. Let (a1, . . . , ar) be a local trivialization of A on the open

subset U = t(Ub) ⊂ M . One has by definition of right-invariant vector fields of (B, s, t) that

dt(−→ai ) = t∗ρ(ai) for i = 1, . . . , rk(A). The vector fields ρ(ai) are generators of F on U . We

necessarily have n ≤ rk(A). Since the ρ(ai)(x)’s are generators of Fx, without loss of generality

we can assume that ρ(a1)(x), . . . , ρ(an)(x) is a basis of Fx. Since rk(ker ds) = n, (−→ai (b))i=1,...,n

form a basis of ker ds|x. Therefore, the
−→ai ’s are independent at every point of some neighborhood

V ⊂ Ub of b i.e., they form a local trivialization of the vector bundle ker ds −→ B. As a result,

vector fields of ΓV (ker ds) are of the form
∑n

i fi
−→ai with fi ∈ C

∞(V ) for i = 1, . . . , n. This ends

the proof. �

We can now state one of the important results of this section, which is the converse of

Proposition 5.12. It uses several concepts introduced in [1], which are recalled in the proof.

Proposition 5.19. Let F be a singular foliation on a manifold M . Every symmetry X ∈ s(F)

admits a lift
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(1) to any path holonomy bi-submersion (B, s, t),

(2) to Androulidakis-Skandalis’ path holonomy atlas,

(3) to a neighborhood of any point in a bi-submersion through which there exists a local

bisection that induces the identity.

Proof (of Proposition 5.19). Let X ∈ s(F). Assume that (B, s, t) = (W, s0, t0) is a path ho-

lonomy bi-submersion associated to some generators X1, . . . ,Xn ∈ F as in Example 5.2. Fix

(u, y = (y1, . . . , yn)) ∈ W ⊂ M × Rn, set Y :=
∑d

i=1 yiXi. By assumption, [Y,X] ∈ F . This

implies that dϕY1 (X) = (ϕY1 )∗(X) ∈ X +F . Indeed, for t such that the flow ϕYt of Y is defined,

one has

dϕY1 (X) = dϕY0 (X) +

∫ 1

0

d

dt
(dϕYt )dt

= X +

∫ 1

0
dϕYt ([Y,X])︸ ︷︷ ︸

∈F

dt, since dϕYt (F) = F .

Let Zy =
∫ 1
0 dϕ

Y
t ([Y,X])dt. When F is closed for Fréchet topology, it is clear that Zy belongs to

F . We claim that it is in fact always true: Upon restricting to an open subset of M if necessary,

Item 2 in Remark 2.9 implies that one can find local generators X1, . . . ,Xr of F , such that

dϕYt ([Y,X]) =

r∑

i=1

F itXi

for some smooth functions F it depending smoothly on the variable t. By integration, Zy =∑r
i=1

∫ 1
0 F

i
t dtXi belongs to F . In conclusion, there exists Zy ∈ F depending smoothly on y

such that dt0(X, 0) = X + Zy. Take Z̃y ∈ t
−1
0 (F) such that dt0(Z̃y) = Zy. One has,

dt0

(
(X, 0) − Z̃y

)
= X.

Also, we can write Z̃y = Z̃1
y + Z̃2

y , with Z̃
1
y ∈ Γ(ker ds0), Z̃

2
y ∈ Γ(ker dt0), since Z̃y ∈ t

−1
0 (F). By

construction, the vector field X̃ := (X,−Z̃1
y ) is a lift of X to the bi-submersion (W, s0, t0). This

proves item 1.

If XB ∈ X(B) and XB′ ∈ X(B′) are two lifts of the symmetry X on the path holonomy bi-

submersions (B, s, t) and (B′, s′, t′) respectively, then (XB ,XB′) is a lift of X on the composition

bi-submersion B ◦ B′. This proves item 2, since the Androulidakis-Skandalis’ path holonomy

atlas is made of fibered products and inverse of holonomy path holonomy bi-submersions [1].

Item 2 in Proposition 2.10 of [1] states that if the identity of M is carried by (B, s, t) at some

point v ∈ B, then there exists an open neighborhood V ⊂ B of v that satisfies s|V = s0 ◦ g and

t|V = t0 ◦ g, for some submersion g : V −→ W, for W of the form as in item 1. Thus, for all

X ∈ s(F) there exists a vector field X̃ ∈ X(V ) fulfilling ds|V (X̃) = dt|V (X̃) = X. This proves

item 3. �

Definition 5.20. A symmetry of the tower of bi-submersion TB = (Bi+1, si, ti,Fi)i≥0 over a

singular foliation F0 = F is a family (Xi)i≥0 of vector fields with the i-th component Xi in s(Fi)

such that dsi−1(X
i) = dti−1(X

i) = Xi−1 for all i ≥ 1. We denote by s(TB) the Lie algebra of

symmetries of TB.

The next theorem gives a class of bi-submersion tower to which any symmetry of the base

singular foliation F lifts.
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Theorem 5.21. Let F be a foliation. Let TB be an exact path holonomy bi-submersion tower

(or an exact path holonomy atlas bi-submersion tower). A vector field X ∈ X(M) is a symmetry

of F , i.e. [X,F ] ⊂ F , if and only if it is the component on M of a symmetry of TB.

Proof. For any symmetry (Xi)i≥0 of the bi-submersion tower TB the first component X0 ∈ X(M)

is a symmetry of F , by Proposition 5.12. The other implication is a consequence of item 1. resp.

item 2. in Proposition 5.19 and Remark 5.13. It is due to the fact that the tower TB is

generated by path holonomy bi-submersions, and then we can lift symmetries at every stage of

the tower TB. Indeed, assume for instance that TB is an exact path holonomy bi-submersion

tower. By Proposition 5.19, any symmetry X ∈ s(F) admits a lift X1 ∈ X(B1). Moreover, X1

is a symmetry of the singular foliation F1 = Γ(ker(ds0)) ∩ Γ(ker(dt0)), by Remark 5.13(3). We

continue by recursion to construct Xi ∈ s(Fi) for i ≥ 2. �

Remark 5.22. Let (Xi)i≥0 be a lift of X0 := X ∈ s(F). For i ≥ 1, ∇iX := adXi preserves

Γ(ker dsi−1), since X
i is si−1-projectable. Altogether, they define a chain map (∇iX)i≥0 at the

section level of the complex (49), on projectable vector fields in (50), since for every i ≥ 0 and

any ti-projectable vector field ξ ∈ ker dsi,

dti([X
i+1, ξ]) = [dti(X

i+1), dti(ξ)]

= [Xi, dti(ξ)],

that is dti ◦ ∇
i+1
X = ∇iX ◦ dti.

Remark 5.23. In [14], under some assumptions, it is shown that if a Lie group G acts on a

foliated manifold (M,F), then it acts on its holonomy groupoid. It is likely that this result

follows from Theorem 5.21, this will be addressed in another study.

5.3. Lifts of actions of a Lie algebra on a bi-submersion tower. We end the section with

the following constructions and some natural questions.

Let TB = (Bi+1, si, ti,Fi)i≥0 be an exact path holonomy bi-submersion tower over a singular

foliation (M,F) of length n+ 1.

By Theorem 5.21, any vector field X ∈ s(F) lifts to a symmetry (Xi)i≥0 of TB. Once a lift is

chosen, we can define a linear map,

X ∈ s(F) 7→ (Xi)i≥1 ∈ s(TB).

Let ̺ : g → X(M) be a strict symmetry action of a Lie algebra g on (M,F). For x ∈ g, there

exists (̺(x)i)i≥0, with ̺(x)
i ∈ s(Fi) ⊂ X(Bi) a symmetry of TB such that X0 = ̺(x) ∈ s(F), by

Theorem 5.21. Consider the composition,

x ∈ g 7−→ ̺(x) ∈ s(F) 7−→ (̺(x)i)i≥0 ∈ s(TB) 7→ ̺(x)1 ∈ X(B1). (57)

Lemma 5.24. For all x, y ∈ g,

[̺(x), ̺(y)]1 − [̺(x)1, ̺(y)1] = dt1(C1(x, y))

with C1(x, y) ∈ Γ(ker ds1 → B2) a t1-projectable vector field, for some bilinear map

C1 : ∧
2 g −→ Γ(ker ds1 → B2).

Proof. This follows from Lemma 5.8, because [̺(x), ̺(y)]1−[̺(x)1, ̺(y)1] ∈ Γ(ker ds0)∩Γ(ker dt0).

�
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Theorem 5.25. The map C1 : ∧
2 g −→ Γ(ker ds1 → B2) of Lemma 5.24 satisfies for all

x, y, z ∈ g,

C1([x, y]g, z) +∇
2
̺(x)(C1(y, z))+ 	 (x, y, z) = dt2(C2(x, y, z)) (58)

for some tri-linear map C2 : ∧
3 g −→ Γ(ker ds2 → B3). Here, ∇2 is, as in Remark 5.22.

Proof. For x, y, z ∈ g,

dt1 (C1([x, y]g, z)) + 	 (x, y, z) = [̺([x, y]g), ̺(z)]
1 − [̺([x, y]g)

1, ̺(z)1]+ 	 (x, y, z)

=
✭
✭
✭
✭
✭
✭
✭
✭✭

[[̺(x), ̺(y)], ̺(z)]1 − [[̺(x), ̺(y)]1, ̺(z)1]+ 	 (x, y, z)

= −
✭
✭
✭
✭
✭
✭
✭
✭
✭✭

[[̺(x)1, ̺(y)1], ̺(z)1] + [dt1(C1(x, y)), ̺(z)
1]+ 	 (x, y, z)

= dt1([C1(x, y), ̺(z)
2])+ 	 (x, y, z).

We have used Jacobi identity and dt1(̺(z)
2) = ̺(z)1. This implies that

dt1
(
C1([x, y]g, z)− [C1(x, y), ̺(z)

2]+ 	 (x, y, z)
)
= 0. (59)

Again Lemma 5.8 implies the result. �

Here is a natural question:

Question: Can we construct a Lie ∞-algebra structure on ⊕+∞
i=0

tiΓ(ker dsi) such that the con-

struction in Theorem 5.25 continues to a Lie ∞-morphism from g[1] to ⊕+∞
i=0

tiΓ(ker dsi)? where
tiΓ(ker dsi) is defined as in Convention 5.7.

Appendix A. Universal Lie ∞-algebroids

Let us now recall the definition of Lie ∞-algebroids over a manifold and their morphisms and

homotopies. Most definitions of this section can be found in [6, 19, 20] and our conventions and

notations are those of [19, 20].

In the definition below, we restrict ourselves to the case of finite rank. Recall that finitely

generated projective modules, by Serre-Swan theorem [27], are the module of sections of vector

bundles. This is the setting in this article, except for Theorem 3.3 where infinite rank Lie

algebroid are allowed see e.g., [20].

Definition A.1. A Lie ∞-algebroid over M is the datum of a sequence E = (E−i), 1 ≤ i <∞

of vector bundles over M together with a structure of Lie ∞-algebra (ℓk)k≥1 on the sheaf of

sections of E and a vector bundle morphism, ρ : E−1 → TM , called anchor map such that the

k-ary brackets ℓk, k 6= 2 are O-multilinear and such that

ℓ2(e1, fe2) = ρ(e1)[f ]e2 + fℓ2(e1, e2) (60)

for all e1 ∈ Γ(E−1), e2 ∈ Γ(E•) and f ∈ O.

The sequence

· · ·
ℓ1 // E−2

ℓ1 // E−1
ρ

// TM, (61)

is a complex called the linear part of the Lie ∞-algebroid.

Remark A.2. Any Lie ∞-algebroid on M has an induced singular foliation on M which is

given by the image of the anchor map, that we call the basic singular foliation.



32 RUBEN LOUIS

There is an alternative definition for Lie ∞-algebroids in terms of Q-manifolds with purely

non-negative degrees.

Definition A.3. A splitted NQ-manifold is a pair (E,Q) where E →M is a sequence of vector

bundles over M indexed by negative integers and where Q is a homological vector field of degree

+1, i.e., Q ∈ Der1 (Γ(S
•(E∗))) is such that [Q,Q] = 0.

We denote by E and call functions on the splitted NQ-manifold E −→ M the sheaf of graded

commutative O-algebras made of sections of S•(E∗).

There is a one-to-one correspondence between splitted NQ-manifolds and Lie ∞-algebroids

[6, 23, 28]. This formulation allows to write in a compact manner morphisms of Lie∞-algebroids

i.e., simply as chain maps. Homotopy equivalence can also be defined, see Section 3.4.2 in [19]

or [20] for more details. From now on, we write (E,Q) to denote a Lie ∞-algebroid over M .

Let us recall from [19, 20] the following definition and theorem.

Definition A.4. Let F ⊂ X(M) be a singular foliation on a manifoldM . A geometric resolution

of the singular foliation F is a projective resolution ((P−i)i≥1, (d
(i))i≥2, ρ) of F as a O-module

that corresponds to a sequence of vector bundles (E, d̄, ρ̄) over M

· · ·
d̄(3) // E−2

d̄(2) // E−1
ρ̄

// TM, (62)

i.e.,

• for i ≥ 1 the O-module of sections of E−i is P−i = Γ(E−i)

• for i ≥ 2, the induced maps at the sections level

d̄(i) : Γ(E−i) −→ Γ(E−i+1) or ρ̄ : Γ(E−1) −→ F

coincide with d(i) : P−i −→ P−i+1 or with ρ : P−1 −→ F respectively.

For convenience, we denote by d̄ and ρ̄ the same as d and ρ respectively. Also, we call ρ : E−1 −→

TM the geometric resolution anchor. A geometric resolution is said to be minimal at a point

m ∈M if, for all i ≥ 2, the linear maps d
(i)
|m

: E−i|m −→ E−i+1|m vanish.

Theorem A.5. [19, 20, 22] Let F be a singular foliation on M . Any geometric resolution of F

· · ·
d
−→ E−3

d
−→ E−2

d
−→ E−1

ρ
−→ TM (63)

comes equipped with a Lie ∞-algebroid structure whose unary bracket is d and whose anchor

map is ρ. Such a Lie ∞-algebroid structure is unique up to homotopy and is called a universal

Lie ∞-algebroid of F .

Remark A.6. For a given Lie∞-algebroid (E,Q), the triple (X•(E), [· , ·] , adQ) is a differential

graded Lie algebra, where X•(E) stands for the module of graded vector fields (=graded deriva-

tions of E) on E, the bracket [· , ·] is the graded commutator of derivations and adQ := [Q, · ].

Appendix B. Lie ∞-morphisms of DGLA and homotopies

Let us recall the definitions of Lie ∞-morphisms and homotopies between differential graded

Lie algebras in terms of coderivations. We restrict ourselves to a special case that we need for

this paper.

Comorphisms and coderivations. Let g and h be graded vector spaces over K.
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Definition B.1. A linear map Φ: S•
K(g[1]) −→ S•

K(h[1]) is said to be of arity r ∈ N0, if it sends

SkK(g[1]) to S
k−r
K (h[1]), for all k ≥ r. Every linear map Φ can be decomposed as formal sum:

Φ =
∑

k∈Z

Φ(k) (64)

where, for all k ∈ N0, Φ(k) : S•
K(g[1]) −→ S•−k

K (h[1]) is a linear map of arity k. Therefore, a

linear map Φ: S•
K(g[1]) −→ S•

K(h[1]) is of arity r ∈ N0 if and only if Φ(r) is the unique non-zero

term, namely Φ(k) = 0, for k 6= r.

Let us denote by ∆ the natural coalgebra structure of S•
K(g[1]) and by ∆′ the one on S•

K(h[1]).

Given any linear map Φ: S•
K(g[1]) −→ h[1], we denote by Φk : S

k+1
K (g[1]) −→ h[1] for k ∈ N0

the restriction of Φ to Sk+1
K (g[1]). The linear map Φ can be extended to a unique comorphism

Φ̄: S•
K(g[1]) −→ S•

K(h[1]) by taking for r ∈ N the component on SrKh[1] to be for x1, . . . , xk ∈ g[1]

∑

i1+·+ir=k

∑

σ∈S(i1,...,ir)

ǫ(σ)
1

r!

r∏

j=1

Φij−1(xσ(i1+···+ij−1+1), . . . , xσ(i1+···+ij)). (65)

where S(i1, . . . , ir) is the set of (i1, . . . , ir)-shuffles, with i1, . . . , ir ∈ N. Also,
∏

stands for the

product of S•
K(h[1]).

Every comorphism from S•
K(g[1]) to S•

K(h[1]) is of this form [16]. That is, a comorphism

Φ: S•
K(g[1])→ S•

K(h[1]) is entirely determined by the collection indexed by k ∈ N of maps called

k-th Taylor coefficient :

Φk : S
k+1
K (g[1])

Φ
−→ S•

K(h[1])
pr
−→ h[1], (66)

with pr being the projection onto the term of arity 1, i.e. pr : S•
K(h[1]) → S1

K(h[1]) ≃ h[1]. Notice

that the component Φ(k) of arity k of Φ coincides with k-th Taylor coefficient Φk on Sk+1
K (g[1]).

Hence, a comorphism Φ: S•
K(g[1])→ S•

K(h[1]) admits a decomposition of the form:

Φ =
∑

k≥0

Φ(k) (67)

with a sum that runs on k ≥ 0 and not on k ∈ Z.

Definition B.2. Let Φ: S•
K(g[1]) 7→ S•

K(h[1]) be a graded comorphism. A Φ-coderivation of

degree k on S•
K(g[1]) is a degree k ∈ N0 linear map H : S•

K(g[1]) 7→ S•
K(h[1]) which satisfies the

so-called (co)Leibniz identity:

∆′ ◦ H = (H⊗ Φ) ◦∆+ (Φ⊗H) ◦∆. (68)

When g = h and Φ = id, we say that H is a coderivation.

The same results on comorphisms hold for coderivations [16].

Lie ∞-morphisms of differential graded Lie algebras. Let (g, [· , ·]g) be a Lie algebra and

(E,Q) a Lie ∞-algebroid over M . The graded symmetric Lie bracket on X(E)[1] is of degree

+1 and given on homogeneous elements u, v ∈ X(E)[1] as

{u, v} := (−1)|v|[u, v].

In the sequel, we write (X(E)[1], [· , ·] , adQ) instead of (X(E)[1], {· , ·}, adQ).

Let (S•
K(g[1]), Qg) respectively (S•

K(X(E)[1]), Q̄) be the corresponding formulations in terms

of coderivations of the differential graded Lie algebras (g[1], [· , ·]g) and (X(E)[1], [· , ·] , adQ).
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Precisely, Qg is the coderivation defined for every homogeneous monomial x1∧· · ·∧xk ∈ S
k
K(g[1])

by

Qg(x1 ∧ · · · ∧ xk) :=
∑

1≤i<j≤k

(−1)i+j−1[xi, xj ]g ∧ x1 ∧ · · · x̂i · · · x̂j · · · ∧ xk, (69)

and Q̄ = Q̄(0)+Q̄(1) is the coderivation of degree +1 where the only non-zero Taylor’s coefficients

are, Q̄(0) : S1
K(X(E)[1])

adQ
−→ X(E)[1] and Q̄(1) : S2

K(X(E)[1])
{· ,·}
−→ X(E)[1].

Definition B.3. [18] A Lie ∞-morphism Φ: (g[1], [· , ·]g)  (X•(E)[1], [· , ·] , adQ) is a graded

coalgebra morphism Φ̄: (S•
K(g[1]), Qg) −→ (S•

K (X(E)[1]) , Q̄) of degree zero which satisfies,

Φ̄ ◦Qg = Q̄ ◦ Φ̄. (70)

In order words, it is the datum of degree zero linear maps
(
Φ̄k : S

k+1
K g[1] −→ X−k(E)[1]

)
k≥0

that satisfies
∑

1≤i<j≤n+2

(−1)i+j−1Φ̄n([xi, xj ]g, x1, . . . , x̂ij , . . . , xn+2) = [Q, Φ̄n+1(x1, . . . , xn+2)]+

∑

i+ j = n

i ≤ j

σ ∈ Si+1,j+1

ǫ(σ)[Φ̄i(xσ(1), . . . , xσ(i+1)), Φ̄j(xσ(i+2), . . . , xσ(n+2))]

(71)

where x̂ij means that we take xi, xj out of the list. When there is no risk of confusion, we write

Φ for Φ̄.

Convention B.4. In the sequel, Qg and Q̄ will be in implicit.

Remark B.5. It is important to notice that:

(1) Definition B.3 and Definition 3.45 in [19] are compatible when M = {pt}. Therefore,

morphisms in both sense match.

(2) In [24], Definition B.3 corresponds to the definition of actions of a Lie ∞-algebras of

finite dimension on Lie ∞-algebroids of finite rank. Here, we only have a Lie algebra.

In contrast to theirs, we do not assume that g is finite dimensional.

Remark B.6. It follows from the axioms (71) that for all x, y ∈ g[1], [Q,Φ0(x)] = 0 and

Φ0([x, y]g)− [Φ0(x),Φ0(y)] = [Q,Φ1(x, y)]. (72)

The following lemma explains what the 0-Taylor coefficient of a Lie ∞-morphism as in Defi-

nition B.3 induces on the linear part of (E,Q). More details will be given in Proposition B.13.

Convention B.7. Let E,F be graded vector bundles over a manifold M . For a K-linear map

P : Γ(S•(E∗)) −→ Γ(S•(E∗)) we denote by P (k) : Γ(SN (E∗)) −→ Γ(SN+k(E∗)), N ≥ 0, the

k-th polynomial degree component of P and is called the arity k component of P .

Lemma B.8. The 0-th Taylor coefficient Φ0 : g[1] −→ X0(E) of a Lie ∞-morphism Φ as in

Definition B.3 induces

(1) a linear map ̺ : g −→ X(M), x 7−→ (̺(x)[f ] := Φ0(x)[f ], f ∈ O) and

(2) a linear map x ∈ g 7−→ ∇x ∈ Der0(E), i.e., for each x ∈ g, ∇x : Γ(E) −→ Γ(E) is a

degree zero map that satisfies

∇x(fe) = f∇x(e) + ̺(x)[f ] e, for f ∈ O, e ∈ Γ(E).
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such that

〈Φ0(x)
(0)(α), e〉 = ̺(x)[〈α, e〉] − 〈α,∇x(e)〉, for all α ∈ Γ(E∗), e ∈ Γ(E). (73)

Φ0(x)
(0) stands for the arity zero component of Φ0(x).

Proof. We have for every x ∈ g[1], and e ∈ Γ(E),

[Φ0(x), ιe]
(−1) = ι∇xe,

for some K-bilinear map ∇x : Γ(E−•) −→ Γ(E−•) that depends linearly on x ∈ g[1] and that

satisfies

∇x(fe) = f∇x(e) + ̺(x)[f ]e, for f ∈ O, e ∈ Γ(E). (74)

To see (74), compute [Φ0(x), ιfe]
(−1):

ι∇x(fe) = [Φ0(x), ι(fe)]
(−1)

= Φ0(x)[f ]ιe + f [Φ0(x), ιe]
(−1)

= ι̺(x)[f ]e+∇xe.

In particular, one has for all α ∈ Γ(E∗), e ∈ Γ(E),

〈Φ0(x)
(0)(α), e〉 = Φ0(x)

(0)[〈α, e〉] − [Φ0(x)
(0), ιe]

(−1)(α)

= ̺(x)[〈α, e〉] − 〈α,∇x(e)〉.

�

Homotopies. Now we are defining homotopy between Lie ∞-morphisms.

Definition B.9. Let Φ̄, Ψ̄ : (S•
K(g[1]), Qg)  

(
S•
K(X(E)[1]), Q̄

)
be Lie ∞-morphisms. We say

Φ̄, Ψ̄ are homotopic over the identity of M if the following conditions hold:

(1) there a piecewise rational continuous path t ∈ [a, b] 7→ Ξt : (S
•
Kg[1], Qg) 

(
S•
K(X(E)[1]), Q̄

)

made of Lie ∞-morphisms that coincide with Φ̄ and Ψ̄ at t = a and b, respectively,

(2) and a piecewise rational path t ∈ [a, b] 7→ Ht of Ξt-coderivations of degree −1 such that

dΞt
dt

= Q̄ ◦Ht +Ht ◦Qg. (75)

Remark B.10. Homotopy equivalence in the sense of the Definition B.9 is an equivalence

relation, and it is compatible with composition of Lie ∞-morphisms. Also, we can “glue”

infinitely many equivalences, as in Lemma 1.39 in [20].

Remark B.11. Definition B.9 is slightly more general than the equivalence relation [24]. In [24],

it is explained that Lie ∞-oid morphisms are Maurer-Cartan elements in some Lie ∞-algebroid

g[1]⊕E of certain form, and they define equivalence as gauge-equivalence of the Maurer-Cartan

elements. This gauge equivalence corresponds to homotopies as above, for which all functions

are smooth. Also, we do not require nilpotence unlike in Definition 5.1 of [24]. Last, we do not

assume g to be of finite dimension.

The following Proposition shows that the notion of homotopy given in Definition B.9 implies

the usual notion of homotopy between chain maps.

Proposition B.12. Let Φ,Ψ: (g[1], [· , ·]g)  (X•(E)[1], [· , ·] , adQ) be Lie ∞-morphisms which

are homotopic. Then,

Ψ− Φ = Q̄ ◦H +H ◦Qg (76)

for some O-linear map H : S•
K(g[1]) −→ S•

K(X(E)[1]) of degree −1.
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Proof. The proof follows by applying the property that says the variation of a piecewise-C∞

map is equal to the integral of its derivative on (75).

�

Proposition B.13. Let g be a Lie algebra and (E,Q) a Lie ∞-algebroid over M .

(1) Any Lie ∞-morphism Φ: (g[1], [· , ·]g) (X•(E)[1], [· , ·] , adQ) induces a weak symmetry

action of g on the basic singular foliation F = ρ(Γ(E−1)) of (E,Q).

(2) Homotopic Lie ∞-morphisms Φ,Ψ: (g[1], [· , ·]g)  (X•(E)[1], [· , ·] , adQ) induce equiva-

lent weak symmetry actions ̺a, ̺b of g on the basic singular foliation F .

Proof. Item 1. is a consequence of Remark B.6. Indeed, take ̺ : g −→ X(M) as in Lemma

B.8(1 ). We claim that ̺ is a weak symmetry action of g on F : Let x, y ∈ g[1], and e ∈ Γ(E−1)

and f ∈ O.

• [Φ0(x), Q] = 0 entails,
〈
Φ0(x)

(0)
[
Q(1)(f)

]
, e
〉
=
〈
Q(1)

(
Φ0(x)

(0)[f ]
)
, e
〉

̺(x)[〈Q[f ], e〉] − 〈Q[f ],∇x(e)〉 = ρ(e)[̺(x)], (by Lemma B.8 (2.))

̺(x)[ρ(e)][f ] − ρ(∇x(e))[f ] = ρ(e)[̺(x)]

By consequence, [̺(x), ρ(e)] = ρ(∇x(e)) ∈ F . Therefore, [̺(x),F ] ⊆ F .

• There exists a skew-symetric linear map η : ∧2 g −→ Γ(E−1) such that Φ1(x, y)
(−1) =

ιη(x,y). Therefore, the arity zero of Equation (72) evaluated at an arbitrary function

f ∈ O yields:

Φ0([x, y]g)
(0)(f)− [Φ0(x),Φ0(y)]

(0)(f) = [Q,Φ1(x, y)]
(0)(f)

=⇒ Φ0([x, y]g)(f)− [Φ0(x)
(0),Φ0(y)

(0)](f) = [Q(1),Φ1(x, y)
(−1)](f)

=⇒ ̺([x, y]g)[f ]− [̺(x), ̺(y)][f ] = [Q(1), ιη(x,y)](f)

= ρ(η(x, y))[f ].

Since f is arbitrary, this proves item 1. Using Proposition B.12, Φ ∼ Ψ implies for

x ∈ g[1] that

Ψ(x)− Φ(x) = Q̄ ◦H(x) +
✘
✘
✘
✘
✘✘

H ◦Qg(x)

= [Q,H(x)] (77)

with H : g[1] −→ X−1(E) a linear map. Let β : g[1] −→ Γ(E−1) be a linear map such that

H(x)(−1) = ιβ(x). Taking the arity zero of both sides in Equation (77) and evaluating at

f ∈ O we obtain that

(̺a(x)− ̺b(x)) [f ] = [Q(1),H(x)(−1)] = [Q(1), ιβ(x)][f ] = ρ(β(x))[f ].

Since f is arbitrary, this proves item 2.

�

Proposition B.13 tells us that Lie ∞-morphism Φ: (g[1], [· , ·]g)  (X•(E)[1], [· , ·] , adQ) in-

duces weak symmetry action on the base manifold M . In Section 2, we investigate the opposite

direction. We respond to the following question: Do any weak symmetry action of a Lie algebra

on a singular foliation comes from a Lie∞-morphism? If so, can we extend in a unique manner?
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Appendix C. Proof of Theorem 3.3

In this section, we prove Theorem 3.3. For g a Lie algebra, let Γ(g) stand for sections of

g×M −→M .

Proof. (of Theorem 3.3). Let ϕ : ∧2 g −→ F be such that ̺([x, y]g)− [̺(x), ̺(y)] = ϕ(x, y) ∈ F

for all x, y ∈ g. Notice that A := (Γ(g)⊕F , [· , ·]A , ρA) is a Lie-Rinehart algebra over O, whose

Lie bracket and anchor map are given respectively on a set of generators (xi)i∈I of Γ(g[1]) and

(Xλ)λ∈Λ of F by:

(1) for i, j ∈ I and λ, β ∈ Λ,

[(xi,Xλ), (xj ,Xβ)]A := ([xi, xj ]g, [Xλ, ̺(xj)]− [Xβ , ̺(xi)]− ϕ(xi, xj) + [Xλ,Xβ ]) (78)

(2) for i ∈ I and λ ∈ Λ

ρA(xi,Xλ) = ̺(xi) +Xλ (79)

We extend the bracket (78) by Leibniz identity. Also, ρA in (79) is extended by O-linearity (it

is a morphism by construction).

For any free resolution (K•, ℓ1, ρ) of F , the sequence

· · ·
ℓ1−→ K−2

ℓ1−→ Γ(g[1]) ⊕K−1

π=id⊕ρ
−−−−→ Γ(g)⊕F (80)

is a free resolution of A = Γ(g)⊕F . By Theorem 2.1 of [20], the complex (80) can be equipped

with a Lie ∞-algebroid whose unary bracket is ℓ1 and whose anchor is ρ′ := ρA ◦ π. But we

claim that we can add some constraint on the k-ary brackets that appear in Theorem 2.1. This

requires to adapt its proof to this particular setting.

Construction of a 2-ary bracket on g[1]⊕ E−1: Let us denote by (e
(−1)
λ )λ∈Λ a free basis of

K−1. The set {Xλ = ρ(e
(−1)
λ ) ∈ F | λ ∈ Λ} is a set of generators of F . Let (xi)i∈I be a basis for

Γ(g[1]) There exists elements ckλβ ∈ O and satisfying the skew-symmetry condition cαλβ = −cαβλ
together with

[Xλ,Xβ ] =
∑

α∈Λ

cαλβXα ∀λ, β ∈ Λ. (81)

By definition of the weak symmetry action ̺, one has

[̺(xi), ρ(e
(−1)
λ )] ∈ F and ̺([xi, xj ])g − [̺(xi), ̺(xj)] ∈ F for all (i, j) ∈ I2 andλ ∈ Λ. (82)

Since (K•, ℓ1, ρ) is a free resolution of F , there exists twoO-bilinear maps χ : Γ(g[1])×K−1 → K−1

and η : Γ(g[1])× Γ(g[1])→ K−1 defined on generators xi, e
(−1)
λ by the relations

[̺(xi), ρ(e
(−1)
λ )] = ρ(χ(xi, e

(−1)
λ )) and ̺([xi, xj ]g)− [̺(xi), ̺(xj)] = ρ(η(xi, xj)).

We define a 2-ary bracket on Γ(g[1])⊕K−1 as follows:

(1) an anchor map by ρ′(0⊕ e
(−1)
λ ) = Xλ, and ρ

′(xi ⊕ 0) = ̺(xi), for all i ∈ I and λ ∈ Λ,

(2) a degree +1 graded symmetric operation ℓ′2 on Γ(g[1]) ⊕K−1 as follows: for all i, j and

λ, β ∈ Λ

(a) ℓ′2

(
0⊕ e

(−1)
λ , 0⊕ e

(−1)
β

)
= 0⊕

∑
α∈λ c

α
λβe

(−1)
α ,

(b) ℓ′2

(
xi ⊕ 0, 0 ⊕ e

(−1)
λ

)
= 0⊕ χ

(
xi, e

(−1)
λ

)
,

(c) ℓ′2 (xi ⊕ 0, xj ⊕ 0) = [xi, xj ]g ⊕ η(xi, xj).
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We extend ℓ′2 to Γ(g[1]) ⊕K−1 using Leibniz identity with respect to the anchor map ρ′.

By construction ℓ′2 satisfies the Leibniz identity with respect to the anchor ρ′. Moreover, ρ′ is

a bracket morphism. We continue exactly as in the proof of Lemma 2.23 in [20] and construct a

2-ary bracket ℓ2 of degree +1 whose restriction to Γ(g[1])⊕K−1 is ℓ′2. It equips the complex (80)

with an almost Lie algebroid such that ρ′ (Γ(g[1])⊕K−1) = A and whose restriction to g[1] is

the Lie bracket of g[1]. A close look at the construction in Theorem 2.1 of [20] implies that this

almost differential graded Lie algebroid can be extended to a Lie ∞-algebroid on the complex

(80). �
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