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Université de Bourgogne
B.P. 47 870

21078 Dijon-Cedex
France

barjl@u-bourgogne.fr

sergey.kirgizov@u-bourgogne.fr

remi marechal01@etu.u-bourgogne.fr

vvajnov@u-bourgogne.fr

Abstract

We introduce and study the new combinatorial class of Dyck paths with air pockets.
We exhibit a bijection with the peakless Motzkin paths, which transports several
pattern statistics, and give bivariate generating functions for the distribution of patterns
as peaks, returns, and pyramids. Then we deduce the popularities and asymptotic
expectations of these patterns, and point out a link between the popularity of pyramids
and a special kind of closed smooth self-overlapping curves, a subset of Fibonacci
meanders. Finally, we conduct a similar study for non-decreasing Dyck paths with air
pockets.

1 Introduction and notation

Lattice paths are widely studied in combinatorics. They have many applications in various
domains, such as computer science, biology, and physics [23], and they have very tight links
with other combinatorial objects such as directed animals, pattern avoiding permutations,
bargraphs, RNA structures, and so on [4, 11, 23]. A classical problem in combinatorics is the
enumeration of these paths with respect to their length and other statistics [1, 2, 3, 7, 15, 16,
18, 20, 21]. In the literature, Dyck and Motzkin paths are the ones most often considered.
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They are counted by the famous Catalan and Motzkin numbers (see A000108 and A001006 in
Sloane’s On-line Encyclopedia of Integer Sequences [22]). In 2005, Krinik et al. [13] introduced
Dyck paths with catastrophes in the context of queuing theory. They correspond to the
evolution of a queue by allowing some resets. The push (resp., pop) operation corresponds to
a step U = (1, 1) (resp., D = (1,−1)), and the reset operations are modeled by catastrophe
steps Dk = (1,−k) ending on x-axis, k ≥ 2. Banderier and Wallner [1] studied these paths
by providing enumerative results and limit laws.

In this paper, we introduce and study paths with air pockets corresponding to a queue
evolution with partial reset operations that cannot be consecutive. These paths can also be
viewed as airplane flights, sometimes showcasing turbulences that are known as air pockets,
where consecutive turbulences are considered to be one. More formally, a Dyck path with air
pockets is a nonempty lattice path in the first quadrant of Z2 starting at the origin, ending
on the x-axis, and consisting of up-steps U = (1, 1) and down-steps Dk = (1,−k), k ≥ 1,
where two down steps cannot be consecutive. For short, we set D = D1. The length of a
Dyck path with air pockets is the number of its steps. Let An be the set of n-length Dyck
paths with air pockets. By definition A0 = A1 = ∅ and we set A =

⋃
n≥2An.

Figure 1: The Dyck path with air pockets UUDUD2UUUD2UD2UUD2.

A Dyck path with air pockets is called prime whenever it ends with Dk, k ≥ 2, and
returns to the x-axis only once. The set of all prime Dyck paths with air pockets of length n is
denoted Pn. Notice that UD is not prime so we set P =

⋃
n≥3Pn. If α = UβUDk ∈ Pn, then

2 ≤ k < n, β is a (possibly empty) prefix of a path in A, and we define the Dyck path with
air pockets α[ = βUDk−1, called the ‘lowering’ of α. For example, the path α = UUDUUD3

is prime, and α[ = UDUUD2. The map α 7→ α[ is clearly a bijection from Pn to An−1 for all
n ≥ 3, and we let γ] denote the inverse image of γ ∈ An−1 (α] is a kind of ‘elevation’ of α,
drawing inspiration for the term from Deutsch’s definition of elevated Dyck paths [7]). Any
Dyck path with air pockets α ∈ A can be decomposed depending on its second-to-last return
to the x-axis : either

(i) α = UD; or

(ii) α = βUD with β ∈ A; or

(iii) α ∈ P ; or

(iv) α = βγ where β ∈ A and γ ∈ P .
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So if A(x) =
∑

n≥2 anx
n where an is the cardinality of An, and P (x) =

∑
n≥3 pnx

n where pn
is the cardinality of Pn, then we have P (x) = xA(x) and the previous decompositions imply
the functional equation A(x) = x2 + x2A(x) + xA(x) + xA(x)2, and

A(x) =
1− x− x2 −

√
x4 − 2x3 − x2 − 2x+ 1

2x
, (1)

which generates the generalized Catalan numbers (see A004148 [22]), which among other
things, counts the peakless Motzkin paths. The first values of an for 2 ≤ n ≤ 10 are
1, 1, 2, 4, 8, 17, 37, 82, 185. An asymptotic approximation for the coefficient of xn in the series
expansion of A(x) is √

14
√

5− 30

2n
√
πn(3−

√
5)

(√
5 + 3

2

)n

.

If a Dyck path with air pockets α ∈ An has k ≥ 1 peaks (a peak is an occurrence UDi

for some i ≥ 1), then it contains n − k up-steps. If we ‘unfurl’ all of its down-steps Di,
i ≥ 1, into runs Di of i consecutive D-steps, then we obtain a Dyck path of length 2(n− k)
having k peaks. This gives rise to a bijection between Dyck paths of semilength n − k
with k peaks and n-length Dyck paths with air pockets with k peaks. Hence, the number
of n-length Dyck paths with air pockets with k peaks is equal to the Narayana number
N(n− k, k) = 1

n−k

(
n−k
k

)(
n−k
k−1

)
[7].

In the following, a pattern consists of consecutive steps in a path, and a statistic s is an
integer-valued function from a set S of paths. Given a pattern p, we associate p with the
pattern statistic p : S → N where p(a) is the number of occurrences of the pattern p in a ∈ S
(we use the boldface to denote statistics). For example, the statistic giving the number of
occurrences of the consecutive pattern UU in a path is denoted by UU. For n ≥ 1, we let n̂
denote the constant statistic returning the value n. The popularity of a pattern p in S is the
total number of occurrences of p over all objects of S, that is p(S) =

∑
a∈S p(a) [6, 9, 10].

Let S ′ be another set of combinatorial objects, we say that two statistics, s on S and t on S ′,
have the same distribution if there exists a bijection f : S → S ′ satisfying s(a) = t(f(a)) for
any a ∈ S. In this case, with a slight abuse of the notation already used in the literature [5],
we write f(s) = t or s = t whenever f is the identity.

The remainder of this paper is organized as follows. In Section 2, we present a constructive
bijection between n-length Dyck paths with air pockets and peakless Motzkin paths of
length n − 1, and we show how this bijection transports some statistics. In Section 3, we
provide bivariate generating functions A(x, y) =

∑
n,k≥0 an,kx

nyk for the distributions of

some statistics s, i.e., the coefficient an,k of xnyk is the number of paths α ∈ An satisfying
s(α) = k. Then we deduce the popularities of some patterns (U , D, peak, return, catastrophe,
pyramid, . . . ) by calculating ∂y(A(x, y))|y=1, and we provide asymptotic approximations for
them using classical methods [8, 17]. We refer to Table 1 for an overview of the results. As
a byproduct, we point out a link between the popularity of pyramids and a special kind of
closed smooth self overlapping curves in the plane (a subset of Fibonacci meanders defined
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by Luschny and Wienand on their web pages [14, 24]). In Section 4, we make a similar study
for non-decreasing Dyck paths with air pockets.

Pattern Pattern popularity in An OEIS
U 1, 2, 5, 13, 32, 80, 201, 505, 1273, 3217 A110320
D 1, 0, 2, 3, 7, 17, 40, 97, 238, 587 A051291
Peak 1, 1, 3, 7, 16, 39, 95, 233, 577, 1436 A203611
Ret 1, 1, 3, 6, 13, 29, 65, 148, 341, 793 A093128
Cat 0, 1, 1, 4, 8, 19, 44, 102, 239, 563
∆k 0, . . . , 0︸ ︷︷ ︸

k−1 zeroes

, 1, 0, 2, 3, 7, 17, 40, 97, 238, 587 A051291

∆≥k 0, . . . , 0︸ ︷︷ ︸
k−1 zeroes

, 1, 1, 3, 6, 13, 30, 70, 167, 405 A201631(= un)

∆≤k ∆≤1 1, 0, 2, 3, 7, 17, 40, 97, 238, 587 un − un−k
∆≤2 1, 1, 2, 5, 10, 24, 47, 137, 335, 825, . . .
∆≤3 1, 1, 3, 5, 12, 27, 64, 154, 375, 922, . . .
...

Table 1: Pattern popularity in An, for 2 ≤ n ≤ 11.

2 Bijection with peakless Motzkin paths

In this section we exhibit a constructive bijection between n-length Dyck paths with air
pockets and (n − 1)-length peakless Motzkin paths, i.e., lattice paths in the first quarter
plane starting at the origin, ending at (n − 1, 0), made up of U , D and F = (1, 0) and
having no occurrence of UD. Moreover, we show how our bijection transports some pattern
based statistics. We let Mn denote the set of peakless Motzkin paths of length n, and
M =

⋃
n≥1Mn.

Definition 1. We recursively define the map ψ from A to M as follows. For α ∈ A, we set

ψ(α) =


F, if α = UD; (i)

Uψ(β)D, if α = βUD, with β ∈ A; (ii)

ψ(α[)F, if α ∈ P ; (iii)

ψ(γ[)Uψ(β)D, if α = βγ, with β ∈ A and γ ∈ P . (iv)

Notice that each factor in the above decomposition is nonempty, and that ψ maps
nonempty objects to nonempty ones. Due to the recursive definition, the image by ψ of a
n-length Dyck path with air pockets is a peakless Motzkin path of length n− 1. For instance,
the images of UD, UUD2, UUUD2UD2UD are respectively F , FF , and UUFFDFD. We
refer to Figure 2 for an illustration of this mapping.
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β

ψ(β)

α

ψ(α[)

β γ

ψ(γ[)
ψ(β)

Figure 2: Illustration of the map ψ according to Definition 1.

Theorem 2. For all n ≥ 2, the map ψ induces a bijection between An and Mn−1.

Proof. It is well known that the cardinality of Mn is given by the n-th term of generalized
Catalan number (see A004148 [22]). So it suffices (see observation after relation (1)) to
prove the injectivity of ψ. We proceed by induction on n. The case n = 2 is obvious since
A2 = {UD} and M1 = {F}. For all k ≤ n, we assume that ψ is an injection from Ak to
Mk−1, and we prove the result for k = n+ 1. According to Definition 1, if α and β in An+1

satisfy ψ(α) = ψ(β), then α and β necessarily come from the same case among (i)–(iv). Using
the induction hypothesis, we conclude directly that α = β, which completes the induction.
Thus ψ is injective and so bijective.

Proposition 3. For all n ≥ 2 and k ≥ 1, and ψ : An →Mn−1, the following hold:

• ψ(U) = F + U = F + D

• ψ(D) = ψ(UD) = 1F + UFD + 1UMD + U2MD2

• ψ(DU) = UFD + U2MD2

• ψ(UU) = F− 1̂

• ψ(∆k) = 1Fk + UFkD + 1Fk−1UMD + UFk−1UMD2

• ψ(Peak) = U + 1̂

• ψ(Ret) = n̂− LastF

• ψ(SLast) = Ret,

where

• 1β(α) = 1 if α = β and 0 otherwise;

• 1UMD(α) is equal to 1 if there exists β ∈M such that α = UβD and 0 otherwise;

• U2MD2(α) is the number of occurrences U2βD2 in α for β ∈M;
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• ∆k(α) is the number of occurrences UkDk in α;

• Peak(α) =
∑

k≥1 UDk(α);

• Ret(α) is the number of returns to the x-axis of α;

• LastF(α) is the position of the rightmost flat-step in α; and

• SLast(α) is the size of the the last step of α (i.e., k if the last step is Dk).

Proof. We provide the proof for ψ(U) and ψ(∆k) since those for the other relations can be
obtained, mutatis mutandis.

We proceed by induction on n. Since A2 = {UD} andM1 = {F} the statements trivially
hold for n = 2. Now assume the statements are true for all k ≤ n and let us prove them for
n+ 1.

If α ∈ An+1 with n ≥ 2, then we have either

(i) α = βUD;

(ii) α = γ]; or

(iii) α = βγ] where β, γ ∈ A.

In case (i), we have U(βUD) = 1 + U(β) and with the induction hypothesis, U(βUD) =
1 + (U + F)(ψ(β)) = (U + F)(Uψ(β)D) = (U + F)(ψ(βUD)) as expected.

In case (ii), we have U(γ]) = 1 + U(γ) and with the induction hypothesis, U(γ]) =
1 + (U + F)(ψ(γ)) = (U + F)(ψ(γ)F ) = (U + F)(ψ(γ])).

Case (iii) is handled in the same way.

So we have ψ(U) = U + F. Using similar reasoning, we can easily prove ψ(D) =
1F + UFD + 1UMD + U2MD2.

Now let us give details for the slightly less straightforward case of ψ(∆k) for k ≥ 1. The
case k = 1 is already handled since we have ψ(UD) = ψ(D). So we assume k ≥ 2. We
consider the following case analysis: any given Dyck path with air pockets is either of the
form

(i) βUD;

(ii) β∆]
k−1;

(iii) β∆]
k;

(iv) β(α∆k)
] with α ∈ A; or

(v) βα] with α ∈ A being neither ∆k−1, nor ∆k, nor α′∆k (α′ ∈ A), and β ∈ A ∪ {ε}.

6



Reasoning by induction, case (ii) unfolds as follows: if β = ε, then we get

(1Fk + UFkD + 1Fk−1UMD + UFk−1UMD2)(F k) = 1,

which is the same as ∆k(∆]
k−1). Otherwise, we have

(1Fk + UFkD + 1Fk−1UMD + UFk−1UMD2)(ψ(β∆]
k−1))

= (1Fk + UFkD + 1Fk−1UMD + UFk−1UMD2)(F k−1Uψ(β)D)

= 1Fk(ψ(β)) + UFkD(ψ(β)) + 1 + 1Fk−1UMD(ψ(β))

+ UFk−1UMD2(ψ(β))

= 1 + ∆k(β) = ∆k(β∆]
k−1).

The four remaining cases are obtained in the same way.

Notice that the mirror of a Dyck path with air pockets is a  Lukasiewicz path avoiding
flat steps and two consecutive up-steps. Since there is a bijection between  Lukasiewicz paths
and plane trees [12], we easily deduce that Dyck paths with air pockets are in one-to-one
correspondence with plane trees without unary nodes, and such that the first child of any
node is always a leaf. We leave open the question of knowing how this bijection transports
some pattern-based statistics.

3 Distribution and popularity of patterns

3.1 The numbers of U and D

Theorem 4. Let A(x, y, z) =
∑

n,k,`≥0 an,k,`x
nykz` be the generating function (g.f.) where

an,k,` is the number of paths in An having k up-steps U and ` down-steps D = D1. Then the
following holds:

A(x, y, z) =
1− xy − x2yz − 2x3y2 + 2x3y2z −

√
R

2xy(1 + x2y − x2yz)
,

with
R = x4y2z2 + 2x3y2z − 4x3y2 + x2y2 − 2x2yz − 2xy + 1.

Proof. Due to the first return decomposition, any Dyck path with air pockets has one of the
following forms:

(i) UDγ;

(ii) U2D2γ;

(iii) (αUD)]γ with α ∈ A; or
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(iv) α]γ with α ∈ A not being UD nor βUD (β ∈ A), where γ ∈ A ∪ {ε}.

These four cases are disjoint and cover A entirely. Then we deduce the functional equation
by taking into account the length, and the numbers of U and D with respect to x, y and z:

A = (x2yz︸︷︷︸
(i)

+x3y2︸︷︷︸
(ii)

+x3y2A︸ ︷︷ ︸
(iii)

+xy(A− x2yz(1 + A))︸ ︷︷ ︸
(iv)

)(1 + A),

where A stands for A(x, y, z). Solving for A, we get the result.

Corollary 5. For all n ≥ 1, the number of Dyck paths with air pockets (of any length) having
n up-steps U is the n-th Catalan number 1

n+1

(
2n
n

)
(see A000108 [22]).

Proof. We check that 1 + A(1, y, 1) is the g.f. of the Catalan numbers.

Corollary 6. For all n ≥ 1, the number of Dyck paths with air pockets having n up-steps
U and no down-steps D is the n-th Riordan number

∑n
k=0(−1)n−k

(
n
k

)
ck, where ck = 1

k+1

(
2k
k

)
(see A005043 in [22]).

Proof. We check that 1 + A(1, y, 0) is the g.f. of the Riordan numbers.

Corollary 7. The g.f. for the popularity of up-steps U in An is

1− x− x2 −
√
x4 − 2x3 − x2 − 2x+ 1

2x
√
x4 − 2x3 − x2 − 2x+ 1

,

which generates a shift of the sequence A110320 [22]. An asymptotic approximation of the
n-th term is √

5− 1

2
√
πn
√

14
√

5− 30

(
3 +
√

5

2

)n

,

and an asymptotic for the expectation of the up-step number is

√
5 + 5

10
n ∼ 0.723606799 · n.

Proof. The g.f. is given by ∂y(A(x, y, 1))|y=1. The asymptotic approximation is obtained
using classical methods [8, 17].

Corollary 8. The g.f. for the popularity of down-steps D = D1 in An is

x2(1 + 2x2 − x3 + (1− x)
√
x4 − 2x3 − x2 − 2x+ 1)

2
√
x4 − 2x3 − x2 − 2x+ 1

,
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which generates a shift of the sequence A051291 [22]. An asymptotic approximation of the
n-th term is

5
√

5− 11

2
√
πn
√

14
√

5− 30

(
3 +
√

5

2

)n

,

and an asymptotic for the expectation of the D-step number is

5− 2
√

5

5
n ∼ 0.105572797 · n.

Proof. The g.f. is given by ∂z(A(x, 1, z))|z=1.

3.2 The number of peaks

In this part, we study the distribution of peaks, i.e., patterns UDm for m ≥ 1.

Theorem 9. Let P (x, y) =
∑

n,k≥0 pn,kx
nyk be the g.f. where pn,k is the number of n-length

Dyck paths with air pockets having k peaks. Then we have

P (x, y) =
1− x− x2y −

√
(1− x− x2y)2 − 4x3y

2x
,

which generates a shift of the sequence A089732 [22].

Proof. If a Dyck path with air pockets equals αUD with α ∈ A ∪ {ε}, then its contribution
to P (x, y) is (1 + P (x, y))x2y; if it has the form αβ] with β ∈ A, then its contribution is
(1 + P (x, y))xP (x, y). Hence, the second-to-last return decomposition yields

P (x, y) = (1 + P (x, y))(x2y + xP (x, y)),

which gives the result after solving for P (x, y).

Corollary 10. The g.f. for the popularity of peaks in An is

x(1 + x− x2 −
√
x4 − 2x3 − x2 − 2x+ 1)

2
√
x4 − 2x3 − x2 − 2x+ 1

,

which generates a shift of the sequence A203611 [22]. An asymptotic approximation of the
n-th term is √

5− 2
√
πn
√

14
√

5− 30

(
3 +
√

5

2

)n

,

and an asymptotic for the expectation of the peak number is

5−
√

5

10
n ∼ 0.276393191 · n.
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Remark 11. Another way of finding the total number of peaks in all Dyck paths with air
pockets of length n is the following: since the number of n-length Dyck paths with air pockets
with k peaks is N(n− k, k), we have

Peak(An) =

bn
2
c∑

k=1

kN(n− k, k) =

bn
2
c∑

k=1

k

n− k

(
n− k
k

)(
n− k
k − 1

)
.

Using the formula for the sequence A203611 [22], we get the following identity:

bn
2
c∑

k=1

(
n− k − 1

k − 1

)(
n− k
k − 1

)
=

n−1∑
k=0

(
k − 1

2k − n

)(
k

2k − n+ 1

)
.

3.3 The number of returns to the x-axis

A return to the x-axis is a step Dm, m ≥ 1, ending on the x-axis.

Theorem 12. Let R(x, y) =
∑

n,k≥0 rn,kx
nyk be the g.f. where rn,k is the number of n-length

Dyck paths with air pockets with k returns. Then:

R(x, y) =
2

2− y(1− x+ x2 −
√
x4 − 2x3 − x2 − 2x+ 1)

− 1,

which generates the triangle A098086 [22] where the row n and column k gives the number of
peakless Motzkin paths having its leftmost F -step on the k-th step (see also Proposition 3).

Proof. If a Dyck path with air pockets equals αUD with α ∈ A ∪ {ε}, then its contribution
to R(x, y) is (1 + R(x, y))x2y; if it has the form αβ] with β ∈ A, then its contribution is
(1 +R(x, y))xyA(x). So we deduce that

R(x, y) = (1 +R(x, y))(x2y + xyA(x)),

which gives the result using relation (1).

Corollary 13. The g.f. for the popularity of returns to the x-axis in An is

2
1− x+ x2 −

√
x4 − 2x3 − x2 − 2x+ 1

(1 + x− x2 +
√
x4 − 2x3 − x2 − 2x+ 1)2

,

which corresponds to the sequence A093128 [22], where the n-th term counts all possible
dissections of a regular (n + 2)-gon using zero or more strictly disjoint diagonals. An
asymptotic approximation of the n-th term is√

14
√

5− 30
√

5

4n
√
πn

(
3 +
√

5

2

)n+1

,

and an asymptotic for the expectation of the return number is
√

5.
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3.4 The number of catastrophes

A catastrophe is a step Dm, m ≥ 2, ending on the x-axis.

Theorem 14. Let C(x, y) =
∑

n,k≥0 cn,kx
nyk be the g.f. where cn,k is the number of n-length

Dyck paths with air pockets with k catastrophes. Then we have

C(x, y) =
2

2− 2x2 − y(1− x− x2 −
√
x4 − 2x3 − x2 − 2x+ 1)

− 1.

Proof. If a Dyck path with air pockets equals αUD with α ∈ A ∪ {ε}, then its contribution
to C(x, y) is (1 + C(x, y))x2; if it has the form αβ] with β ∈ A, then its contribution is
(1 + C(x, y))xyA(x). So we deduce C(x, y) = (1 + C(x, y))(x2 + xyA(x)).

Corollary 15. The g.f. for the popularity of catastrophes in An equals

2
1− x− x2 −

√
x4 − 2x3 − x2 − 2x+ 1

(1 + x− x2 +
√
x4 − 2x3 − x2 − 2x+ 1)2

.

An asymptotic approximation of the n-th term is√
14
√

5− 30(4−
√

5)

4n
√
πn

(
3 +
√

5

2

)n+1

,

and an asymptotic for the expectation of the catastrophe number is 4−
√

5.

Remark 16. As a byproduct of Corollaries 13 and 15, the ratio of the popularity of catastrophes
in An to the popularity of returns in An tends to 4−

√
5√

5
= 0.788854 . . . when n tends toward

∞.

3.5 The number of pyramids UkDk

A k-pyramid ∆k in a path is an occurrence of the pattern UkDk, k ≥ 1.

Theorem 17. For all k ≥ 1, the g.f. Pk(x, y) =
∑

n,m≥0 p
k
n,mx

nym where pkn,m is the number
of n-length Dyck paths with air pockets having m k-pyramids is given by

Pk(x, y) =
xk+1(y − 1)− 2xk+2(y − 1) + x2 + x− 1 +

√
Q

2(xk+2(y − 1)− x)
,

where

Q = xk+1(y − 1)(xk+1(y − 1) + 4x+ 2(x2 − x− 1)) + x4 − 2x3 − x2 − 2x+ 1.

Proof. We refine the first return decomposition so that any Dyck path with air pockets falls
into one of the following cases:

11



(i) ∆mγ with 1 ≤ m ≤ k − 1;

(ii) ∆kγ;

(iii) ∆k+1γ;

(iv) (α∆k)
]γ with α ∈ A;

(v) β]γ with β ∈ A not being ∆m with 1 ≤ m ≤ k, nor α∆k with α ∈ A, where γ ∈ A∪{ε}.

These five cases are disjoint and cover all Dyck paths with air pockets. So we deduce

Pk = (
k∑
i=2

xi︸ ︷︷ ︸
(i)

+xk+1y︸ ︷︷ ︸
(ii)

+xk+2

︸︷︷︸
(iii)

+xk+2Pk︸ ︷︷ ︸
(iv)

+x · (Pk −
k∑
i=2

xi − xk+1y(1 + Pk))︸ ︷︷ ︸
(v)

)(1 + Pk),

where Pk stands for Pk(x, y). Solving for Pk, we get the result.

Corollary 18. For k ≥ 1, the g.f. for the popularity ∆k(An) of k-pyramids in An equals

Yk(x) =
xk+1(1 + 2x2 − x3 + (1− x)

√
x4 − 2x3 − x2 − 2x+ 1)

2
√
x4 − 2x3 − x2 − 2x+ 1

,

which generates the (n − k − 2)-th term of the sequence A051291 [22]. In particular, we
have ∆1(An) = ∆k(An+k−1) for all k ≥ 1 and n ≥ 2, which means that there are as many
1-pyramids in An as there are k-pyramids in An+k−1. An asymptotic approximation of the
n-th term of this sequence is

√
5− 1

2
√
πn
√

14
√

5− 30

(
3 +
√

5

2

)n−k−1

,

and for the expected number of k-pyramids we have

5−
√

5

10

(
3−
√

5

2

)k

· n.

Notice that Y1(x) corresponds to the generating function for the popularity of down-steps
D (see Corollary 7), since each D is necessarily preceded by an up-step. Moreover, we have
Yk(x) = xk−1Y1(x) since each pyramid ∆k in a path of length n comes from a pyramid ∆1

in a path of length n− k + 1 by adding k − 1 up-steps and by increasing the length of the
down-step. An immediate consequence of Corollary 18 is the following.
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Corollary 19. For k ≥ 1, the g.f. for the popularities ∆≥k(An) and ∆≤k(An) are respectively
given by

Y≥k(x) =
xk−1

1− x
Y1(x) and Y≤k(x) =

1− xk

1− x
Y1(x),

which means that ∆≤k(An−k+1) = ∆≥k(An)−∆≥k(An−k).

For any k ≥ 1, the popularity of pyramids of size at least k in An (see Corollary 19) seems
to correspond to a shift of the sequence A201631 [22], which enumerates Fibonacci meanders
with central angle 180 degrees (see Luschny’s [14] and Wienand’s [24] posts in OEIS Wiki
about meanders). In order to prove this fact, we give the formal definition of such meanders,
and provide their g.f. that does not exist in the literature (to our knowledge).

A Fibonacci meander with central angle 180 degrees is a closed smooth self-overlapping
curve in the plane, consisting of an even length sequence of two types of arcs of angle 180
degrees, namely L = and R = , starting at the origin with an L-arc toward the
north, having no consecutive L-arcs except at the beginning where a run (of any length)
of consecutive L-arcs is authorized. Each arc starts at the end of the previous arc and it

preserves the direction of its arrow, i.e., LLR corresponds to . Let F2n be the set of such
meanders of length 2n. For instance, the left part of Figure 3 illustrates a meander in F20.

L L  L L  R R  L R   R L     R L      R L     R R      L R     L R
1 2  3 4   5 6  7 8   9 10  11 12  13 14  15 16  17 18  19 20

1

2

3

4

6

5

7

8

9

10

11

12

13

14

LL LL RR

LR RL

RL

RL

RR

LR

16

1517

18

19

20

LR

Figure 3: A Fibonacci meander in F20 where the sequence of arcs is given by
LLLLRRLRRLRLRLRRLRLR, and its associated lattice path.

Now we define a function τ , mapping a two-letter word over the alphabet {L,R} into the

set {U,D, F, F̃}:

τ(a) =


U, if a = RL;

D, if a = LR;

F, if a = RR;

F̃ , if a = LL.

and a function µ, mapping a meander w = w1w2 · · ·w2n ∈ F2n into an n-length word over
the alphabet {U,D, F, F̃}:

µ(w) = τ(w1w2)τ(w3w4) · · · τ(w2n−1w2n).
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Grand Motzkin paths are lattice paths of length n in N × Z, consisting of steps U =
(1, 1), D = (1,−1), and F = (1, 0), starting at (0, 0), ending at (n, 0) (contrarily to classical
Motzkin paths, they can go below the x-axis). For instance DUUDDFDUUUD is a grand
Motzkin path of length 11. Let Gn be the set of peakless (i.e., with no occurrence of UD)
grand Motzkin paths of length n and Nn be the subset of paths starting with a D-step in
Gn. Let Sn denote the set of peakless grand Motzkin paths of length n starting with a down
step or prefixed by a nonempty sequence of special flats, called wavy flats, F̃ = (1, 0). For

instance, F̃ F̃DUUDDFDUUUD ∈ S13.

Proposition 20. The function µ induces a bijection from F2n to Sn.

Proof. Every meander a ∈ F2n avoids the pattern LL except if the occurrence of LL is only
preceded by letters L, which means that µ(a) avoids the pattern UD. If the meander a starts
with a maximal prefix of the form (LL)k, k ≥ 1, then µ(a) starts, with a maximal sequence

of k wavy flats, F̃ k. If the meander a starts with LR, then µ(a) starts with D. Moreover,
the image by µ of a factor RR is F = τ(RR) in µ(a), the image of LR is D and the image of
RL is U . Thus, the fact that a is a closed curve, implies that µ(a) starts and ends on x-axis.
Due to all these observations, µ is necessarily a bijection from F2n to Sn.

Notice that the bijection µ is very close to the bijection of Roitner [19] between 2-
watermelons with arbitrary deviation and weighted Motzkin paths, which suggests that
there are tight links between 2-watermelons and Wienand-Luschny meanders. It would be
interesting to explore this correspondence in future work.

Theorem 21. The g.f. S(x) =
∑

n≥0 snx
n, where the coefficient sn is the number of 2n-length

Fibonacci meanders with a central angle 180 degrees, is

S(x) =
x2 − x+ 1−

√
R

(x− 1)(R + (x2 − x− 1)
√
R)
,

with R = x4 − 2x3 − x2 − 2x+ 1. Using Corollary 19, we have

S(x) =
Y1(x)

x2(1− x)
− 1,

which establishes the expected link between Fibonacci meanders and the popularity ∆≥k(An).

Proof. Considering Proposition 20, it suffices to enumerate Sn. We set G =
⋃
n≥0 Gn,

N =
⋃
n≥0Nn, and S =

⋃
n≥0 Sn. Recall that M is the set of nonempty peakless Motzkin

paths. Let V denote the set of Motzkin paths without valleys DU and by V the set of
paths obtained by symmetry about the x-axis (U ↔ D) of valleyless Motzkin paths, e.g.,
DUFDU ∈ V since it is symmetric to UDFUD ∈ V. Let W be the set of nonempty
sequences of wavy flat steps. We use M(x), V (x) = V (x), G(x), N(x), W (x) to denote the
corresponding generating functions with respect to the length.
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Obviously, we have W (x) = x
1−x . From Relation (1) and Theorem 2 we obtain M(x) =

A(x)/x. Also, there is a one-to-one correspondence ν between Mn and Vn−1 that can be
defined recursively by ν(F ) = ε, ν(FQ) = Fν(Q), ν(UQD) = Uν(Q)D, and ν(UQDR) =
Uν(Q)DFν(R) if R is non-empty. So we have V (x) = M(x)/x = A(x)/x2. Finally, we
decompose G, N and S as illustrated below:

G = ε
⊎

G
⊎ M

G
⊎

N ,

N =

V

⊎
V

M

G ⊎
V

G ,

S = W
G

⊎
N ,

which induces the following system of functional equations:
G(x) = 1 + xG(x) + x2M(x)G(x) +N(x);

N(x) = x2V (x) + x4V (x)M(x)G(x) + x3V (x)G(x);

S(x) = W (x)G(x) +N(x).

Solving this system, we obtain S(x).

4 Non-decreasing Dyck paths with air pockets

A Dyck path with air pockets is non-decreasing if the sequence of heights of its valleys is
non-decreasing, i.e., the sequence of the minimal ordinates of the occurrences DkU , k ≥ 1,
is non-decreasing from left to right [2]. For example, the Dyck path with air pockets
UUDUDUD2 is non-decreasing, since its two valleys both lie at height 1, while the path
UUDUD2UD is not, since its two valleys lie at heights 1 and 0 from left to right. Let An,
n ≥ 2, be the set of n-length non-decreasing Dyck paths with air pockets and A =

⋃
n≥2An.

The subset of n-length prime non-decreasing Dyck paths with air pockets is defined as the
intersection Pn := An ∩P , and we set P :=

⋃
n≥2Pn. Analogous to generic Dyck paths with

air pockets, the map α 7→ α[ induces a bijection between Pn and An−1, whose inverse is the
map α 7→ α].

Theorem 22. For n ≥ 2, if an is the number of n-length non-decreasing Dyck paths with air
pockets, then a2 = 1 and an = 2n−3 for n ≥ 3.
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Proof. Any non-decreasing Dyck path with air pockets α has one of the following two forms:
(i) α ∈ P ∪ {UD}, or (ii) α = ∆kβ where k ≥ 1 and β ∈ A . So if A (x) =

∑
n≥2 anx

n

where an is the cardinality of An, then the previous decomposition implies the functional
equation

A (x) = x(A (x) + x) +
x2

1− x
A (x).

Thus we have A (x) = x2(1−x)
1−2x which completes the proof.

4.1 The numbers of U and D

Theorem 23. Let A (x, y, z) =
∑

n,k,`≥0 an,k,`x
nykz` be the trivariate g.f. where an,k,` is the

number of n-length non-decreasing Dyck paths with air pockets having k up-steps U and `
down-steps D. Then A (x, y, z) equals

x2y(1− xy)(xyz − xy − z)(x2yz + xy − 1)

(x3y2(z − 1) + x2y(y − z)− 2xy + 1)(x3y2(z − 1)− x2yz − xy + 1)
.

Proof. Let Z(x, y, z) =
∑

n,k,`≥0 zn,k,`x
nykz`, where zn,k,` is the number of n-length non-

decreasing Dyck paths with air pockets having only valleys at height 0, k up-steps U and `
down-steps D. Such a path has the form UDα or ∆kα with k ≥ 2, where α has all its valleys
at height 0. Then we have

Z(x, y, z) = (1 + Z(x, y, z))

(
x2yz +

x3y2

1− xy

)
.

Solving for Z(x, y, z), we get

Z(x, y, z) =
x2y(xy(1− z) + z)

x3y2(z − 1)− x2yz − xy + 1
.

Now any non-decreasing Dyck path with air pockets belongs to one of the following cases:

(i) βUD;

(ii) β(UD)];

(iii) β(αUD)] (α having all its valleys at height 0);

(iv) βα] (α having all its valleys at height 0, and not ending with UD), where β is either
empty or has all its valleys at height 0.

Thus, we have (for short, we use A and Z instead of A (x, y, z) and Z(x, y, z))

A = (1 + Z)(x2yz + x3y2 + x3y2Z + xy(A − x2yz(1 + Z))).

Solving for A , we get the result.
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Porism 24. For all n ≥ 1, the number of n-length non-decreasing Dyck paths with air
pockets which have all valleys at height 0 is equal to Fn−1, where Fk is the k-th Fibonacci
number.

Proof. Plugging y = z = 1 into the trivariate g.f. Z in the proof of the previous theorem we
obtain Z(x, 1, 1) = x2

1−x−x2 , which is the g.f. for the right shift of the sequence of Fibonacci
numbers.

As we have done in Section 3.1, we deduce the following.

Corollary 25. For all k ≥ 1, the number of non-decreasing Dyck paths with air pockets:

• having n up-steps U is the k-th term of the sequence A001519;

• having k up-steps U and no down-steps D is the (k−1)-th term of the sequence A099036.

Proof. We calculate Z(1, y, 1) and Z(1, y, 0), respectively.

Corollary 26. The popularity of up-steps U in An is equal to the (n − 2)-th term of the
sequence A098156 [22]. An asymptotic for the expectation of the up-step number is (3n−2)/4.

Proof. We calculate ∂y(Z(x, y, 1))|y=1.

Corollary 27. The g.f. for the popularity of down-steps D in An equals

x2(1− x)(1− 4x+ 5x2 − 2x3 + x5)

(1− 2x)2(1− x− x2)
.

An asymptotic approximation of the n-th term is n · 2n−6. An asymptotic for the expectation
of the down-step number is n/8.

Proof. We calculate ∂z(Z(x, 1, z))|z=1.

4.2 The number of peaks

Theorem 28. For all n ≥ 2 and k ≥ 1, the number of n-length non-decreasing Dyck paths
with air pockets having k peaks is equal to

(
n−2

2(k−1)

)
.

Proof. Let B(x, y) be the g.f. where the coefficient of xnyk is the number of n-length paths
in A having k peaks. Any non-decreasing Dyck path with air pockets is either of the form
∆1 = UD, or α], or ∆kβ with k ≥ 1, with α, β ∈ A . This yields the following functional
equation:

B(x, y) = x2y + xB(x, y) +
x2

1− x
yB(x, y)

with the solution B(x, y) = (1−x)x2y
(1−x)2−x2y , which generates the sequence A034839 [22].

Corollary 29. The popularity of peaks in An is the (n − 2)-th term of the sequence
A045891 [22], which is equal to (n + 2) · 2n−5 for n ≥ 4. Then the expectation of the
peak number is (n+ 2)/4.
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4.3 The number of returns to the x-axis

Theorem 30. The bivariate g.f. where the coefficient of xnyk is the number of n-length
non-decreasing Dyck paths with air pockets having k returns is

R(x, y) =
x2y(1− x)(1− x− x2)
(1− 2x)(1− x− x2y)

.

Proof. Using the second-to-last return decomposition of A , we easily get the following
functional equation:

R(x, y) = x2y + x2yR(x, y) + xyA (x) +
x3

1− x
yR(x, y),

which gives the result.

Corollary 31. The g.f. for the popularity of returns in An is

x2(1− x)2

(1− 2x)(1− x− x2)
,

and for n ≥ 2 the coefficient of xn is 2n−2−Fn−2, where Fn is the n-th Fibonacci number (see
A099036 [22]). Then the expectation of the return number is 2− Fn−2/2n−3 that tends to 2.

4.4 The number of catastrophes

Theorem 32. The bivariate g.f. where the coefficient of xnyk is the number of n-length
non-decreasing Dyck paths with air pockets having k catastrophes is

C(x, y) =
x2(1− x)(1 + x(y − 2)− x2y)

(1− 2x)(1− x− x2 − x3(y − 1))
.

Proof. First, let us determine the bivariate g.f. U(x, y) with respect to the length and number
of catastrophes for non-decreasing Dyck paths with air pockets having all their valleys at
height 0. It is easy to see that

U(x, y) = (1 + U(x, y))

(
x2 +

x3y

1− x

)
,

which yields

U(x, y) =
x2(1− x+ xy)

1− x− x2 − x3(y − 1)
.

Then any non-decreasing Dyck path with air pockets has one of the following forms:

(i) βUD; or
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(ii) βU2D2; or

(iii) βα] with α not belonging to forms (i) or (ii), and where β is either empty or a
non-decreasing Dyck path with air pockets which only has valleys that lie at height 0.

Hence, the bivariate generating function C(x, y) satisfies the following equation:

C(x, y) = (1 + U(x, y))(x2 + x3y(1 + U(x, 1)) + xy(C(x, 1)− x2(1 + U(x, 1)))),

which gives the result.

Corollary 33. The g.f. for the popularity of catastrophes in An equals

x3(1− x)(1− x+ x2)

(1− 2x)(1− x− x2)
,

and for n ≥ 4 the coefficient of xn is 3 · 2n−4 + 2Fn−3, where Fn is the n-th Fibonacci
number (see the sequence A175657 [22]). Then the expectation of the catastrophe number is
3/2− Fn−3/2n−4 that tends to 3/2.

Remark 34. As a byproduct of Corollary 31 and Corollary 33, the ratio of the popularity of
catastrophes in An to the popularity of returns in An tends to 3

4
when n tends toward ∞.

4.5 The number of pyramids

Theorem 35. For k ≥ 1, let Pk(x, y) =
∑

n,m≥0 p
k
n,mx

nym be the g.f. where pkn,m is the
number of n-length non-decreasing Dyck paths with air pockets with m occurrences of the
pattern ∆k = UkDk. Then the following holds:

Pk(x, y) =
x2(1− x2

1−x + xk−1(1− x− x2(2−x)
1−x )(y − 1)− x2k(y − 1)2)

(1− x− x2

1−x − xk+1(y − 1))(1− x2

1−x − xk+1(y − 1))
.

Proof. First, let us determine the expression of the bivariate g.f. Zk(x, y) with respect to the
length and the number of patterns ∆k for non-decreasing Dyck paths with air pockets having
all their valleys at height 0. The second-to-last return decomposition of A yields

Zk(x, y) = (1 + Zk(x, y))(xk+1y +

(
x2

1− x
− xk+1

)
).

Hence, we get Zk(x, y) = 1

1− x2

1−x
−xk+1(y−1)

− 1.

Now, assuming that k 6= 1, any Dyck path has one of the following forms:

(i) βUD;

(ii) β∆]
k−1;
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(iii) β∆]
k;

(iv) β(α∆k)
] with α having all of its valleys at height 0;

(v) βα] with α ∈ A , α 6= ∆k−1,∆k, γ∆k (γ having all of its valleys at height 0), and where
β is either empty or has all its valleys at height 0.

This yields (for short we use Pk and Zk instead of Pk(x, y) and Zk(x, y))

Pk = (1 + Zk)(x
2 + xk+1y + xk+2(1 + Zk) + x(Pk − xk − xk+1y(1 + Zk))).

Solving for Pk, we get the result for k ≥ 2.
If k = 1, the expression of P1(x, y) is the same as that of the bivariate g.f. associated

with the pattern D in A (given in Theorem 30), because D occurs exactly as often as
UD = ∆1.

Corollary 36. For k ≥ 1, the g.f. for the popularity ∆k(An) of k-pyramids in An is

Wk(x) =
xk+1(1− x)(1− 4x+ 5x2 − 2x3 + x5)

(1− 2x)2(1− x− x2)
.

In particular, we can see that ∆1(An) = ∆k(An+k−1), which means that there are as many
1-pyramids in An as there are k-pyramids in An+k−1. An asymptotic approximation of the
n-th term is n · 2n−5−k, and an asymptotic approximation for the expectation of the k-pyramid
number is n/2k+2.

An immediate consequence of the previous corollary is the following one, which is the
An-counterpart of Corollary 19.

Corollary 37. For k ≥ 1, the g.f. for the popularities ∆≥k(An) and ∆≤k(An) are respectively
given by

W≥k(x) =
xk−1

1− x
W1(x) and W≤k(x) =

1− xk

1− x
W1(x),

which means that ∆≤k(An−k+1) = ∆≥k(An)−∆≥k(An−k).

Going further. It should be interesting to give natural bijections whenever our enumerative
results suggest such bijections. Also, asymptotic investigations of expectations could be
extended to a study of the limit distributions. It will also be of interest to investigate the
‘Grand’ counterpart of Dyck paths with air pockets, that are paths where negative ordinates
are allowed, or ‘Motzkin’ counterpart where flat steps (1, 0) are allowed.
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Pattern Pattern popularity in An OEIS
U 1, 2, 5, 13, 32, 76, 176, 400, 896, 1984 A098156
D 1, 0, 2, 3, 7, 15, 33, 72, 157, 341
Peak 1, 1, 3, 7, 16, 36, 80, 176, 384, 832 A045891
Ret 1, 1, 3, 6, 13, 27, 56, 115, 235, 478 A099036
Cat 0, 1, 1, 4, 8, 18, 38, 80, 166, 342 A175657
∆k 0, . . . , 0︸ ︷︷ ︸

k−1 zeroes

, 1, 0, 2, 3, 7, 15, 33, 72, 157, 341

∆≥k 0, . . . , 0︸ ︷︷ ︸
k−1 zeroes

, 1, 1, 3, 6, 13, 28, 61, 133, 290, 631 New (= vn)

∆≤k ∆≤1 1, 0, 2, 3, 7, 15, 33, 72, 157, 341 vn − vn−k
∆≤2 1, 1, 2, 5, 10, 22, 48, 105, 229, 498
∆≤3 1, 1, 3, 5, 12, 25, 55, 120, 262, 570
...

Table 2: Pattern popularity in An for 2 ≤ n ≤ 11.

References

[1] C. Banderier and M. Wallner, Lattice paths with catastrophes, Discrete Math. Theor.
Comput. Sci. 19 (2017), #23.

[2] E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, Nondecreasing Dyck paths and
q-Fibonacci numbers, Discrete Math. 170 (1997), 211–217.

[3] J.-L. Baril and A. Petrossian, Equivalence classes of Dyck paths modulo some statistics,
Discrete Math. 338 (2015), 655–660.

[4] J.-L. Baril, D. Bevan, and S. Kirgizov, Bijections between directed animals, multisets
and Grand-Dyck paths, Electron. J. Combin. 27 (2020), #P2.10.

[5] J.-L. Baril, R. Genestier, and S. Kirgizov, Pattern distributions in Dyck paths with a
first return decomposition constrained by height, Discrete Math. 342 (2020), 111995.

[6] M. Bóna, Surprising symmetries in objects counted by Catalan numbers, Electron. J.
Combin. 19 (2012), #P62.

[7] E. Deutsch, Dyck path enumeration, Discrete Math. 204 (1999), 167–202.

[8] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press,
2009.

[9] C. Homberger, Expected patterns in permutation classes, Electron. J. Combin. 19
(2012), #P43.

21

https://oeis.org/A098156
https://oeis.org/A045891
https://oeis.org/A099036
https://oeis.org/A175657


[10] S. Kitaev, Patterns in Permutations and Words, Springer Science & Business Media,
2011.

[11] D. E. Knuth, The Art of Computer Programming, Volume 1, Fundamental Algorithms,
Addison-Wesley, 1973.

[12] I. Kortchemski and C. Marzouk, Simply generated non-crossing partitions, Combin.
Probab. Comput. 26 (2017), 560–592.

[13] A. Krinik, G. Rubino, D. Marcus, R. J. Swift, H. Kasfy, and H. Lam, Dual processes to
solve single server systems, J. Statist. Plann. Inference 135 (2005), 121–147.

[14] P. Luschny, Fibonacci meanders, http://oeis.org/wiki/User:Peter_Luschny/

FibonacciMeanders, 2011.

[15] T. Mansour, Statistics on Dyck paths, J. Integer Sequences 9 (2006), Article 06.1.5.

[16] D. Merlini, R. Sprugnoli, and M. C. Verri, Some statistics on Dyck paths, J. Statist.
Plann. Inference 101 (2002), 211–227.

[17] A. G. Orlov, On asymptotic behavior of the Taylor coefficients of algebraic functions,
Sibirsk. Mat. Zh. 35 (1994), 1125–1137. Translation in Siberian Math. J. 35 (1994),
1002–1013.

[18] A. Panayotopoulos and A. Sapounakis, On the prime decomposition of Dyck paths, J.
Combin. Math. Combin. Comput. 40 (2002), 33–39.

[19] V. Roitner, Contacts and returns in 2-watermelons without wall, Bull. Inst. Combin.
Appl. 89 (2020), 75–92.

[20] A. Sapounakis, I. Tasoulas, and P. Tsikouras, Counting strings in Dyck paths, Discrete
Math. 307 (2007), 2909–2924.

[21] Y. Sun, The statistic “number of udu’s” in Dyck paths, Discrete Math. 287 (2004),
177–186.

[22] OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, Published
electronically at https://oeis.org, 2023.

[23] R. P. Stanley. Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999.

[24] S. Wienand, Personal page on the OEIS Wiki, http://oeis.org/wiki/User:Susanne_
Wienand#Definition_of_meanders_concerned_by_these_sequences, 2011.

22

http://oeis.org/wiki/User:Peter_Luschny/FibonacciMeanders
http://oeis.org/wiki/User:Peter_Luschny/FibonacciMeanders
https://cs.uwaterloo.ca/journals/JIS/VOL9/Mansour/mansour86.html
https://oeis.org
http://oeis.org/wiki/User:Susanne_Wienand#Definition_of_meanders_concerned_by_these_sequences
http://oeis.org/wiki/User:Susanne_Wienand#Definition_of_meanders_concerned_by_these_sequences


2020 Mathematics Subject Classification: Primary 05A15; Secondary 05A16, 05A19, 68R05.
Keywords: Dyck path, pattern distribution, popularity, Fibonacci meander.

(Concerned with sequences A000108, A001006, A001519, A004148, A005043, A034839, A045891,
A051291, A089732, A093128, A098086, A098156, A099036, A110320, A175657, A201631, and
A203611.)

Received September 6 2022; revised versions received March 3 2023, March 6 2023, March 8
2023, March 9 2023. Published in Journal of Integer Sequences, March 9 2023.

Return to Journal of Integer Sequences home page.

23

https://oeis.org/A000108
https://oeis.org/A001006
https://oeis.org/A001519
https://oeis.org/A004148
https://oeis.org/A005043
https://oeis.org/A034839
https://oeis.org/A045891
https://oeis.org/A051291
https://oeis.org/A089732
https://oeis.org/A093128
https://oeis.org/A098086
https://oeis.org/A098156
https://oeis.org/A099036
https://oeis.org/A110320
https://oeis.org/A175657
https://oeis.org/A201631
https://oeis.org/A203611
https://cs.uwaterloo.ca/journals/JIS/

	Introduction and notation
	Bijection with peakless Motzkin paths
	Distribution and popularity of patterns
	The numbers of U and D
	The number of peaks
	The number of returns to the x-axis
	The number of catastrophes
	The number of pyramids UkDk

	Non-decreasing Dyck paths with air pockets
	The numbers of U and D
	The number of peaks
	The number of returns to the x-axis
	The number of catastrophes
	The number of pyramids

	Acknowledgments

