Covering Radius and First Minima Bound on Diagonally Dominant Lattices in the l ∞ -norm - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Covering Radius and First Minima Bound on Diagonally Dominant Lattices in the l ∞ -norm

Borne sur le rayon de recouvrement et premier minima sur les réseaux à base diagonale dominante en norme infinie

Kazuhide Fukushima
  • Fonction : Auteur
  • PersonId : 1151014
Thomas Plantard
  • Fonction : Auteur
  • PersonId : 1151015
Arnaud Sipasseuth

Résumé

Diagonally dominant matrices have been a prolific object for mathematical studies for over a century; to this day, it is still an active topic of research. In this paper, we study the lattices generated by diagonal dominant matrices. First, we provide a novel upper bound on their shortest vectors in the maximum norm, as well as a novel bound on the covering radius. Furthermore, we provide a new lattice vector reduction algorithm that gives a better proven worst-case reduction in maximum norm than Babai's Round-Off algorithm within a polynomial amount of operations. Those results expand the understanding of this particular mathematical object, and have some potential applications in modular arithmetic, cryptography and cryptanalysis.
Fichier principal
Vignette du fichier
main_black_white.pdf (485.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03728051 , version 1 (20-07-2022)
hal-03728051 , version 2 (02-02-2024)

Identifiants

  • HAL Id : hal-03728051 , version 1

Citer

Andrea Lesavourey, Kazuhide Fukushima, Thomas Plantard, Arnaud Sipasseuth. Covering Radius and First Minima Bound on Diagonally Dominant Lattices in the l ∞ -norm. 2022. ⟨hal-03728051v1⟩
209 Consultations
238 Téléchargements

Partager

More