Computing the Canonical Lift of Genus 2 Curves in Odd Characteristics - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Computing the Canonical Lift of Genus 2 Curves in Odd Characteristics

Résumé

Let A/Fq be an ordinary abelian surface. We explain how to use the Siegel modular polynomials, and if available the Hilbert modular polynomials to compute the canonical lift of A. As an application, if q = p n , we show how to use the canonical lift to count the number of points on A in quasi-quadratic time Õ(n 2), this is a direct extension of Satoh's original algorithm for elliptic curves. We give a detailed description with the necessary optimizations for an efficient implementation.
Fichier principal
Vignette du fichier
article02.pdf (582.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03738314 , version 1 (25-07-2022)

Identifiants

  • HAL Id : hal-03738314 , version 1

Citer

Damien Robert, Abdoulaye Maiga. Computing the Canonical Lift of Genus 2 Curves in Odd Characteristics. 2022. ⟨hal-03738314⟩
91 Consultations
87 Téléchargements

Partager

More