Enumeration of Dyck paths with air pockets - Archive ouverte HAL
Article Dans Une Revue Journal of Integer Sequences Année : 2023

Enumeration of Dyck paths with air pockets

Résumé

We introduce and study the new combinatorial class of Dyck paths with air pockets. We exhibit a bijection with the peakless Motzkin paths which transports several pattern statistics and give bivariate generating functions for the distribution of patterns as peaks, returns and pyramids. Then, we deduce the popularities of these patterns and point out a link between the popularity of pyramids and a special kind of closed smooth self-overlapping curves, a subset of Fibonacci meanders. A similar study is conducted for the subclass of non-decreasing Dyck paths with air pockets.
Fichier principal
Vignette du fichier
kirg5-1.pdf (334.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03731272 , version 1 (03-03-2023)
hal-03731272 , version 2 (04-09-2023)

Licence

Identifiants

Citer

Jean-Luc Baril, Sergey Kirgizov, Rémi Maréchal, Vincent Vajnovszki. Enumeration of Dyck paths with air pockets. Journal of Integer Sequences, 2023, 26. ⟨hal-03731272v2⟩
32 Consultations
63 Téléchargements

Altmetric

Partager

More