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Computing the Canonical Lift of Genus 2 Curves in Odd Characteristics

ABDOULAYE MAIGA AND DAMIEN ROBERT

Abstract. Let A/Fq be an ordinary abelian surface. We explain how to use the Siegel modular
polynomials, and if available the Hilbert modular polynomials to compute the canonical lift of
A. As an application, if q = pn, we show how to use the canonical lift to count the number
of points on A in quasi-quadratic time Õ(n2), this is a direct extension of Satoh’s original
algorithm for elliptic curves.
We give a detailed description with the necessary optimizations for an efficient implementation.

Key words: Abelian variety, Arithmetic invariants of genus 2 curves, Modular polynomials,
Canonical lift, Point counting.

1. Introduction

Let A0/Fq be an ordinary abelian variety, and let Zq = W (Fq) be the ring of Witt vectors over
Fq. Then by a standard corollary of Serre-Tate theorem[LST64], there is a canonical lift A/Zq of
A0/Fq characterised by the fact than End(A) ∼= End(A0).

In dimension 1, this result was already shown by Deuring. Further when we denote by Σ the
Frobenius substitution in Qq/Qp, the j-invariant of the canonical lift Ẽ of an ordinary elliptic
curve E satisfies: Φp(j, jΣ) = 0, where Φp is the level p modular polynomial. Thus using a
suitable Newton methods one can recover the j-invariants of Ẽ from j mod p. This standard
p-adic method was first applied by T.Satoh [Sat00] for points counting on elliptic curves over a
field of small characteristic.

Since level p modular polynomial were not computed in higher dimension, the generalisations
of Satoh’s idea used instead modular equations coming from higher level theta constants. First in
characteristic p = 2, J-F.Mestre’s extend the AGM method using Riemann duplication formulas
for complex analytic theta functions, then for level p > 2 [CL08] used generalised p-multiplication
formula. In another direction, Kedlaya and al. [Ked01] developed a method to compute the action
of the lifted formal Frobenius on the Monsky-Washnitzer ( and Dwork ) cohomology groups.

However in the case of dimension 2, classical modular polynomials have been recently computed
[Mil15; Mil14; MD20]: the modular polynomials Φp then consist in a triple of three polynomials
that parametrizes Igusa modular invariants of p-isogenous abelian surfaces. In this work, we
explain how to use these modular polynomials to compute the canonical lift of an abelian surface
and do point counting. Like in the elliptic curve case, the algorithm proceeds in three steps:

(1) Use the modular polynomials to compute the (modular invariants) of the canonical lift;
(2) Compute the (unique) unramified lift of the kernel of the Verschibung
(3) Compute the isogeny associated to this kernel to recover the action of the Verschiebung

on the tangent space, hence the two inversible eigenvalues of the Frobenius (recall that
our base abelian surface is assumed to be ordinary).
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Compared to the elliptic curve cases, there are small difficulties in dimension 2. First, for
Step 1 we use a Newton iteration. A crucial property of modular polynomials in dimension 1, that
guarantees the convergence of the Newton method, is the Kronecker relation: Φp(X,Y ) ∼= (Xp −
Y )(Y p−X) (mod ()p). This guarantee that ∂Φp/∂XΦp(j, jΣ) ∼= 0 (mod p) and ∂Φp/∂Y Φp(j, jΣ)
is inversible modulo p. We will call these condition the Kronecker’s condition.

We first show that these conditions are true in any dimension, by using Serre-Tate’s local
moduli. A slight technical difficulty is that this argument works for the fine moduli space, not the
coarse moduli space Ag,Γ0(p). Already for elliptic curve Satoh’s algorithm requires that j(E) ̸∈ Fp2

for the Newton method to work. Furthermore, in dimension 2 the modular polynomials Φp

only describe a scheme birational to the coarse space Ag,Γ0(p). In particular, using the modular
polynomials Φp will only work for a dense open of abelian surfaces, we give some criterions in
Section 3 for an abelian surface to be in this set.

Main Theorem 1 Let J be the tuple of absolute invariants of a polarized abelian surface A
over Fq. If J satisfies the Kronecker’s condition then the algorithm 3.1 computes the absolute
invariants of the canonical lift of A over Zq to precision n in O(n2) operations (here p is assumed
to be constant).

We also extend this theorem to the case of Hilbert modular polynomials, which have been
computed for higher level than the Siegel ones (since they are smaller).

For Step 2, Satoh’s algorithm directly lift the equation of the kernel. In dimension 2, the kernel
and the p-torsion are naturally described by multivariate polynomials, so to lift it directly would
require to compute a univariate representation. For this we could apply [GS12b]. In this paper we
also explain how to directly lift generators of the kernel (after taking a suitable extension where
the generators live). The only difficulty is that the Jacobian of the system has p-adic valuation 1,
so we need to bootstrap to p-adic precision 3 before applying Newton’s algorithm.

Finally Step 3 is computed using the isogeny algorithm developed in [LR12; CR10], from which
we recover the action of the Verschiebung on the tangent space associated to Ã.

We thus get:

Main Theorem 2 (p-torsion lifting) Let A be an abelian surface over Fq satisfying the Kronecker
condition, we can compute the characteristic polynomial of the Frobenius χp in O(n2) operations.

Although we focus on the dimension 2 case because we only have modular polynomials for these,
all our algorithms using the theta model of level 2 or 4 would be valid in arbitrary dimension,
provided we had the corresponding modular polynomials.

A specificity of the dimension 2 case is that indecomposable abelian surfaces are the Jacobian
of an hyperelliptic curve of genus 2: A = Jac(C). When computing the canonical lift of A, we
explain how to lift the curve C too (from which it is easy to reconver all possible lifts). Since
all (vectorial) modular functions induce a rational covariant on the curve C, and covariants are
generated by the coefficients of the curve, this allows to compute lifts of modular functions.

As mentioned, in [CL08] proposed a method which relies on the computation of arithmetic
invariants of canonical lifts using the coordinate system provided by the theta null points of
level np2 with n = 2, 4. By comparison our method only rely on rational modular invariants,
or because they are convenient theta null points of level n = 2, 4. We should mention that, as
alluded to in [LR20], one can modify the algorithm of [CL08] to use theta null points of level np,
and these thete null points can be constructed from the theta null of level n along with the points
of p-torsion (which we use anyway when lifting the Verschiebung). The main interest of our
method is that we are able to stay on the base field, and furthermore that we can use the Hilbert
modular polynomials when possible, which are much smaller.

This paper is organized as follow. At the beginning in section 2 we recall some basic fact about
the both moduli spaces SL4(Z)\H2 and SL2(OK)\H2

1, and the general definition of Siegel and
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Hilbert modular polynomials in dimension 2. In the section 3 we give a proof of the Kronecker
condition in dimension 2 ; and in the both moduli, we propose a variant of Harley’s algorithm
using these Kronecker condition. In section 4, we propose an algorithm to lift a p-torsion of
abelian varieties of dimension g over Zq and this method is based on a property that generalizes
Satoh’s Lemma 3.7. in [Sat00] for abelian varieties. The section 5 concerns applications of
computing canonical lift of abelian variety and we propose a quasi-linear point counting method
on the Jacobians of ordinary hyperelliptic curves of genus 2 over finite fields.

The Appendix contain further results: how to lift the curve equation, the proof of the general
Kronecker condition on the fine moduli space (in any dimension g), and a generalisation (well
known to the experts but that we put there for completude) on the extension of Newton’s
algorithm to the multivariate case in the particular case that the root modulo p has multiplicities.

1.1. Notation and Convention. In the following we consider p a prime and q = pn with n ⩾ 1.
Given Fq by Fp[X]/m(X) where m(X) is a monic irreducible polynomial over Fp then Qq can
be represented by Qp[X]/M(X) with M monic irreducible polynomial over Zp[X] such that
M(X) = m(X) mod p. The complexity of an elementary operation over Z/pkZ[X]/M(X) re-
quires Õ(nk log p) with Kronecker-Schönhage method.
The extension Qq/Qp has a cyclic Galois group of order n, generated by an element Σ that
reduces to the pth-power Frobenius automorphism σ on the residue field Fq.
To obtain an efficient Frobenius substitution Σ one takes m as sparse as possible and M its
Teichmuller lift polynomial. We denote by :
Ã the lift of any variety A,
Ã the lift of any element A of Fq,
DF the jacobian matrix of a multivariate polynomial F ,
HF the Hessian matrix of F ,
Zur

q the unramified extension of Zq.

2. Modular Polynomials in Dimension 2

We briefly recall the construction of the Siegel modular polynomials and the Hilbert modular
polynomials, and refer to [Mil15; Mil14; MD20] for more details.

2.1. Siegel Modular Polynomials. We recall, that the function field CΓ2 of the moduli
space A2 = Γ2/H2 for principally polarized abelian varieties has dimension 3 generated by the
tuples: CΓ2 = C(j1, j2, j3) where j1, j2 and j3 (also called Streng invariants) are defined by:

j1 = −2−10ψ4ψ6

χ10
, j2 = 2−7 · 3ψ

2
4χ12

χ2
10

, j3 = 2−18 ψ4

χ2
10
.

(for the proof see [Igu62]).
Furthermore in characteristic different from 2 and when ψ4 ̸= 0, the tuple (j1, j2, j3) corresponds

exactly to the isomorphism classes of the principal polarized abelian surfaces. However these
invariants are not defined for the product of elliptic curves (vanishing points of the cups form ψ10).
And when ψ4 = 0, the correspondence fail to specify the isomorphism class. Fortunately using
the triples of invariants defined in [MR21, Theorem 2], one can describe isomorphism classes in
the locus ψ4 on A2. For f a modular function, we define fp(Ω) = f(Ω/p). Then the function field
C(Ag,Γ0(p)) of Ag,Γ0(p) = Γ2/Γ0(p) is given by C(j1, j2, j3, jp,1, jp,2, jp,3) = C(j1, j2, j3)[jp,1] [BL09,
Lemma 4.2].

Then the modular polynomial ϕ1,p is the minimal polynomial of jp,1 over C(j1, j2, j3), and the
modular polynomials ϕp,2 and ϕp,3 parametrizes jp,2 and jp,3 with respect to jp,1. More precisely,
if Cp is a set of representative classes of Γ2/Γ0(p), ϕ1,p(X) =

∏
γ∈Cp

(X − jγp,1) ∈ Q(j1, j2, j3)[X].
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And for l = 2, 3, ϕl,p(X) = ψl,p(X)/ϕ′1,p(X) where:

ψl,p(X) =
∑

γ∈Cp

jγl,p

∏
γ′∈Cp\{γ}

(X − jγ
′

1,p) ∈ Q(j1, j2, j3)[X], l = 2, 3.

The evaluation of the ji’s at Ω ∈ H2 maps the polynomials ϕ1,p(X), ϕ2,p(X), and ϕ3,p(X)
to polynomials in C[X]. If x is a root over C of ϕ1,p(ji(Ω), X), then (x, ϕ2,p(x), ϕ3,p(x)) are the
absolute invariants of a principally polarized abelian surface (p, p)-isogenous to the abelian variety
with period matrix Ω.

The modular polynomials have denominators in the ji. Let Lp denote the locus of the
principal polarized abelian surfaces that are (p, p)-isogenous to a product of elliptic curves, it is
a 2-dimensional algebraic subvariety of the moduli space A2 and can be parameterized by the
equation an equation Lp = 0 for Lp ∈ Q[j1, j2, j3], induced by χ10 = 0. Then the polynomial Lp

divides the denominator of the coefficients of the polynomials ϕ1,p(X), ψ1,p(X) and ψ2,p(X).

Remark 2.1. It is not hard to extend the definition of Siegel modular polynomial for other
modular invariants (not necessarily for the full congruence subgroup), in particular to theta
constant of levels 2 or 4).

2.2. Hilbert Modular Polynomials. If an abelian surface has real multiplication by a quadratic
real order OK, we can also consider β-isogenies for β a totally positive element of OK.

Given modular invariants i1, i2 and i3 for the Hilbert (or Humbert) surface H2
1/ SL2(OK ⊗ ∂K)

where

SL2(OK ⊗ ∂K) =
{(

a b
c d

)
∈ SL2(K) : a, b ∈ OK, b ∈ (1/

√
∆K))OK and c ∈

√
∆KOK

}
,

we can define Hilbert β-modular polynomials exactly as in the Siegel case: The polynomials
ϕβ(X, i1, i2, i3) and ψβ,k = (X, i1, i2, i3) for k = 2, 3 defined as follow, are called the β-modular
polynomials for invariants i1, i2, i3.

ϕβ(X, i1, i2, i3) =
∏

γ∈Cβ

(
X − iγ1,β

)
and ψβ(X, i1, i2, i3) =

∑
γ∈Cβ

iγ2,β

Φβ(X, i1, i2, i3)
(X − iγ1,β)

-Where in non symmetric case: Cβ is the set of representatives of Γ̇ ∩ Γ̇0(β)\Γ̇ and Γ̇ be a
congruence subgroup such that Γ̇(2, 4) ⊂ Γ̇ ⊂ SL2(OK ⊗ ∂K).

Let Γ̇0(β) =
{(

a b/
√

∆K
c
√

∆K d

)
∈ Γ̇ : b ∈ βOK

}
, then the Hilbert cover Γ̇0(β)\H2

1 parametrizes
the β-isogenous principally polarised abelian surfaces with real multiplication by OK , or equiva-
lently pairs (A,K) where A has real multiplication by OK and K ⊂ A[β] is a kernel stable by OK
and maximally isotropic for the β-Weil pairing. Then Hilbert β-modular polynomial define a vari-
ety birational to this one, in particular given J1 = (i1, i2, i3), a β-isogenous point J2 = (e1, e2, e3)
on the Hilbert modular surface is characterized by ϕβ(J1, e1) = 0, e2ϕ

′
β(J1, e1) = ψβ,k(J1, e1) and

e3ϕ
′
β(J1, e1) = ψβ,k(J1, e1).

Remark 2.2. • If ℓ is prime in OK, the Hilbert modular polynomials Φℓ are still smaller
than the Siegel one, since they parametrize ℓ-isogenies stable under the real multiplication;

• When ℓ splits as ℓ = ββc, the Φβ and Φβc modular polynomials parametrize isogenies
with cyclic kernel (inside A[β] and A[βc] respectively).

• In practice it can convenient to take symmetric modular invariants for the i. The modular
polynomials we construct then parametrize both β as well as βc isogenies.
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3. Canonical Lift of Ordinary Abelian Surfaces

Like in Satoh original method (see [Sat00]) we want use the Hilbert and Siegel modular
polynomials in order to compute the modular invariants of the canonical lift via a Newton
method.

3.1. In Siegel Modular Space. Let Ã be an ordinary abelian surface over Zq, in what follows
we resume how the kernel of a (p, p)-isogenies from Ã reduces over Fq.

Reduction of the (p3 + p2 + p+ 1) isogenies on A2 ⊗ Fq. Let’s consider the points P , Q, R
and S on A[p], with P and Q étale, R and S ramified, and R is the dual of P , and S the dual of
Q for the Weil-Pairing. An isotropic kernel K̃ of a p-isogeny from Ã has three possibilities of
reduction on A:

(1) When K̃ = ⟨R̃, S̃⟩, it reduces to ⟨0⟩ entirely and it corresponds to the kernel of the lift of
the Frobenius (1 choice).

(2) In the second case we suppose that K̃ reduces modulo p to a cyclic group of order p.
Modulo p we have (p+ 1) cyclic groups of order p : ⟨P + bQ⟩ and ⟨Q⟩. Suppose that they
reduce to ⟨P ⟩, then K̃ have the form ⟨P̃ + aR̃+ bS̃, cR̃+ dS̃⟩. By using the isotropic and
linear conditions we get K̃ = ⟨P̃ + aR̃, S̃⟩. This case corresponds to p choices for every
cyclic group of order p modulo p. And we have (p+ 1)p lifted kernels.

(3) And in the last case, K̃ reduces to ⟨P,Q⟩, the kernel of the Verschiebung. Ihas the form
⟨P̃ + aR̃+ b̃S, Q̃+ cR̃+ dS̃⟩. Using the isotropic conditions on such basis we get b = c.
Therefor we obtain p3 kernels and according to [Sat00], only one of them is unramified:
the “canonical” lift of the Verschiebung.

We get all p3 + p2 + p+ 1 isogenies corresponding to the roots of ϕ1,p.

Computing the lift of Invariants. We denote by Φ a 3 × 1 matrix which components Φ1,p,
Ψ1,p and Ψ1,p are the polynomials (in function of the invariants of the p-isogenous entries) coming
from the modular polynomials ϕ1,p, ϕ2,p and ϕ3,p.

Φ1,p = (ϕ1,p ·D1) (u, x1, x2, x3)
Ψ2,p =

(
ψ2,p − v · ϕ′1,p

)
·D2(x1, x2, x3, u, v)

Ψ3,p =
(
ψ3,p − w · ϕ′1,p

)
·D3(x1, x2, x3, u, w)

where Di’s are the denominators of the corresponding function. We use this notation to consider
only the numerators of fractional functions. From the definitions in Section 2.1, these denomina-
tors D1, D2 and D3 are in function of respectively (Den(ϕ1,p)), (ϕ′1,p and Den(ψ2,p)) and (ϕ′1,p

and Den(ψ3,p)).
Let U = (x1, x2, x3) denotes the absolute invariants of the first variety and V = (u, v, w) represents
the absolute invariants of the p-isogenous varieties.

Suppose that we can compute efficiently the Frobenius automorphism σ of Qq and X ∈ Z3
q is

an approximation of J̃ at precision pk i.e J̃ −X = pke for some error e over Zq that we want to
find. Using the modular equation and Taylor expansion of Φp we have:

0 = Φp(X + pke,Xσ + pkeσ) implies

0 = Φp(X,Xσ) + pke
∂Φp

∂U
(X,Xσ) + pkeσ ∂Φp

∂V
(X,Xσ) + p2k(...)

where by ∂Φp

∂U
and ∂Φp

∂V
we mean the jacobian matrices of the vector function Φp respectively in

direction of U and V . Letting Φ′1,p = ∂Φ1,p

∂u
, we have:
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∂Φp

∂V
=

 ϕ′1,p.D1 0 0
0 −ϕ′1,p.D2 0
0 0 −ϕ′1,p.D3



∂Φp

∂U
=


∂Φ1,p

∂x1

∂Φ1,p

∂x2

∂Φ1,p

∂x3
∂Φ2,p

∂x1

∂Φ2,p

∂x2

∂Φ2,p

∂x3
∂Φ3,p

∂x1

∂Φ3,p

∂x2

∂Φ3,p

∂x3


We let Lp the set of absolute invariants J which annihilate the product Den(ϕ1,p) · Den(ψ2,p) ·

Den(ψ3,p).

Proposition 3.1. (Kronecker’s condition) Let J = (a, b, c) be the absolute invariants of the
abelian surface A over Fq. If a /∈ Fp2 and (a, b, c) /∈ Lp, and the abelian surface corresponding to
J has no non-trivial p2-endomorphism, then

i) ∂Φp

∂V
(J, Jσ) is invertible;

ii)∂Φp

∂U
(J, Jσ) ≡ 0 mod p.

Proof. In general, we show in Appendix A and Proposition A.1 that the Frobenius realizes the
Kronecker conditions on the locus of the ordinary points of the fine moduli space Ag,Γ0(p), hence
the Kronecker condition is valid on a dense open set of points. We check that the conditions
above are sufficient.

i) We have :

det
(
∂Φp

∂V

)
= (ϕ′1,p)3 ·D(x1, x2, x3, u)

where the function D represents the product D1.D2.D3 of the denominators. Remark that the
parametrization given by the modular polynomials Φp is such that the multiplicity of the solution
can be read on ϕ1,p. - When J = (a, b, c) /∈ Lp and J ∈ Fp × Fp × Fp then σ̂(J) = σ(J) = J .
Since modulo p the Verschiebung σ̂ has multiplicity p3 then :

ϕ′1,p((a, b, c), ap) ≡ 0 mod p which implies ∂Φp

∂V
(J, Jσ) /∈ Z×q .

- When J /∈ Lp and J /∈ Fp × Fp × Fp, let us consider a /∈ Fp. From Section 3.1, the Frobenius σ
admit a unique lift over Zq, so its multiplicity is 1 modulo p in the polynôme ϕ1,p(x1, x2, x3, X).
Furthermore since by assumption the only p2-endomorphism on A is [p], the isogenies other than
the Verschiebung have a different codomain (otherwise composing with their dual we would get a
non trivial p2-endomorphism), then :

ϕ′1,p(a, b, c, ap) ̸≡ 0 mod p.

Further D(a, b, c, ap) is nonzero modulo p, since J /∈ Lp.
Therefore we get:

∂Φp

∂V
(J, Jσ) ∈ Z×q .

ii) The assertion ∂Φp

∂U
(J, Jσ) ≡ 0 mod p means each partial derivative in respectivelly x1, x2

and x3 of the polynomials Φ1,p(x1, x2, x3, u), Φ2,p(x1, x2, x3, u, v) and Φ3,p(x1, x2, x3, u, w) vanish
0 modulo p when evaluated in (a, b, c) /∈ Lp.
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Input J , integer N the precision.
Output J̃ the lift of J at precision N .

: If N = 1 then J at precision p;
: Else N ′ = N/2;
: J =GeneralHarley(J , N ′);

a. G = ∂Φ
∂U

(J, Jσ); H = ∂Φ
∂V

(J, Jσ); Q = Φ(J, Jσ) ;
b. a = G.H−1, b = Q.H−1;
c. e =ArtinSchreier(a, b,N ′);
d. J = J + pke;

: Return J ;

Algorithm 3.1 GeneralHarley

Firstly let us consider the polynomial Φ1,p = ϕ1,p · D1, where the reduction modulo p of the
modular polynomial ϕ1,p is

ϕ1,p(x1, x2, x3, u) =
∏

γ∈Cp

(u− fγ
1,p)

where the fγ
1,p are in function of variables x1, x2 and x3.

The original variety with modular invariant (a, b, c) can be recovered from the one with invariants
(ap, bp, cp) via the application of the Verschiebung. From Section 3.1, there are p3 lifts of the
Verschiebung. Then we get:

∂Φ1,p

∂xk
(a, b, c, ap) ≡ 0 mod p for k = 1, 2, 3.

Therefore every partial derivative in respectivelly x1, x2 and x3 of polynomials Φ1,p become 0
modulo p in (J, Jp).

For the polynomials Φ2,p(x1, x2, x3, u, v) and Φ3,p(x1, x2, x3, u, w) we use the same reasoning.
□

Therefor the Kronecker conditions provides the following Newton method for computing the
lift of absolute invariants for ordinary points on A2 ⊗ Fq satisfying these conditions.

Theorem 3.2. Let J = (a, b, c) be the absolute invariants of a polarized abelian surface A over
Fq. If the triple (a, b, c) satisfy the Kronecker conditions then the algorithm 3.1 computes (by
doubling precision) the absolute invariants of the lifting curve Ã over Zq to precision n in time
O(n2).

Proof. Since the matrix of the polynomials satisfies the Kronecker condition Proposition 3.1, the
modular equation Φp(X + pke,Xσ + pkeσ) = 0 becomes modulo pk:

eσ +Ae+B = 0

This equation is called "Artin-Shreier equation" in [Gau04]. Since A = ∂Φp

∂Y
(J, Jσ) annihilate

modulo p, Harley proposed a method to lift the unique e = − p
√
B (see [Gau04] for the scalar case,

the multivariate case works exactly the same). □

Remark 3.3. in the Siegel moduli space R.Dupont has computed modular polynomials in
function of Igusa invariants [Dup06] for the level p = 2. E.Milio used Streng invariants to reach



8 ABDOULAYE MAIGA AND DAMIEN ROBERT

levels 3 [Mil14], unfortunately we can’t use these polynomials in characterstic 3, because Streng
invariants does not reduce well in this characteristic. Indeed when we express the universal
invariants γi’s in function of the algebraic Streng invariants (j1, j2, j3), we get that for for instance:

γ2 = j5
2/(192j2

3) − j3
2/(12j3), and γ3 = 2j2

2j1/(27j3) + j5
2/(3456j2

3) − j3
2/(72j3)

does not reduce well modulo 3.

Alternatively, we can use modular invariants derived from Igusa arithmetic invariants. For
instance the absolute invariants d1 = J2

2/J4, d2 = J2
6/J

3
4 and d3 = J2

10/J
5
4 induce an isomorphism

of M2[J−1
4 ] with the standard open of A3 defined by d−1

3 over Z[1/2] (see [MR21, Theorem 2] for
more details). In [MR21, Theorem 2], we define invariants for the three sets M2[J−1

2 ], M2[J−1
4 ]

and M2[J−1
6 ], this suffices to get invariants on all the non-singular points on M2 ⊗ k. Indeed,

we know from [Igu60, Theorem 4] that, if char(k) ̸= 2, the variety M2 ⊗ k has one and only
one singular point, which corresponds to J2 = J6 = J8 = 0. Since J2J6 = 4J8 + J2

4 , then at a
non-singular point either we have J4 ̸= 0 or J2 ≠ 0 or J6 ̸= 0. Therefor one can compute the
modular polynomials in function of the absolute invariants (d1, d2, d3) having good reduction
modulo 3 using the algorithm 3.1 in [MR21, Pages:16-17].

3.2. In Hilbert Modular Space. Next we work on SL2(OK)\H2
1 in place of A2. It provides a

polynomials of smaller size with a different lifting algorithm but the basic idea remains the same.
From the definition of Hilbert modular polynomials Section 2.2, we see that when p is inert,

the lifting algorithm of the invariants follows the same process like in Siegel space. Thus we focus
on Hilbert cyclic modular polynomials corresponding to a split p = ββ. Let Φβ , Φβ be the vector
function defined by the modular polynomials, then the canonical lift J verify:{

Φβ(J, Y ) = 0
Φβ(Y, Jσ) = 0

where Y represents the invariants of the middle variety defined by splitting the Frobenius isogeny
into a composition of two cyclic isogenies (a β-isogeny followed by a β-isogeny).
Therefor, knowing J mod p we can solve the system over Fq, to find Y . Furthermore we have
following result.

Lemma 3.4. Let J /∈ Lβ be the invariants defined a point on the Hilbert modular space without
non trivial p2-endomorphism, such that at least one component of J does not lies on Fp and ϕβ is
the minimal polynomial of the modular function associated to this component, then :

• ∂Φβ

∂V
(J, Y ) ̸≡ 0 mod p,

∂Φβ

∂V
(Y, Jσ) ̸≡ 0 mod p;

• And
∂Φβ

∂U
(Y, Jσ) ≡ 0 mod p.

Proof. The proof works the same as in Proposition 3.1. We remark that Y is uniquely defined
as the quotient of A by the non étale part of A[β]. Indeed A does not have a non trivial β2-
endomorphism, otherwise it would have a non trivial p2-endomorphism since End(A) is stable
under the Rosatti involution. □

Suppose we know an approximation X and T of respectively of J and Y at precision pk, then
set J̃ −X = pke and Ỹ − T = pkr where e, r ∈ Zq are the errors that we want to determine using
Φβ .
Since JΣ = XΣ + pkeΣ, by using the Taylor expansion on Φβ(X + pke, T + pkr) = 0 and
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Φβ(T + pkr,XΣ + pkeΣ) = 0 we obtain:
0 = Φβ(X,T ) + pk ∂Φβ

∂U
(X,T ) · e+ pk ∂Φβ

∂V
(X,T ) · r + p2k(· · · )

0 = Φβ(T,XΣ) + pk
∂Φβ

∂U
(T,XΣ) · r + pk

∂Φβ

∂V
(T,XΣ) · eΣ + p2k(· · · )

where the factors (· · · ) behind p2k are in Zq.
By dividing the whole system by pk, then we get modulo pk:

0 = Φβ(X,T )
pk

+ ∂Φβ

∂U
(X,T ) · e+ ∂Φβ

∂V
(X,T ) · r

0 =
Φβ(T,XΣ)

pk
+
∂Φβ

∂U
(T,XΣ) · r +

∂Φβ

∂V
(T,XΣ) · eΣ

From the Kronecker conditions (Lemma 3.4): ∂Φβ

∂V
(X,T ) and

∂Φβ

∂V
(T,XΣ) are invertible, then

we have:

r = −
[
∂Φβ

∂V
(X,T )

]−1(Φβ(X,T )
pk

+ ∂Φβ

∂U
(X,T ) · e

)
,

Therefor we obtain the system under a Artin-Schreier equation form:
eΣ +Ae+B = 0

where we have:

A = −
[
∂Φβ

∂V
(T,XΣ)

]−1

.
∂Φβ

∂U
(T,XΣ).

[
∂Φβ

∂V
(X,T )

]−1
.
∂Φβ

∂U
(X,T ),

B =
[
∂Φβ

∂V
(T,XΣ)

]−1(Φβ(T,XΣ)
pk

−
∂Φβ

∂U
(T,XΣ).∂Φβ

∂V
(X,T )−1.

Φβ(X,T )
pk

)
.

Since the Kronecker conditions (Lemma 3.4) imply:
∂Φβ

∂U
(T,XΣ) ≡ 0 mod p then A ≡ 0

mod p.
Hence we obtain the error e to correct J (at precision p2k) using the ArtinSchreier algorithm in
[Gau04, § 5.3]. Then we have the following result.

Theorem 3.5. Let J ∈ Fq (the Gundlach invariant or the pullback of theta invariants) represent-
ing a point A in Hilbert space such that J satisfies the Kronecker condition for Hilbert modular
polynomials. Then the previous variant of Harley algorithm (Algorithm 3.2) computes the lift J̃
in O(n2) operations where n = ordp q.

4. Computing the Lift of the p -Torsion Points

From now we know how to compute the lift J̃ of a invariants J of an ordinary abelian surfaces
A defined over Fq (satisfying Kronecker condition). If we are working with theta invariant the
reconstitution of the equation of Ã is immediate (for example see [Gau07; GL09]). On other hand
when we are working with absolute invariant coming from Igusa invariants J2i’s, one can construct
an equation of Ã by using Mestre’s method and J̃ (see Appendix A). Since Mestre’s method has
bad reduction in characteristics p ⩽ 5, in these cases we can lift the hyperelliptic model y2 = f(x)
(or the one coming from the normal form of the corresponding curve see Appendix A or [MR21,
§ 1]).
Next we are interesting in the lift of the p-th Frobenius morphism σ. We want to compute (up
to isomorphism) its dual, the Verschiebung, from the étale p-torsion of Ã and an algorithm for



10 ABDOULAYE MAIGA AND DAMIEN ROBERT

Input J invariants representing A, Y the solution of the Φp(J, Y ) = 0 over Fq and a precision N .
Output J̃ at precision N .

: If N = 1 Return J and Y at precision p;
: Else N ′ = N/2;
: J =Harley@Hilbert(J , Y N ′);

a. A = −
[
∂Φp

∂V
(T,XΣ)

]−1
.
∂Φp

∂U
(T,XΣ).

[
∂Φp

∂V
(X,T )

]−1
.
∂Φp

∂U
(X,T );

b. B =
[
∂Φp

∂V
(T,XΣ)

]−1(Φp(T,XΣ)
pk

− ∂Φp

∂U
(T,XΣ).∂Φp

∂V
(X,T )−1.

Φp(X,T )
pk

)
;

c. e =ArtinSchreier(A,B,N ′);

d. r = −
[
∂Φp

∂V
(X,T )

]−1(Φp(X,T )
pk

+ ∂Φp

∂U
(X,T ) · e

)
,

e. J = J + pke and Y = Y + pkr at precision p2k ;
: Return J and Y ;

Algorithm 3.2 Harley@Hilbert

computing isogenies in dimension 2 (see [CE14; CR10]).
In this section we give a general method to lift the p-torsion points of A (in any dimension).

Let A be an abelian variety of dimension g over Zq. A point P = (x1, .., xm) on A is a p-torsion
point if and only if [k+ 1].P = −[k]P (with p = 2k+ 1). Let’s denote by Mp the Jacobian matrix
of the polynomial system [k + 1].P = −[k]P defining the p-torsion point.

For an ordinary elliptic curve E over Fq then , if Ψp is the p-division polynomial, we have:
ordpΨ′p(x) = 1 for a (x, y) in Ẽ[p] ∩ Ẽ(Zur

q ) ̸= {O} from [Sat00, Lemma 3.7.]. Therefore in
dimension one, the determinant of the Jacobian matrix of F has valuation 1. The following
proposition provide a generalization of the Satoh lemma [Sat00, Lemma 3.7.] to a system of
polynomials that defines the set the p-torsion points on ordinary abelian varieties of dimension g.

Proposition 4.1. Let A be an abelian variety of dimension g over Zq, at any point P of A the
tangent at P of the system Mp equals p times the identity matrix.

Proof. It follows directly from the fact the tangent of the addition map on A is given by the
addition on the tangent spaces. □

Corollary 4.2. Let A be the abelian variety defined by polynomials system (f1, · · · fn) in An. At
any P ∈ A[p] there exists a basis such that :(

Jac(f1, · · · , fn)
Mp

)
=
(

∗ ∗
0 p.Ig

)
And its determinant has p-valuation g.
Where Ig is the g dimensional identity matrix.

Proof. Let P be a point in A[p] then the rank of Jac(f1, · · · , fn) is (n − g). By applying the
Proposition 4.1 we get the result. □

In dimension 1 the previous result is equivalent to Satoh lemma [Sat00, Lemma 3.7.]. Unfortu-
nately in high dimension we have a polynomial system to define the p-torsion of abelian surfaces,
however using the Proposition A.7 and Corollary 4.2 we get the following result.
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Theorem 4.3. (p-torsion lifting) Let A be a polarized abelian variety of dimension g over Zq,
then we can compute the lift of any p-torsion points on A/Fq to precision N in quadratic time
over Zq.

Proof. For the convenience we work on the Kummer surface.
Let F be a vector function of the polynomials system defined by: P ∈ K and [k + 1].P = −[k]P
(with p = 2k + 1). We know from the above Corollary 4.2 that the Smith Normal Form of
(DF (P )) has following form using a matrix base change M · S ·N :(

∗ ∗
0 p.Ig

)
According to the Proposition A.7 the Newton on F at X will work like univariate Newton for
each component of X. Hence for any P = P̃ mod p: ordp Fi(Pi) = 1 and ordp F

′
i (Pi) = 0 for

the (n − g) first polynomials. And for the g others polynomials we get: ordp Fi(Pi) = 2 and
ordp F

′
i (Pi) = 1. According to the Lemma A.3 we must add the Hessian matrix HF (P ) to obtain

more precision on g equations . So according to [Sat00] the lift of P is unique. Then the equation
:

F (P ) + p.DF (P ).R+ p2/2. tR.HF (P ).R = 0 mod p3

has only one solution R, such that ordp Fi(Pi) = 3 and ordp F
′
i (Pi) = 1 for the g polynomials.

Then the univariate Newtons appearing for the next steps, are all of type Lemma A.3 with
ki > 2ei for all i. Therefor using the Proposition A.7 one can compute the unique lift of the
p-torsion point at precision pN in quadratic time over Zq. □

Example 4.4. Let y2 = x3 + (t2 − t)x2 + t3 − t2 + 1 be the equation of the elliptic curve E over
F3[t]/(t5 + 2t+ 1).
The Teichmuller polynomial of t5 + 2t + 1 is at precision 316

M = t5 + 40187187t4 + 22623057t3 + 28433298t2 + 42740657t + 1.
Using Harley algorithm, the lift of j-invariant at precision 316 is
j̃ = 4184705t4 + 21892713t3 + 36017948t2 + 23621781t + 31000250.

The lifted curve Ẽ is given by y2 = x3 + Ax2 + B, where :
A = t2 + 1, B = 35012730t4 + 19700410t3 + 13577987t2 + 12290190t + 25369066.

A point P = (x, y) is in Ẽ[3] if and only if [2].P = −P and since the two points [2].P and P lie
on the same line then P ∈ Ẽ[3] ⇔ F (x, y) = 0 and

F (x, y) =
(

−x3 − Ax2 + (y2 − B)
9/4x4 + 3Ax3 + A2x2 − 3y2x − Ay2

)
.

Using the algorithm 4.3 at precision 316 for P̃ = (2t4 + 2t3 + 2t2 + 1, 1) on E[3] we get:
P̃ = (555542t4 + 15403853t3 + 5231684t2 + 29534907t + 30143767, 11152449t4 + 34597530t3 + 41418387t2 + 1833597t + 31531297).

5. Application to Point Counting in Odd Characteristic

The previous sections details the algorithm to compute the canonical lift of abelian surfaces
and theirs p-torsion groups. In this section we are interested in the main application of the the
canonical lifting of genus 2 curve: the computation of their characteristic polynomial.
In this section we use an extension of Satoh Method in [Sat00] to evaluate the action of the
Verchiebung morphism on the p-torsion group.

Let C be a genus 2 curve, A and K the Jacobian and the Kummer surface of C over Zq. Let Σ
from Ã to ÃΣ be the lift of the Frobenius morphism σ from A to Aσ. Then Σ̂ decomposes as
follow :
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Ã ÃΣ̂

Ã/K̃

Σ̂

ν λ

Where ν is normalized Verschiebung computed using the Vélu’s Formula and λ is an isomorphism
between Ã/K̃ and ÃΣ̂. Since ν is normalized its action is trivial and one only need the action of
the isomorphism λ to get the one of the Verchiebung Σ̂.
Generally if π1, . . . , πg are the invertible eigenvalues of the Frobenius morphism Σ of Ã over Zq

for an ordinary abelian variety A. Then the product π1 · · ·πg is an element of the ring Zq. Since
the qth-power Frobenius morphism decomposes as follow :

A −→ Aσ −→ · · · −→ Aσn−1

We have :

(π1 · · ·πg)k = NQq/Qp

(
ϑk(ΩΣ̂)
ϑk(Ω)

)
= NQq/Qp

(
ϑk(Ων)
ϑk(Ω)

)
.

where ϑk is a modular form of weight k (equivalently a fractional covariant when g = 2) and
Ω ∈ Hg represents A .

Next we describe an algorithm to compute the eigenvalues π1 and π2 of the Frobenius morphism
on the genus 2 curve C, further to reconstitute its characteristic polynomial in the case where its
absolute invariants satisfy the Kronecker conditions.

5.1. Description and Complexity of the Algorithm. Since there exists a complete formulae
for the conversion between Mumford and theta coordinates, for the convenience we work on the
Kummer surface associated to such curve.

Initialization. Let C be an hyperelliptic curve of genus 2 over a finite field Fq of characteristic
p > 2 such that its fundamental theta invariants given by a vector J satisfies the Kronecker
conditions (Section 3 and Proposition 3.1) with a corresponding modular polynomials given for
example by a vector function Φp. Then we have following result.

Theorem 5.1. Our algorithm computes #JacC(Fq) using in O(M(p4). log (p). log (n).n2) opera-
tions using Hilbert modular polynomials and in O(p15. log (p). log (n).n2) operations using Siegel
modular polynomials.

This algorithm is explained as follows:

Computing p-torsion over Fq. The computation of the p-torsion over Fq can be done in two
different ways. By solving directly the polynomials system F defined by the Kummer equation of
K and two equations from the coordinates relations [k + 1].P = −[k]P (with p = 2k + 1). On
other hand the methods detailed in [GS12a] compute efficiently the p-torsion from the Mumford
representation on A over Fq, then we obtain the theta coordinates by conversion. Using the
modular compositions in Mumford representation the computation of the p-torsion amounts to a
number of operations of the form O(pM(p4) + pω+3) where ω is such that matrices of size n can
be multiplied in O(nω) operations. The memory requirement is O(p5) elements of Fp. Using the
group law the computation takes O(M(p4) log(p)) operations in Fp , with a memory requirement
of O(p4) elements of Fp.
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Lift Invariants. Since J satisfies the the Kronecker conditions Proposition 3.1 with corresponding
vector function Φp of modular polynomials, the Section 3 and Algorithm 3.1 computes J̃ . The
most expensive operations resides in the evaluation of modular polynomials. Using the Hilbert
modular polynomials it takes O(p4n2) and in the case of the Siegel modular polynomials it takes
O(p15n2), see [Kie20]. And the resolution of Artin-Schreier algorithm costs O(n2 log p).
One can determine the Kummer surfaces of ÃΣ and Ã just by computing theirs equations with a
formula in Appendix A in function of the lifted fundamental theta invariants.

Lift p-Torsion. Using the Theorem 4.3 one computes an approximation of the lift of any
P ∈ K[p]. The resolution of the system :

F (P ) + p.DF (P ).R+ p2/2. tR.HF (P ).R = 0 mod p3

at the beginning of the lifting can be done using a quick Gröbner basis computation. In fact this
system has three trivariates polynomials of degree 2. Then the complexity this computation is
negligible since it concerns only three polynomials in three variables of degree 2 , it can be done
in O(1). And the lift of p-torsion can be done in O(logn) times the cost of dividing two elements
of Zq up till precision Θ(n).

Computing the Product π1π2. We recall, for every modular invariant ϑk of weight k that:

(π1π2)k = NQq/Qp

(
ϑk(ÃΣ̂)
ϑk(Ã)

)

Since K is isomorphic to 1
p
Z2/Z2 let denote by (ẽ1, ẽ2) the canonical basis that reduces to the

coordinates basis (e1, e2) of K. The method detailed in [CR10, § 4] computes the theta null point
of A/K knowing (θAk (ẽi))k∈Z(n) up to an unknown projective factors λi for i = 1, 2.
Let’s denote by C0 the product θB0 (0)r given by the formulae in [CR10, Prop 4.1], Then the
modular invariant ϑk of weight k evaluated at ΩB is given by :

ϑk(ΩB) = ϑ′k(ΩB) · C−2(r−1)k/r
0

From an input {e1, e2} given in theta coordinates of a maximal isotropic subgroup K ⊂ A[ℓ], the
above algorithm outputs θBk (0) × C0, where C0 = θB0 (0) if ℓ ≡ 1 mod 4 and C0 = θB0 (0)3 if ℓ ≡ 3
mod 4.
Let (a, b, c, d) be the level 2 thetas given by this isogeny’s computation algorithm [CR10, Prop 4.1].

• In the case where ℓ ≡ 3 mod 4 :
a = θB0 (0) · C0, · · · , d = θB3 (0) · C0

where a = θBk (0)4 i.e C0 = θBk (0)3. Since the algorithm outputs h′4 with factor C8
0 and

C8
0 = a6, then we obtain h4 = h′4/a

6 and using a similar process h10 = h′10/a
15.

• In the case where ℓ ≡ 3 mod 4 we have :
a = θB0 (0) · C0, · · · , d = θB3 (0) · C0

where C0 = θB0 (0). Then h4 = h′4/a
4 and h10 = h′10/a

10.
Let O(Nµ) and Tn,N for fixed p, be respectively the cost of the modular multiplication and the
multiplication of two polynomials of degree less than n in (Z/pNZ)[X] modulo M up to precision
N .
The norm computation phase can be done using Satoh-Skjernaa-Taguchi analytic method in
[SST03] with the complexity O(Tn,N+

√
N ·

√
N). When the base field admits a Gaussian Normal

Basis H.Y.Kim and al. introduce an algorithm to compute such norm in O(
√
N) time complexity

and O(nN) of memory at precision pN . On other hand Harley proposed in [R] a method based
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on a resultant computation using a variant of D.Mœnck GCD algorithm [RT] to compute norm
NQq/Qp

modulo pN in time O ((nN)µ logn).

Computing the Characteristic Polynomial of the Frobenius. Let χ be characteristic
polynomial of C, then # JacC(Fq) = χ(1) and it is bounds by the following inequality called
Hasse-Weil bound : ⌈

(√
q − 1

)2⌉ ⩽ χ(1) ⩽ ⌊
(√
q + 1

)2⌋. The symmetric polynomial of C denoted
Psym is the unitary degree 2 polynomial over Z whose roots are π1π1 + π2π2 and π1π2 + π1π2.
And following [Rit03; CL08] one can use the LLL algorithm to recover Psym knowing the π1π2.
Using a quick algorithm in [Rit03], χ(±X) is deduced from the knowledge of Psym when this one
is irreducible.
However according to [Mes02] one can determine directly # JacC(Fq) and #C(Fq) from the
knowledge of u = π1π2. Indeed (π1 + π1) and (π2 + π2) are roots of the quadratic polynomial :
X2 −bX+a where : the sum of the roots b ≡ u mod q and their product a satisfies a2 ≡ (λ+2)u
mod q with λ = (b− u)/q, |b| ⩽ 4q and |a| ⩽ 4√

q. And

# JacC(Fq) =
2∏

i=1
(1 − πi)(1 − πi)

#C(Fq) = q + 1 − (π1 + π1) − (π2 + π2)
Computing the theta null point of the abelian variety B = A/K is doing in O(pr) operations.

Using the resultant method, the norm NQq/Qp
can be computed in O(nµlogn) where µ = 1+ ϵ (for

n large) and µ = log2(3) using the FFT multiplication algorithm and the Karatsuba algorithm
respectively [CFA+06] . And #JacC(Fq) can be computed from π1π2 at the cost O(nµ log p) of
a computing square over Fq .

5.2. Implementation. For the following experience, we use the Siegel modular polynomials
(in function of absolute level 2 theta invariants) computed using https://members.loria.fr/
EMilio/modular-polynomials/.
Let

C : y
2 = x

5 + (2T
8 + T

2 + T )x
4 + (T

8 + T
7 + T

6 + T
5 + T

3 + 2T + 2)x
3

+(T
9 + 2T

8 + T
6 + T

5 + T
4 + 2T

3 + 2)x
2

+(2T
9 + T

8 + 2T
7 + T

6 + T
5 + 2T

4 + 2T
2 + 1)x

be a genus 2 curves over F3[T ]/m with m = T 10 + 2T 6 + 2T 5 + 2T 4 + T + 2 which absolute level 2 theta
invariants are given by the vector J = (a, b, c)

a =2T
9 + 2T

6 + 2T
5 + 2T

4 + T
3 + T

2 + T,

b =2T
9 + T

8 + 2T
7 + T

6 + T
5 + 2T

4 + 2T
2

,

c =2T
9 + 2T

6 + T
4 + 2T

3 + 2T + 2

After the lift phase, we get at precision 320:
M =T

10 + 2549079126T
9 + 1424896413T

8 + 387776124T
7 + 1501830083T

6 + 2399043737T
5

+ 1835343671T
4 + 3327249759T

3 + 1052748765T
2 + 1815623119T + 3486784400

ã =1632442511T
9 + 3184765518T

8 + 3476194941T
7 + 3108882704T

6 + 2423383142T
5

+ 1764926933T
4 + 1098986671T

3 + 2957646787T
2 + 1669307941T + 2686192050,

b̃ =1855464665T
9 + 458606629T

8 + 1644296153T
7 + 2202845860T

6 + 2959176835T
5

+ 2200438487T
4 + 1716586968T

3 + 1038290165T
2 + 133634418T + 2980506843,

c̃ =3067405283T
9 + 2017143027T

8 + 1539671400T
7 + 2805617504T

6 + 754015086T
5

+ 1269571459T
4 + 2964123128T

3 + 609859068T
2 + 3096552740T + 605100932,

https://members.loria.fr/EMilio/modular-polynomials/
https://members.loria.fr/EMilio/modular-polynomials/
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One can use an implementation in http://avisogenies.gforge.inria.fr of the method in
[CR10, § 4], to compute the theta invariants of the p-isogenous abelian surfaces Ã/K̃. And we
obtain:

[1665426634T
9 + 2291786881T

8 + 319244275T
7 + 908965652T

6 + 373529527T
5

+ 3459234302T
4 + 637296308T

3 + 1615339023T
2 + 71993550T + 2412291147,

137569385T
9 + 1781159471T

8 + 2975497017T
7 + 2625983267T

6 + 3456313825T
5

+ 258917388T
4 + 169437654T

3 + 2862222480T
2 + 3191428894T + 828753903,

933603536T
9 + 1711410927T

8 + 130528953T
7 + 3466168598T

6 + 1834982298T
5

+ 1734316195T
4 + 2194380317T

3 + 1333319670T
2 + 2564003393T + 1123362129,

899185444T
9 + 2638232402T

8 + 1147310541T
7 + 2100019531T

6 + 2732363852T
5

+ 2339070819T
4 + 1863357600T

3 + 2399257487T
2 + 1456953946T + 2821097391]

u = π1π2 = 2255204904638089156.

And we get the characteristic polynomial : χ(X) = X4 − 404X3 + 158902X2 − 404 · 310X + 320.
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Appendix A. Appendix

A.1. Reconstitution of the Lifted Genus 2 Curves Equation.

When p > 5. In this case Mestre’s conic has good reduction. We lift the hyperelliptic model
y2 = f(x) of a genus 2 curve C knowing the invariants of its canonical lift, as follow:
• First we construct the cubic M and the conic L of the canonical lift of C over Zq using J̃ .
• Since M and L have good reduction, we extract the parameterization point P of M mod p
corresponding to the equation y2 = f(x).
• Then we lift P using M to P̃ and reconstitute the equation y2 = f̃(x) of the curve C̃.

When p = 3 ou 5. In this case, Mestre’s algorithm has bad reduction modulo p. When the
invariants are in function of J2i’s one can lift the Normal Form equation a the genus 2 curve.
Indeed these invariants admit expression in term of the coefficients of Normal Form equation,
then we lift these coefficients using the lift of the invariants as detailed in [MR21, §4].
For instance when we are working in characteristic 3 with invariants d1 = J2

2/J4, d2 = J2
6/J

3
4 and

d3 = J2
10/J

5
4 for M2[J−1

4 ] ⊗k.Let a, b, c, and d be the coefficients of the normal form equation
of a genus 2 curves C. We can write y2 + (1 + ax + bx2)y = −x3(c + dx + x2) a hyperelliptic
model of C. The coefficients ã, b̃, c̃, and d̃ of the normal form of the curve C̃ that reduce to C
satisfy the following system of equations in the variables ã, b̃, c̃, and d̃:

J̃2
2 − J̃4d̃1 = 0,
J̃2

6 − J̃3
4 d̃2 = 0,

J̃2
10 − J̃5

4 d̃3 = 0
(1)

where (d̃1, d̃2, d̃3) are the lift of (d1, d2, d3) given by the algorithm 3.1 with modular polynomials
in function of (d1, d2, d3). By applying the Newton method of the Section 4 and Proposition A.7
to the equation above, one compute the coefficients ã, b̃, c̃, and d̃ at precision N in Õ(N).

A.2. Kronecker Conditions on the Siegel Ordinary Locus of Γ0(p)-Level Structure. In
this section our goal is to give a proof to a Kronecker condition in the fine moduli space of the
ordinary locus of Siegel moduli of Γ0(p)-Level Structure. We will refer to notion in [CN90; NO80].
Let Ag,Γ0(p) be the algebraic stack such that for any scheme S, Ag,Γ0(p)(S) is the category of
isogenies

A1 A2

S

ϕ

of principally polarized abelian schemes (Ai/S , λAi), i = 1, 2 such that ϕ∗(λA2) defined by
ϕ̂ ◦ λA2 ◦ ϕ coincides to p · λA1 . The moduli Ag,Γ0(p) was deeply study by P.Norman and Ching-Li
Chai as scheme over Zp (for more details see [CN90]). The ordinary locus A0

g,Γ0(p) of Ag,Γ0(p) is
smooth over Zp .
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Let’s suppose for the following that k is algebrailly closed with characteristic p > 0.
When A/k is an ordinary abelian variety, the Tate module of A and its dual are given by:

TpA(k) = lim
←

A[pn](k), TpÂ(k) = lim
←

Â[pn](k)

Let S be a scheme such that p is locally nilpotent in OS . Let I ⊂ OS be a nilpotent ideal.
S0 = Spec O/I, A0 −→ S0 be an abelian scheme. Then the general Serre-Tate Theorem state
that: the functor{

A → S abelian scheme
with an isom A×S S0 → A0

}
⇝

{
G → S a Barrozetti-Tate group

with an isom G×S S0 → A0[p∞]

}
is an equivalence of category.
From the [CN90, Theorem Pages:12-13], the Serre-Tate Theorem implies that: for every geometric
point (ϕ : A/k −→ B/k, λA, λB) of the ordinary locus A0

g,Γ0(p) with ϕ∗(λB) = p ·λA. the isogeny ϕ
induice two Zp-linear maps: F : V = TpA(k) −→ W = TpB(k) and T : W −→ V (using the dual
isogeny ϕ̂) such that T ◦F = p · idV and F ◦ T = p · idW and further the Dieudonné contravariant
functor M̂ is canonical identified with the functor:

R 7−→


symmetric parings

⟨ , ⟩V : V ⊗Zp
V → 1 +mR

⟨ , ⟩W : W ⊗Zp W → 1 +mR

such that
⟨u, T (w)⟩V = ⟨F (v), w⟩W , ∀v ∈ V,w ∈ W


where R runs through artinian local rings with residue field k.
When v1, · · · , vg and w1, · · · , wg are respectively Zp-basis of V and W the previous result can be
interpreted to the following linear algebra relations.

{F (vi) = wi and F (va+i) = p · wa+i} and {T (wi) = p · vi and T (wa+i) = va+i} for 1 ⩽ i ⩽ a
where pa = |V/T (W )| and using the symmetric pairing condition one obtains the following
relation: 

⟨vi, pvj⟩V = ⟨wi, wj⟩W for 1 ⩽ i, j ⩽ a
⟨vµ, pvi⟩V = ⟨pwµ, wi⟩W for 1 ⩽ i ⩽ a, a+ 1 ⩽ µ ⩽ g
⟨vi, vµ⟩V = ⟨wi, wµ⟩W , for 1 ⩽ i ⩽ a, a+ 1 ⩽ µ ⩽ g
⟨vµ, vν⟩V = ⟨wµ, wν⟩W , for a+ 1 ⩽ µ, ν ⩽ g

Summary, for every artinian local module, the functor in [CN90, Theorem Pages:12-13] defines a
symmetric pairing such that at a geometric point (ϕ : A/k −→ B/k, λA, λB) of the locus A0

g,Γ0(p)
of the Siegel moduli espace Ag,Γ0(p), the polynomial system S = 0 given by the following g2

functions:

S =


⟨vi, pvj⟩V − ⟨wi, wj⟩W for 1 ⩽ i, j ⩽ a
⟨vj , pvi⟩V − ⟨pwj , wi⟩W for 1 ⩽ i ⩽ a, a+ 1 ⩽ j ⩽ g
⟨vi, vj⟩V − ⟨wi, wj⟩W , for 1 ⩽ i ⩽ a, a+ 1 ⩽ j ⩽ g
⟨vi, vj⟩V − ⟨wi, wj⟩W , for a+ 1 ⩽ i, j ⩽ g

satisfies the condition:
S(ϕ̂, ϕ) = 0.

By using the symmetric properties of bilinear form ⟨ , ⟩V and ⟨ , ⟩W , we see that the system
S = 0 can be defined knowing only the following the values:

⟨vi, vj⟩V for 1 ⩽ i ⩽ j ⩽ a, ⟨wν , wµ⟩W , for 1 ⩽ ν ⩽ µ ⩽ g
⟨vi, vµ⟩V (= ⟨wi, wµ⟩W ) , for 1 ⩽ i ⩽ a, a+ 1 ⩽ µ ⩽ g
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Indeed, the scheme A0
g,Γ0(p) of ordinary points of Ag,Γ0(p) is smooth of dimension g

(g + 1)
2 over

Spec(Zp) [CN90, Theorem 3.3, Page: 13].

Therefor, we consider the vector function S defined by only these g
(g + 1)

2 functions.

Proposition A.1. (Conditions de Kronecker)
For every geometric point (Σ : A/k −→ AΣ

/k, λA) of the ordinary locus A0
g,Γ0(p), the Jacobian

matrices of the system S = 0 satisfies the following conditions:

• ∂S

∂X
(Σ̂,Σ) annihilates modulo p,

• ∂S

∂Y
(Σ̂,Σ) is invertible modulo p.

Proof. Let us do it first for the case dimension g = 1, Let V and W representing respectivelly
the Tate Zp-modules A and Aσ of geometric point (Σ : A/k −→ AΣ

/k, λA, λAΣ
/k

). Then over Zp

we have: V = ⟨v⟩ and W = ⟨w⟩. By considering the notations above, we denote T the lineair
induicing by the Verschiebung from Aσ

/k, then # (V/T (W )) = p i.e a = 1. In this case, the system
S = 0 admit a unique equation defined by the value:

S = ⟨v, T (w)⟩V − ⟨F (v), w⟩W

Therefor when we set: ⟨v, v⟩ = X and ⟨w,w⟩ = Y at the geometric point of A0
g,Γ0(p), in other

hand the equation is given by:
S = ⟨v, p.v⟩ − ⟨w,w⟩ = Xp − Y

Hence :

• ∂S

∂X
(Σ̂,Σ) = pXp−1 annihilates modulo p at any point (Σ̂,Σ) of A0

g,Γ0(p);

• ∂S

∂Y
(Σ̂,Σ) = −1 is invertible modulo p, indeed the geometric point (Σ̂,Σ) is on the 1-

dimensional ordinary locus A0
g,Γ0(p) over Zp .

In general, when the dimension is g we have # (V/T (W )) = pg i.e a = g. Then the elementary
functions defining the vector function S are in the form:

Xp
ij − Yij pour 1 ⩽ i ⩽ j ⩽ g

Then, set Xij = ⟨vi, vj⟩ and Yij = ⟨wi, wj⟩ for 1 ⩽ i ⩽ j ⩽ g we get:

• ∂S

∂X
(Σ̂,Σ) annihilates modulo p;

• ∂S

∂Y
(Σ̂,Σ) = − Idm is invertible modulo p, indeed the geometric point (Σ̂,Σ) is on the

m = g
(g + 1)

2 -dimensional ordinary locus A0
g,Γ0(p) over Zp .

□

Remark A.2. Let us recall some different facts between the canonical stack structure of the
Ag,Γ0(p) and the coarse structure of the scheme Âg. In the sections above, we worked on the
subscheme of the ordinary locus of the coarse moduli space Âg parameterized by modular Siegel
or Hilbert polynomials rather than on the fine moduli space Ag,Γ0(p). A considerable difference
between the canonical "stack" structure of Ag,Γ0(p) and the "coarse" structure of Âg is that some
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points of A0
g,Γ0(p) are not smooth on the scheme Âg. Indeed these points represent abelian

varieties having additional automorphisms. For example, In dimension 2 the points on M2 with
Aut(C) ̸≃ C2 or the points j = 0, 1728 on the modular curve in dimension 1. The locus of smooth
points of Ag is birationally equivalent to the scheme described by the modular equation. When
g = 1, using "blowups" operations one can make this modular scheme smooth at the ordinary
points (with trivial automorphisms) of Ag, to make it a coarse moduli space. This could well
extend the domain of the Kronecker conditions in dimension 1 to points j ∈ Fp2 of A1,Γ0(p) except
for j = 0, 1728 (in dimension 1, the Kronecker condition domain was j /∈ Fp2).However, according
to [Qin93] blowups are only sufficient to smooth over a curve, ie g = 1.
A.3. Lifting a Roots of Polynomial. We recall that for an ordinary elliptic curve E over Fq

the kernel of the Verschiebung σ is defined by a monic separable factor h of the p-division Ψp

given by :
h(x) =

∏
P∈ker σ̂\{O}

(x− x(P ))

Let H be the lift of h over Zq, then H(x) = h(x) mod p is square free and Ψp(x) ≡ H(x)p mod p

i.e modulo p, the factors H(x) and Ψp(x)/H(x) are not coprime. And when Ẽ : y2 = x3 + Ãx+ B̃

satisfies Ẽ[p] ∩ Ẽ(Zur
q ) ̸= {O}, from [Sat00, Lemma 3.7.]:

ordp

(
Ψ′p(xP )

)
= 1 where Ψ′p = ∂Ψp

∂x
for any P ∈ Ẽ(Zur

q ) − {O}

Fortunately if p ⩾ 3, then ker(Σ̂) = Ẽ[p] ∩ Ẽ(Zur
q ) where Zur

q is the valuation ring of the maximal
unramified extension Qq

ur of Qq [Sat00, Lemma]. However these conditions are not convenient
for a standard Hensel algorithm. Since Ψp(x) ≡ H(x)p mod p, we have ordp Ψp(xP ) ⩾ 2 for
every P ∈ E[p] then following method compute efficiently xP̃ .
We set f<n> = n!.f (n) for any f =

∑
ai.X

i ∈ Zq[ai, X].
Lemma A.3. Let p be a prime, let f be a polynomial over ∈ Zq and x ∈ Zq such that ordpf(x) = k
and ordp f

′(x) = e with e < k. Then for any solution r of the equation

(2) f(x) + f<1>(x)p(k−e)r + · · · + f<i−1>(x)p(i−1)(k−e)ri−1 ≡ 0 mod pi(k−e)

where i = ⌈(k + 1)/(k − e)⌉
x+ p(k−e)r is a solution of f at the precision pi(k−e).

In the case where k > 2e i.e 2(k − e) > k, the Equation (2) gives an unique solution modulo
p2(k−e) which converges to a unique lift without lost of precisions on x. Hence for a solution
modulo p, the condition ordp f(x) > 2 ordp f

′(x) ensures together the existence and unicity of
the lift over Zq. Indeed

f ′(x+ p(k−e)r) = f ′(x) + f”(x)p(k−e)r + · · · + f<i>(x)pi(k−e)ri + p(i+1)(k−e)(· · · )
implies that ordp f

′(x+ p(k−e)r) = e.

Proof. Suppose that ordp f(x) = k and ordp f
′(x) = e with e < k. The Taylor expansion of f is :

f(x+ ∆) = f(x) + f ′(x).∆ + f”(x) · ∆2 + · · · + f<i−1>(x)∆i−1 + ∆i ·Q(x)
where Q(x) is in Zq.
Set ordp(∆) = m we want to determine the error r at precision p at less, necessarily f(x) and
f ′(x).∆ must be at the same precision then m = k − e. Therefor we can solve the equation (in
function of r) at precision pi(k−e) such that i(k − e) = k + 1 i.e i = ⌈(k + 1)/(k − e)⌉.

f(x) + f<1>(x)p(k−e)r + · · · + f<i−1>(x)p(i−1)(k−e)ri−1 ≡ 0 mod pi(k−e)

□
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When k ⩽ 2e the resolution of the Equation (2) depends on the valuations of the f<j>(x)’s
for 2 ⩽ j ⩽ i(k − e). The Equation (2) may have solution on an extension or no solutions any
where. For instance:
• If there exists only one j ∈ {2, i(k − e)} such that ordp p

j(k−e)f<j>(x) is lesser than k then r
does not exists.
• If ordp p

j(k−e)f<j>(x) is greater or equal to i(k − e) for all j ∈ {2, i(k − e)}, then in this case
each solution of Equation (2) defines a lift of x over Zq .

Example A.4. Let p be an odd prime and E an elliptic curves over Fq, we recall that for
P (x0, y0) ∈ E[p], ordp Ψp(x0) > 1, ordp Ψ′p(x0) = 1, and furthermore since Ψp = hp mod p, we
have ordp Ψ”p(x0) ⩾ 1. Then we have ordp Ψp(x0) ⩾ 2. ordp(Ψ′p(x)) and the previous Lemma A.3
allows to compute the unique lift of x0 over Zq.
For instance when ordp Ψp(x0) = 2, we have k = 2 and e = 1 then the equation in lemma A.3
becomes :

Ψp(x0) + Ψ′p(x0).p.r ≡ 0 mod p3 since ordp Ψ”p(x0) ⩾ 1.
For k ⩾ 3, 2(k − e) > k one can solve the equation Lemma A.3 modulo p2(k−e).

Ψp(x) + Ψ′p(x).p(k−e).r ≡ 0 mod p2(k−e).

We recall that T.Satoh has introduced in [Sat00, Lemma 2.1] a variant of Hensel’s lift that
compute the lift of the representative polynomial h of E[p] over Zq. In small characteristics #E[p]
is small and the previous method of Lemma A.3 becomes faster since Satoh use in each step the
extended gcd algorithm to compute the error r.

Whenever ordp f(x) ⩽ e one can apply the following method to obtain a sufficient precision
corresponding to the Lemma A.3. The strategy is simple but it not ensures any convergence for a
solution, the goal is to reach the previous condition of convergence (described in Lemma A.3).
To determine the error r we need a f<j>(x) and α ∈ N such that ordp(f<j>(x)pjα) = ordp f(x).
We suppose that a root x̃ ∈ Zq of f exists and we know that x = x̃ mod p.

Lemma A.5. Let ordp f(x) = k and ordp f
′(x) = e such that 1 < k ⩽ e. Let j be the smallest

positive integer (if it exists) such that ordp(f<j>(x)) + j ⩽ k. Then for any solution r of the
equation

(3) f(x) + f<1>(x).pα.r + · · · + f<j>(x).pjαrj ≡ 0 mod p(j+1)α

where α = ⌊k − ordp(f<j>(x))
j

⌋;

x+ pαr is solution of f at the precision p(j+1)α.
Further if ordp(f<j>(x)) ⩽ α then ordp f

′(x+ pαr) < (j + 1)α (hypothesis of Lemma A.3).

Obviously one can remark that such j is less or equal to (deg f + 1).
The situation ordp(f<j>(x)pjα) < k in this Lemma A.5 happens mostly when at this stage x is
not at good precision. And at this precision f has many roots but not all lift to the unknown x̃.

Proof. For simplicity we suppose ordp f
<j>(x) = 0.

In the Taylor expansion Equation (3), we have enough precision to divide by ordp(f<j>(x)pjα)
and we get modulo pα) an equation:

ajr
j + · · · a1r + a0 = 0 with ai ∈ Zq.

The possible vanishing factor modulo pα contains the errors for the next precision. For a root r
of the previous equation we have: f(x+ pαr) = 0 mod p(j+1)α. Further if ordp r = 0, then the
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relation

f ′(x+ pαr) = f ′(x) + f<2>(x).pαr + · · · + f<j>(x).pjαrj + p(j+1)α(· · · )

implies that ordp f
′(x+ pαr) = jα < (j + 1)α since only ordp(pjαf<j>(x)) ⩽ k . □

Remark A.6.

Interpretation. We want to explain on other hand the link between the previous methods and the
standard Hensel’s algorithm (based on the fact ordp f

′(x) = 0). In the both situations (Lemmas A.3
and A.5) the error computation run like in the standard Hensel method by modifying the function
f in a neighborhood of the approximation x. Therefor in the case when the lift x̃ exists we are
able to extract an approximation of the function f which satisfies the standard Hensel condition.
For instance:

• In the case where ordp f(x) > 2·ordp f
′(x) the local function is defined in a neighborhood

of x (the ball of center x and radius pk−e) by g = p−ef hence we have ordp g(x) = k−e and
ordp g

′(x) = 0 .
• The case of Lemma A.5 is more complicate since it is possible to have more than one

solution for the "error-equation" (Equation (3)) and each solution corresponds to an
approximation of the function f in a ball of center x and radius pα. The first goal is to
reach the condition for applying Lemma A.3. For simplicity we suppose ordp f

<j>(x) = 0
and the corresponding error can be computed using the approximation functions of f
defined by:

g = p−jα
(
b0f + b1f

<1> + · · · + bj−1f
<j−1>

)
with ordp bj−1 = 0.

Then the extracted functions satisfy ordp g
′(x) = 0 (by using the definition of j and the

fact ordp f
<j>(x) = 0). Specially the evaluations at x of these approximation functions

are given by a factorization (in function of r) of the relation " ?? " in prime factors over
Zq at precision pα (the Newton condition). Therefor in each "Taylor branch" (defined by
an associated r) the next steps converge to a unique lift over Zq.

Number of lifted roots. Let f ∈ Zq[X] and x̃ be a root of f over ∈ Zq such that ordpf(x) = k
and ordpf

′(x) = e.
• If k > 2e then only one root of f over Zq reduces to x modulo pk.
• Otherwise the number of roots of f over Zq that reduce modulo pk to x can be more.

The methods detailed previously allow under certain conditions to lift a root of a polynomial
in Zq[X] without loss of precision in the best cases. Hence it computes a p-torsion point of a
canonical lift of an ordinary elliptic curves.
Next we want to generalize these methods to the case of multivariate polynomials system of
dimension zero in the sense to compute the lift of the p-torsion on an abelian varieties.

A.4. Lifting a Solution in Polynomial System. Let F be the vector function of a multivariate
polynomial system F = 0 over Zq of dimension zero and let DF be its Jacobian matrix. We
suppose that X̃ a root of F over Zq exists and we know its approximation X (at unknown
precision) such that ordp F (X) = k, ordp det(DF (X)) = e and X̃ = X mod p. Generally the
components of X can be at different precisions ( comparing to the components of X̃ ). Therefor
we need first to exhibit the precision of each component of X. And by separating the errors in
the components we know the method corresponding to each "error-equation".
Let S be the Smith Normal Form of the Jacobian matrix DF (X) of F at X such that DF (X) =
M · S · N with M and N invertible. Then we get DG(X) = M−1 · DF (X) · N−1 = S and
G(X) = M−1 · F (XN−1) with DG(X) = diag(pe1 , pe2 , ..., pen) and e = e1 + · · · + en.



REFERENCES 23

Proposition A.7. Suppose that each component Xi of X is at precision pki . Then one can find
in quadratic time the approximations of X̃ at precision N > ki by using:

• the method of Lemma A.3 if each ki > ei ;
• otherwise the one of Lemma A.5

Proof. The information on the valuations given by the calculation of SNF is necessary in the
absence of a known result on the Jacobian matrix (like in Section 4 and Proposition 4.1).
The base change does not affect the errors that we want to determine; we start from the system
with G given by the Smith Normal Form on F , then the Newton algorithm in X will work
similarly to the univariate case (of the above lemmas) When we have ordp Gi(Xi) = ki with
ki > ei for all i then the lifts of X (at precision N > max(ki)) can be computed using the method
Lemma A.3. Otherwise, some equations need additional information, so globally we compute
the other successive derivatives as suggested in the method Lemma A.5. Thus, we determine the
approximations of the lifts (corresponding to Lemma A.3 at the next step) .
From the Taylor expansion of F at (X +Rpk), a lexicographic Groebner basis computation in
function of the components of the error R at precision pN allows compute the error R for next
stage. □
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