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Abstract

Diagonally dominant matrices have been a prolific object for mathematical studies for over a century;
to this day, it is still an active topic of research. In this paper, we study the lattices generated by
diagonal dominant matrices. First, we provide a novel upper bound on their shortest vectors in the
maximum norm, as well as a novel bound on the covering radius. Furthermore, we provide a new
lattice vector reduction algorithm that gives a better proven worst-case reduction in maximum norm
than Babai’s Round-Off algorithm within a polynomial amount of operations. Those results expand the
understanding of this particular mathematical object, and have some potential applications in modular
arithmetic, cryptography and cryptanalysis.

Keywords Diagonally Dominant Lattice, First Minima, Covering Radius, Max norm, Bounded Distance
Decoding, Guarantee Distance Decoding, Lattice-based cryptography

1 Introduction

Diagonally dominant matrices have been an interesting object of study for over a century, starting at least
from the Lévy-Desplanques theorem (1881)1, with several links to general matrix theory with research span-
ning up to today [16, 33, 40, 23, 5, 6, 20, 4, 36]. Numerous applications of diagonal dominance can be
found in various fields from numerical linear algebra [22], Markov chains, graphs Laplacians, perturbation
theory, etc2. On the other hand, the study of lattices generated by diagonally dominant matrices fitting the
Lévy-Desplanques theorem were not really studied. Such lattices seemed to have found some application
in cryptography on few specific instances [34, 38] where in both papers the focus was more in the matrix
generation than a study of the resulting lattice. On the other hand, when strict dominance is not required
(i.e not fitting the Lévy-Desplanques theorem), “large diagonals” saw some uses in cryptography [17, 24, 35]
and also in modular arithmetic [3].

Note that the study of computational problems on lattices in general is also an old and very studied topic
[29, 8, 1] and most recent results including the study of the covering radius for lattices in general are often
done by researchers involved in cryptography [25, 18, 19, 21, 9]. This is not surprising: the covering radius
of a lattice, such as it is the case of error-correcting codes, directly impacts the decryption capacity of the
lattice. Since the heuristic security of lattice-based cryptography is often based on computing a short vector
of the lattice of close to it, research on the covering radius can impact both the feasibility and the security of

∗andrea.lesavourey@irisa.fr
†ka-fukushima@kddi-research.jp
‡thomas.plantard@gmail.com
§ar-sipasseuth@kddi-research.jp
1a history of this theorem through the ages can be seen in [39]
2https://gauss.uc3m.es/fdopico/talks/2014-manch-nasc.pdf lists some applications
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lattice-based constructions. Lattices currently seem very popular in cryptography, as 26 out of 64 accepted
submissions to the first round of the NIST competition for Post-Quantum Cryptography Standardisation
were based on lattices[30].

Complexity aside, computations using lattices (and ideal lattices) as number systems to provide faster
arithmetic or protections against side-channel attacks also have been an important topic of research [3, 15,
11, 10, 7]. In particular, [3] uses a diagonally dominant matrix. The problematic when using such objects
is very different from building cryptosystems: the goal is to create structures where vector reduction over a
lattice is as easy as possible: if it takes a few seconds to “break” a cryptosystem on a laptop, it is bad news
for the said cryptosystem, but is also bad news for a number system expecting operations within milliseconds.

In this paper, we study the lattices generated by diagonally dominant matrices and give novel results for
the infinity norm which consequently impacts our knowledge on the covering radius. First, we give a lower
bound on the size of the shortest vector in infinity norm. Guessing the size of the shortest vector, or even an
approximation is known to be NP-hard [12], thus we believe providing a tighter upper bound for any specific
family of lattices is welcome to help the comprehension of those objects. Second, we give an improved study
of the reduction algorithm of [35] for diagonally dominant matrices and prove a stronger reduction capability
than previously proven for such lattices [38]. As the former algorithms only operate with row diagonally
dominant matrices, we also give novel algorithms for doing so in the case of column diagonally dominant
matrices. We also prove that our aforementioned algorithms, both in the row and column domination cases,
operate at most a polynomial (in the dimension and the size of its entries) amount of vector additions or
multiplications by a scalar. Furthermore, we show that our upper bound on the size of our algorithm output
is asymptotically lower than Babai’s Nearest Plane algorithm’s upper bound. Note, that we do not claim a
better best case. Consequently, both results give novel upper and lower bounds on the size of the covering
radius for such lattices for the max norm, which is also known to be hard to approximate in general [21]. As
mentioned previously, theoretical results on lattices often link themselves to applications in cryptography,
and we also showcase a potential application of our results for lattice-based encryption and modular arith-
metic.

Organization of the paper We first reintroduce the relevant background and some notations in section 2,
then present our results on diagonally dominant matrices, first column dominant and then row dominant
in section 3. We then exhibit a potential application of our theoretical results to lattice-based encryption
scheme in section 4.

2 Background and notations

2.1 Background on lattices

We assume the readers know what is the set of integers Z, the set of integral matrices with n rows and m
columns Mn,m(Z), the determinant, norms and other basics of linear algebra. We refer readers to [26, 27]
for a more complete background of lattice theory.

Definition 1. We define an integral lattice L as a subgroup of Zn. A basis B of an integral lattice L is a
basis of L as a Z-module, and denote by L(B) the lattice generated by the rows of a basis B. We write the
volume (or determinant) of the lattice and compute it as det(L) =

√
det(BBt).

Definition 2 (Minimas of a lattice).

We denote by λ
(l)
k (L) the smallest value r such that a ball centered in zero and of radius r in norm l contains

k linearly independent vectors of L.

While many computational problems on lattices exist, we define only the lattice problems that we deem
useful for the comprehension of the paper.

Definition 3 (Closest Vector Problem (CVP)).
Given a basis B of a lattice L of dimension n and t ∈ Rn, find y ∈ L such that ∀y2 ∈ L, ∥t− y∥ ≤ ∥t− y2∥.
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An approximate variation of this problem, more in line with the concrete impact of the covering radius
we later define, is the following:

Definition 4 (γ-Guaranteed Distance Decoding (GDDγ)).
Given a lattice L, and a bound γ > λ1(L), for any point x find a lattice vector v ∈ L such that ∥x− v∥ < γ.

This problem is usually tackled with the combination of a “good” basis (HKZ reduced) with an appro-
priate algorithm (Babai [1]). Our paper aims to tackle the problem in a slightly different way. To determine
to what extent the above problem is solvable, we need to define the covering radius.

Definition 5 (Covering radius).
Given a lattice L, we define the covering radius µ(l) as the smallest value such that for any point x ∈ Rn,
there exists v ∈ L such that ∥x− v∥l < µ(l).

Thus, the larger µ is, the larger is the set where GDDγ admits a solution. It is known that for any

lattice 1
2λ1(L) ≤ µ(L) ≤

√
n
2 λn(L) [26]. In this paper, we use a specific family of “good” lattice bases to

deal with the above problems:

Definition 6 (Diagonally Dominant Matrix). Let us consider the matrix B = (D × Idn) + N and the
following definitions:

• CN(B, j) =
n∑

i=1
i̸=j

|bi,j | i.e CN(B, j) is the sum of the non-diagonal absolute values of the column j of B.

Similarly we write CN(B) = max
j∈J1,nK

CN(B, j).

• RN(B, i) =
n∑

j=1
i̸=j

|bi,j | i.e RN(B, i) is the sum of the non-diagonal absolute values of the row i of B.

Similarly we write RN(B) = max
i∈J1,nK

RN(B, i).

• B is row diagonally dominant (i.e r.d.d) iff ∀i,RN(B, i) < Bi,i

• B is column diagonally dominant (i.e c.d.d) iff ∀i,CN(B, i) < Bi,i

• We say B has diagonal D if ∀i, Bi,i = D.

It follows from the Lévy-Desplanques theorem that a diagonally dominant matrix is always full-rank.
Using strictly diagonally dominant matrices of diagonal D, we can deduce from preexisting results that

µ(L) ≤
√
n
2 λn(L) ≤

√
n
2 D when L admits such a matrix as a basis3.

2.2 Specific notations

Let us consider the diagonally dominant matrix B = (D × Idn) + N (regardless of whether it is c.d.d or a
r.d.d). We will use the following objects and notations.

• D ∈ N∗ is called the diagonal coefficient of the basis B.

• N is called the noise matrix of B and its elements noise values.

• For I ⊂ J1, nK, we denote by BI ∈ M|I|,|I|(Z) the submatrix of B composed of the rows and columns
of indexes in I. Naturally, if B is a r.d.d/c.d.d matrix, so is BI .

• S∞(l) is the set of positions i given l ∈ Zn such that |li| = ∥l∥∞

• B(I,B) = min

{
max
j∈I
{|(lB)j | | ∥l∥∞ = 1, S∞(l) = I}

}
given any set of indexes I.

It is simply min{∥lBI∥∞ | l ∈ {−1, 1}|I|}.
We denote B(I,B) by BI when B is implied, and stress that BI ̸= λ1(B).

3A lecture of Micciancio explains the bounds on the covering radius https://cseweb.ucsd.edu/classes/sp14/cse206A-a/

lec2.pdf, and we know that λn is at most D in max norm

3



2.3 Background on number systems

We assume the readers are familiar with integer and polynomial rings, and basic modular arithmetic. While
there are many divergent branches on the research over number systems, we only focus here on the parts we
believe are related to lattices.

Definition 7 (Modular Number System). A Modular Number System (MNS) B is defined by a tuple
(p, n, γ, ρ), such that for every integer 0 ≤ x < p, there exists a polynomial U = (u0, ..., un−1) such that:

x =
∑n−1

i=0 uiγ
i mod p (i.e U(γ) = x mod p), with |ui| < ρ and 0 < ρ, γ < p. We say that U is a

representation of x in B and we denote U ≡ xB

Note, that the number system holds in the sense that modulo p the equivalencies are conserved by
arithmetic operations. There is however a problem with the multiplication of polynomials. Let U ≡ xB and
V ≡ yB, we indeed have U(γ)V (γ) = xy mod p however UV is a polynomial of degree higher than n. The
following tackle this issue.

Definition 8 (Polynomial Modular Number System). A Polynomial Modular Number System (PMNS) B
is defined by a tuple (p, n, γ, ρ, E) where (p, n, γ, ρ) is a MNS and the monic polynomial E ∈ Z[X] of degree
n verifies E(γ) = 0 mod p. ∥E∥∞ must be “small”.

In a PMNS the computations are done modulo E (called external reduction polynomial), which keeps
the degree within the MNS conditions. The common problem however in both definitions above is the
methodology on how to keep coefficients of the resulting polynomials lower than ρ in absolute value. To
tackle this issue, an operation called internal reduction is used. Several methods exists to achieve this
internal reductions, and one of them is to consider the lattice generated by E and apply one of Babai’s
reduction algorithm to the polynomials we wish to reduce: internal reductions can be seen as some form of
Bounded Distance Decoding (BDD) solving. When considering the quotient ring constructing using E, one
can directly link reduction modulo E by a reduction modulo the lattice (basis) generated by E where E can
be considered a “short” vector of the lattice. The link between the covering radius of diagonally dominant
matrices and the number systems stem from [3] where E has a particular shape, exhibited in the definition
below.

Definition 9 (Adapted Modular Number System). A Adapted Modular Number System (AMNS) is defined
by a tuple (p, n, γ, ρ, E) where (p, n, γ, ρ, E) is a PMNS and E(X) = Xn − c where c is small.

Note that for most of the paper, we will consider any diagonally dominant matrix which do not neces-
sarily admits a polynomial structure to keep our work generic and open to other applications such as the
construction of cryptographic primitives. We might discuss the implication of supplementary structures at
some points in the paper.

3 Covering Radius, Shortest vector and reduction algorithms

One of our contributions is to improve our current knowledge by providing known values α, β such that
α ≤ µ∞(L) ≤ β where L admits a diagonally dominant basis of the form B = D × Idn +N . We show that:

• α = D−RN(B)
2 and β = D+RN(B)

2 whenever B is a r.d.d.

• α = D−CN(B)
2 and β = D+CN(B)

2 whenever B is a c.d.d.

The proofs for those values are similar. The value α is not a direct improvement of the known generic
bound, but is a consequence of a new proof on the value of λ∞

1 . Then β is the consequence of novel proofs
on our reduction algorithms: we show that for any v ∈ Zn we can reduce it by a deterministic algorithm to
v′ ≡ v mod L such that ∥v′∥∞ ≤ β which terminates within a polynomial amount of arithmetic operations.
Note that for a lattice basis constructed by cycling a vector/polynomial (multiplying by X to obtain the
next coefficient) with quotient Xn − 1 or Xn + 1, being a r.d.d basis also implies being a c.d.d basis.
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3.1 Short vector and reduction algorithm on r.d.d

First let us consider r.d.d. matrices. The results proven in this subsection will prove the following theorem.

Theorem 1. Consider B ∈ Mn(Z) a r.d.d. matrix and L = L(B). Then λ1(L) ⩾ D − RN(B) and there is
an algorithm PSW (Alg. 1) running in polynomial arithmetic complexity such that

∀v ∈ span(L), PSW(v) ≡ v mod L, ∥PSW(v)∥∞ ⩽
D +RN(B)

2
.

Consequently one has µ(∞)(L) ⩽ D+RN(B)
2 .

The proof of this theorem is done in two steps: first by proving a lower bound on the size of the
shortest vector, second by proving an upper bound on the convergence radius of a polynomial-time reduction
algorithm which which we will prove to terminate within a polynomial number of arithmetic operations. The
PSW acronym stands for Plantard-Susilo-Win, which were the original authors of a reduction algorithm
[35] we only slightly modify below.

3.1.1 Short vectors

Exposing a simple relationship between RN(B) and λ1 does not seem simple, and does not seem to have
been studied in details. We here prove an upper bound of λ1 based on RN(B).

Lemma 1. Let B ∈ Mn(Z) be r.d.d. of diagonal D. Then λ
(∞)
1 (L(B)) ⩾ D − RN(B).

Proof. Consider l ∈ Zn, and write v = lB. Then write l′ = (|li|)i∈J1,nK. Clearly there exists B′ ∈ Mn(Z) a
matrix such that |B′

i,j | = |Bi,j | for any pair (i, j) ∈ J1, nK2, and for all i ∈ J1, nK, B′
i,i = D and vi = ±(l′B′)i.

Thus B′ is a r.d.d. matrix such that RN(B′, i) = RN(B, i) for all i ∈ J1, nK. Now let us show that
∥v∥∞ ⩾ D − RN(B). We will first bound the taxicab norm, and then use the classic norm inequality

∥v∥∞ ⩽ ∥v∥1 ⩽ n∥v∥∞. (1)

First remark that we have the following:

∥v∥1 =

n∑
j=1

|(l′B′)j | ⩾

∣∣∣∣∣∣
n∑

j=1

n∑
i=1

liB
′
i,j

∣∣∣∣∣∣ .
Moreover for any i ∈ J1, nK, l′i ⩾ 0 and D > RN(B, i), so we have∣∣∣∣∣∣

n∑
j=1

n∑
i=1

liB
′
i,j

∣∣∣∣∣∣ =
n∑

j=1

n∑
i=1

liB
′
i,j ⩾

n∑
i=1

l′i(D − RN(B, i)).

Therefore, if k = |{i ∈ J1, nK | li ̸= 0}| we obtain ∥v∥1 ⩾ k(D − RN(B)).
If k = n then Equation (1) gives

∥v∥∞ ⩾ D − RN(B).

Now consider the case with k < n. Without any loss of generality, assume ∀i ∈ J1, kK, li ̸= 0. Denote by l′′ the
tuple (l′1, . . . , l

′
k) and B′′ the top left k × k submatrix of B′. Then B′′ is r.d.d. and ∀i ∈ J1, kK,RN(B′′, i) ⩽

RN(B′, i) = RN(B, i). We have

∀ ∈ J1, kK, (lB)i = (l′B′)i = (l′′B′′)i.

Then, since |{i ∈ J1, kK | l′′i ̸= 0}| = k, we can apply the previous result to l′′ and B′′, therefore ∥l′′B′′∥∞ ⩾
D − RN(B′′) and ∃i0 ∈ J1, kK, |(l′′B′′)i0 | = ∥l′′B′′∥∞. Finally we get

|(lB)i0 | = |(l′B′)i0 | = |(l′′B′′)i0 | ⩾ D − RN(B′′) ⩾ D − RN(B′) = D − RN(B).
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3.1.2 r.d.d-specific reduction algorithm

The PSW reduction algorithm was first introduced in [35], and is a known approximation of Babäı’s Round-off
algorithm [1] in the case of matrices of the form D −M where MD−1 have a spectral radius lower than
1. It was then used a second time in cryptography [34] in the case of r.d.d. matrices. The algorithm was
proven to finish for δ = D in [34], but did not take account of the gap between RN(B) and D. A slight
modification of the reduction proof given in [38] gives us a tighter bound by changing the loop condition in

line 2 of the algorithm to a comparison with a value Ri =
D+RN(B,i)

2 for every index i. This gives us the
modified version, described in Algorithm 1.

Algorithm 1 PSW reduction

Require: v ∈ Zn, B a r.d.d matrix, a bound vector R ∈ Nn

Ensure: w ≡ v mod L(B) and ∥w∥∞ < max(Ri).
1: w ← v
2: while

∨n
j=1(|wj | > Rj) do

3: i← any index such that |wi| > Ri

4: w ← w − ⌊wi

D ⌉Bi {Reduce |wi|}
5: end while
6: return w

The following lemma states that for a given R, the algorithm terminates given that values Ri are above
a certain bound which varies for each index.

Lemma 2 (Tighther bound in PSW-reduction algorithm). For any v ∈ Zn and a r.d.d. matrix B, the PSW

reduction (algorithm 1) can output w ≡ v mod L(B) where ∀i, |wi| ≤ D+RN(B,i)
2 .

Proof. Let f be the function defined on Zn × J1, nK by f : (w, i) 7→ w − ⌊wi

D ⌉Bi. In order to show that
Algorithm 1 ends and outputs a correct vector, we will prove the following:

n∨
j=1

(|wj | > Rj) =⇒ ∀i ∈ S(w,R), ∥f(w, i)∥1 < ∥w∥1. (2)

First let us show if the left side of (2) is verified, then f modifies w. Remark that for all i ∈ J1, nK, f(w, i) = w
if, and only if,

⌊
wi

D

⌉
= 0, which is clearly equivalent to |wi| ∈ J−D

2 ,
D
2 K. This condition is clearly verified for

any i ∈ J1, nK such that |wi| > Ri. Now let us show that (2) is true. First assume that there is i ∈ S(w,R)
such that |wi| > D. Then f(w, i)i has the same sign than wi, therefore |f(w, i)| = |wi| −

⌊
wi

D

⌉
D. Moreover

we have
∀j ∈ J1, nK \ {i}, |wj | ⩽ |wj |+

⌊wi

D

⌉
|Bi,j |,

which gives

∥f(w, i)∥1 ⩽ |f(w, i)i|+
n∑

j=1
j ̸=j

|f(w, i)j | ⩽ |wi| −
⌊wi

D

⌉
D +

n∑
j=1
j ̸=i

|wj |+
⌊wi

D

⌉
|Bi,j |.

This leads to
∥f(w, i)∥1 ⩽ ∥w∥1 +

⌊wi

D

⌉
(RN(B, i)−D) ⩽ ∥w∥1 −

⌊wi

D

⌉
< ∥w∥1.

Now consider i ∈ S(w,R) such that |wi| < D. Then
⌊
wi

D

⌉
= 1, and the signs of wi and f(w, i)i are different.

Moreover if we write |wi| = Ri+ t with t ∈ J1, D−RN(B)
2 K, we obtain |f(w, i)i| = |Ri−D+ t| = D−RN(B,i)

2 − t.
Therefore we have

|f(w, i)i| =
D +RN(B, i)

2
− t− RN(B, i) = |wi| − RN(B, i)− 2t.

Following the same reasoning as before to bound ∥f(w, i)∥1 we obtain

∥f(w, i)∥1 ⩽ ∥w∥1 − RN(B, i)− 2t+RN(B, i) < ∥w∥1.
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As stated previously, there is no general polynomial-time algorithm that will give strictly better bounds
on l∞ in every case: by setting RN(B) = 0 we do obtain a covering radius that is half the size of the shortest
vector in approximately n vector operations but this is indeed an extreme case. Algorithm 1 use a linear
memory and does not need to store much more than the size of the target and the matrix. This is an advan-
tage compared to Babäı’s nearest plane algorithm which needs the GSO or Babäı’s rounding-off algorithm
which requires a matrix inverse. The average-case time-complexity of algorithm 1 was briefly experimented
in [35], however a proper worst-case analysis was not provided as in RSR and does not seem to have been
done in the literature.

Proposition 1. Let B ∈ Mn(Z) be a r.d.d. matrix and v ∈ Zn, and denote by b the value nD
nD−(D−RN(B)) .

An upper bound on the complexity of vector operations done by PSW with upper bound set to D to reach
∥w∥1 ≤ nD is

O

(
logb

(
∥v∥1
nD

))
Proof. Let us consider the reduction of ∥w∥1 to count the number of reduction steps, using the results and
the reasoning of the above lemma. As the guarantee of the effective reduction was proven using the taxicab
norm, we will use it again and consider the case ∥w∥1 > nD.

Assuming ∥w∥1 > nD guarantees ∥w∥∞ > D thus q =
⌈
∥w∥∞

D

⌋
≥ 1. Denote by w′ the value of the vector

after the update in step 4 of Algorithm 1. Then ∥w∥1 is updated as

∥w′∥1 = ∥w∥1 − qD + qRN(B) = ∥w∥1 − q(D − RN(B))

From ∥w∥∞ ⩽ ∥w∥1 ⩽ n∥w∥∞ we obtain q ⩾ ∥v∥1

nD . Thus we get

∥w′∥1 ≤ ∥w∥1 −
∥w∥1
nD

(D − RN(B)) = ∥w∥1
(
nD − (D − RN(B))

nD

)
If we use this inequality and we write k the number of steps necessary to reach the condition ∥w∥1 ⩽ nD,
i.e to reach the second case, using the worst assumptions we obtain:

∥w∥1 =

(
nD − (D − RN(B))

nD

)k

∥v∥1 ⩽ nD.

This gives a O
(
log nD

nD−(D−RN(B))

(
∥v∥1

nD

))
number of vector operations to reach ∥w∥1 ⩽ nD.

Recall that in our presentation of the PSW algorithm (see algorithm 1), we did not mention in which
order the iterations must occur. We are now making the distinction, between naively reducing by index
order (ogPSW (see in appendix Algorithm 5) which was used in [35, 34]) and choosing the index with the
highest coefficient (see in appendix maxPSW Algorithm 6). Obviously, the larger is the value |wi| at the index
i we apply the reduction, the larger is the minimal decrease of ∥w∥1. The intuition is the following: if we
always pick the optimal choice for the reduction, then picking successively based on index order will require
at most n times more operations to achieve the same level of efficiency. We then suppose that we have
reached ∥w∥1 ≤ nD per the previous algorithm, and use an analysis combining both the worst case on ∥w∥∞
and ∥w∥1. In the worst-case scenario where we consistently target the largest coefficient of w until every
coefficient is lower than D, the worst possibility is where reductions have to continue until ∥w∥1 < D as it
is possible that ∥w∥1 = ∥w∥∞. Which reusing the previous reasoning leads to Proposition 2.

Proposition 2. Let B ∈ Mn(Z) be a r.d.d. matrix and v ∈ Zn, and denote by b the value nD
nD−(D−RN(B)) .

An upper bound on the complexity of vector operations done by maxPSW to reach ∥w∥∞ ≤ D is

O

(
logb

(
∥v∥1
D

))

7



Proof. Reusing the last proof, replace nD by D in the last equation, as we assume in this (very improbable)

worst-case where ∥w∥1 = ∥w∥∞ at every iteration we will consistently have q =
⌈
∥w∥∞

D

⌋
≥ 1 with no

coefficient flipping, thus the reasoning still holds past ∥w∥1 < nD.

We stress that proposition 1 differs from 2: proposition 1 do not assume ∥w∥1 = ∥w∥∞, thus yield differ-
ent results. This overestimated complexity does not reflect at all the significantly faster experimental results
reported in [35, 38, 34], which is understandable: the probability to trigger a single least-impactful iteration
is 2−(n−1), i.e as probable as solving a {0, 1}-knapsack problem with n− 1 entries randomly. However, our
result still proves polynomial operation complexity and constant memory (besides input memory) as far as
vector operations (i.e fixed dimension) are concerned.

Note that we proved convergence of our algorithms until a bound where ∥w∥1 < D+RN(B)
2 but we still

did not upper-bound the complexity of our algorithms to reach ∥w∥1 < D+RN(B)
2 . We cannot reuse exactly

the same reasoning for further steps beyond b because of coefficient flipping as they change signs: we will
indeed have q = 1, but we will not have an update of the form |wi| ← |wi| −D but instead an update of the
form |wi| ← D − |wi|. It makes the analysis less trivial as we cannot guarantee that the max norm stays
stable as we iterate, and it is unclear how far reduction should go as terminating to ∥w∥1 = 0 means the last
step decreases ∥w∥1 by exactly D+RN(B) which is pretty much an optimal reduction and not a worst-case
one. Nevertheless we can still obtain a worst-case approach.

Property 1. We need strictly less than nD
2 iterations to reduce ∥v∥1 = nD to ∥w∥1 = 0.

Proof. Assuming we work over Z, every reduction over Z decreases by 2. If not over Z and t is the smallest
value possible, replace this by 2t.

This leads to the grossly overestimated worst-case complexity:

Proposition 3. Let B ∈ Mn(Z) be a r.d.d. matrix and v ∈ Zn, and denote by b the value nD
nD−(D−RN(B)) .

An upper bound on the complexity of vector operations done by PSW is

O

(
logb

(
∥v∥1
nD

)
+

nD

2
.

)
Note, that by denoting ∆ = D−RN(B) the gap between the diagonal and non-diagonal values, approxi-

mating log(b) = − log(1− ∆
nD ) ≈ ∆

nD ( ∆
nD is close to 0 so the approximation holds) and setting ∥v∥1 = nDn

(i.e each coefficient to an approximate of the determinant), we can obtain the simpler formula ignoring
constants:

O

(
n2D

log(D)

∆
+ nD

)
Comparison with Babäı’s Nearest Plane It is well known that Babäı’s nearest plane algorithm [1]
gives an upper bound of

µ(2) ≤
√
n

2

√∑
∥b∗i ∥22 ≤

√
n

2
max

i
∥b∗i ∥2

where b∗i are the vectors of the GSO. We also know from norm inequalities

• ∀v ∈ Rn, ∥v∥∞ ⩽ ∥v∥2 which directly implies µ(∞) ⩽ µ(2)

• ∥b∗i ∥2 ⩽ ∥bi∥2 ⩽ ∥bi∥1 ⩽ D +RN(B) by r.d.d definition

In the worst-case those inequalities gives µ(∞) ⩽
√
n
2 (D + RN(B)). Thus our worst-case bound seem to be

better than Babäı’s Nearest Plane worst-case naive bound for the maximum norm in those lattices, but this
does not states the average case is better. However as we will see later, we do have the same output in
the best case (fully orthogonal lattices). In appendix A.3, we showcase an example where Babäı’s Nearest
Plane algorithm outputs a larger vector than our algorithms in maximum norm, effectively demonstrating
that PSW can provide better results than Babai’s Nearest Plane algorithm in some cases.
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3.2 Short vectors and reduction algorithms for c.d.d. matrices

Now let us consider c.d.d. matrices. The overall methodology used in this subsection is very similar to the
previous one. Again, the results proven in this subsection can be grouped in the following theorem.

Theorem 2. Consider B ∈ Zn a c.d.d. matrix and L = L(B). Then λ1(L) ⩾ D − CN(B) and there is an
algorithm, RSR (Alg. 3), running within a polynomial amount of arithmetic operations such that

∀v ∈ span(L), RSR(v) ≡ v mod L, ∥RSR(v)∥∞ ⩽
D +CN(B)

2
.

Consequently one has µ(∞)(L) ⩽ D+CN(B)
2 .

As done previously, the proof of this theorem will be done in two steps: bounding the minimal size of
the shortest vector, then bounding the maximal convergence radius of a reduction algorithm. Note that the
acronym RSR stands for RepeatedSingleReduce.

3.2.1 Short vectors

First let us study the norm of a shortest vector.

Lemma 3 (Minimal largest value of non-zero combinations). Consider k ∈ Zn \ {0}, j ∈ J1, nK such that
|kj | = ∥k∥∞, B be a c.d.d matrix, and v = kB. Then one has |vj | ⩾ ∥k∥∞ × (D − CN(B, j)).

Proof. Without any loss of generality we can assume vi ≥ 0 and kj > 0. Then

|vi| =

∣∣∣∣∣
n∑

i=1

kibi,j

∣∣∣∣∣ ⩾ kjD −
n∑

i=1
i̸=j

|kibi,j | ⩾ kj(D −
n∑

i=1
i̸=j

|bi,j |) = kj(D − CN(B, j)).

This directly implies that λ
(∞)
1 (L(B)) ⩾ D − CN(B). Let us show some additional results on c.d.d.

matrices.

Lemma 4 (Submatrix bound on non-zero combinations). Consider B a c.d.d. matrix, k ∈ Zn, I = S∞(k)
and v = kB. Then there is j ∈ I such that |vj | ⩾ B(I,B).

Proof. If ∀j, |kj | ∈ {0, ∥k∥∞}, then there is j ∈ S∞(k) such that |vj | ⩾ ∥k∥∞ × B(S∞(k), B). If ∃j1, |kj1 | /∈
{0, ∥k∥∞} with kj1 ̸= 0, one can pick j1 such that |kj1 | ⩾ |kj | for all j /∈ S∞(k). Consider the vectors k′ and
k′′ such that k = k′ + k′′ and

k′j =

{
sign(kj)(|k|∞ − |kj1 |), if j ∈ I

0, otherwise.

Therefore we also have

k′′j =

{
sign(kj)(|ks|), if j ∈ I

kj , otherwise.

Remark that for all j ∈ S∞(k) we have sign(k′′j ) = sign(k′j) = sign(ki) and |k′′j | = |k′′|∞. From what precedes
we know that there is j ∈ S∞(k) such that |(k′B)j | ⩾ B(S∞(k), B). Moreover S∞(k) ⊂ S∞(k′′) and the
signs are the same so sign((k′′B)j) = sign((k′B)j). Thus we obtain |(kM)j | ⩾ B(S∞(k), B).

This gives us the following theorem.

Theorem 3 (Bound by the minimal submatrix). Let B be a c.d.d. matrix. Then λ
(∞)
1 (L(B)) ⩾ min

I⊆J1,nK
BI .

9



Algorithm 2 SingleReduce

Require: v ∈ Zn, B a c.d.d matrix, Ri ⩾
D+CN(B,i)

2 .
Ensure: w ≡ v mod L(B) and ∥w∥∞ ⩽ max(Ri, ∥v∥∞ − (D − CN(B))).
1: w ← v, i← 1, s← [0, ...., 0] ∈ {0, 1}n {initialization vector, index, reduction status}
2: while

∨n
j=1((|wj | > Rj) ∧ (sj = 0)) do

3: if |wi| > Ri and si = 0 then
4: w ← w − wi

|wi|Bi {Reduce |wi|}
5: si ← 1 {“Update” the reduction status of index i}
6: end if
7: i← (i mod n) + 1 {Enforces i to be within [1, n] and not [0, n− 1]}
8: end while
9: return w

3.2.2 Reduction algorithms for c.d.d. matrices

The previous reduction algorithm only concerned r.d.d matrices and are not guaranteed to terminate on
c.d.d matrices. We will propose here a different algorithm relying on the c.d.d structure. Before we present
the full algorithm, we first introduce the core part that we denote by SingleReduce. It is described in
Algorithm 2.

Lemma 5. Given a vector v ∈ Zn, a c.d.d. matrix B with diagonal coefficient D. Moreover let R ∈ Zn be

such that Ri ⩾
D+CN(B,i)

2 . Then SingleReduce (Alg. 2) transforms v into w ∈ Zn verifying the following
properties.

1. v ≡ w mod L(B).

2. ∀i ∈ J1, nK, |vi| > Ri =⇒ |vi| > |wi|.

3. ∀i ∈ J1, nK, |vi| ⩽ Ri =⇒ |wi| ⩽ Ri.

Moreover the algorithm performs at most n additions on vectors.

Proof. First remark that we add or remove at most one time each row vector to the variable w. This is
ensured by the flag vector s. Therefore we add at most n vectors to w. Write v = w(0), w(1), . . . , w(r) = w
the two by two distinct values of the variable w with r ⩽ n. Similarly write s(0), . . . , s(r) the different values

taken by s. Fix some index i ∈ J1, nK. First assume s
(r)
i = 0. Then we know that |w(r)

i | ⩽ Ri and wi satisfies

the claimed properties. Now assume s
(r)
i = 1. Let us denote by k0 the integer such that w

(k0)
i = w

(k0−1)
i ±D.

Without loss of generality we can assume vi ⩾ 0. First we consider the case where w
(0)
i > Ri. Then for some

J ⊂ J1, nK \ {i} we have

w
(k0−1)
i = w

(0)
i +

∑
j∈J

±bj,i ⩾ w
(0)
i − CN(B, i) > Ri − CN(B, i) ⩾

D − CN(B, i)

2
> 0

therefore wk0
i = w

(k0−1)
i −D. We can write

w
(0)
i > w

(n)
i = w

(0)
i −D +

∑
j∈J1,nK

j ̸=i

±bj,i > Ri −D − CN(B, i) ⩾ −D +CN(B, i)

2

which ensures |w(n)
i | < |w

(0)
i |. Now consider the case where w

(0)
i ⩽ Ri. From D+CN(B,i)

2 > CN(B, i) we

deduce that w
(k0−1)
i > 0 and w

(k0)
i = w

(k0−1)
i − D. With the same reasoning as before we can conclude

wn
i < w0

i and w
(n)
i > w

(k0)
i − D − CN(B, i) > −D+CN(B,i)

2 which ensures |w(n)
i | ⩽ Ri. Finally we remark

that the results obtained are independent of the choice of i.
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Algorithm 3 RSR

Require: v ∈ Zn, B a c.d.d matrix, Ri ⩾
D+CN(B,i)

2 .
Ensure: w ≡ v mod L(B) and |wi| ≤ Ri.
1: w ← v
2: while

∨n
j=1(|wj | > Rj) do

3: w ←SingleReduce(w,B,R).
4: end while
5: return w

This building block naturally gives us the RSR reduction algorithm, which is guaranteed to finish given
a c.d.d. lattice basis. Theoretically, there is no algorithm that can provide strictly better bounds on l∞ for
every single column diagonal dominant lattice: the covering radius cannot be lower than half the size of the
shortest vector, and for CN(B) = 0 we do reach this extremity.

Proposition 4. Given a vector v ∈ Zn, R ∈ Zn such that Ri ⩾
D+CN(B,i)

2 where D,CN(B, i) are associated
to a c.d.d. matrix B, RSR (Alg. 3) transforms v into w ∈ Zn verifying the following properties.

1. v ≡ w mod L(B).

2. ∀i, |wi| < Ri

Moreover the algorithm performs at most n∥v∥∞ additions on vectors.

We want to stress this does not show the algorithm is practically efficient: SingleReduce might run
a quadratic amount of absolute value comparisons on scalars in a single call. However, the reduction still
runs a polynomial amount of vector operations in the dimension and in the entry size. Despite its apparent
inefficiency, the algorithm only requires an extra amount of booleans that is linear in the dimension: this
is a significant advantage compared to some alternatives that could require at least quadratic amount of
elements which size could be larger than the scalar entries themselves (typically, requiring to inverse a
matrix or computing a GSO).

Comparison with Babai’s Nearest Plane Unlike the r.d.d case, we do not have a measure of ∥bi∥1.
However, we estimate that it is possible in the case of c.d.d to have rows with very large noise, which might
give ∥bi∥1 > 2D and thus a larger worst-case bound than a r.d.d for Babäı’s nearest plane algorithm.

3.3 A looser algorithm for reducing both r.d.d, c.d.d, and matrices in between

In the previous sections, the main argumentation for both r.d.d and c.d.d was based on the diagonal dominant
structure and the reduction of ∥v∥1 per iteration for an entry v. In particular, we can observe that in either
case, for a matrix of the form B = D×Id+N we have

∑
|Bi,i| >

∑
i ̸=j |Bi,j | for both r.d.d and c.d.d. In this

subsection we present an algorithm that reduces vectors in the very generic case of
∑
|Bi,i| >

∑
i ̸=j |Bi,j |.

For the sake of simplicity, we assume here that Bi,i ̸= 0. This algorithm, BalancedReduction (algorithm 4),
can also prove to be a heuristically faster alterative to SingleReduce when the initial entries are very large.
We present this algorithm last, as it cannot reduce as tightly as any of the previously presented algorithms,
thus cannot give the “finishing touches” to reach the minimal bounds for the max norm.

Proposition 5. Given a vector v ∈ Rn, a matrix B ∈ Mn(R) such that
∑
|Bi,i| >

∑
i̸=j |Bi,j | with Bi,i ̸= 0,

BalancedReduction completes and outputs w ∈ Rn such that

1. v ≡ w mod L(B).

2. ∃i, |wi| < |Bi,i|

3. ∥w∥1 ≤ ∥v∥1

11



Algorithm 4 BalancedReduction

Require: v ∈ Rn, B a matrix with
∑
|Bi,i| > q

∑
i,nej |Bi,j |

Ensure: w ≡ v mod L(B) and ∥w∥1 ⩽ ∥v∥1.
1: w ← v, q ← min{qi = ⌊∥wi,i

Bi,i
∥⌋} {initialization}

2: while q > 0 do
3: for i ∈ [1, n] do

4: w ← w − q wi

|wi|
Bi,i

|Bi,i|Bi {reduces by qBi}
5: end for
6: q ← min{qi = ⌊∥wi,i

Bi,i
∥⌋} {updates q}

7: end while
8: return w

Proof. The first two points items are trivial given the termination: thus termination and reduction of the
taxicab norm have to be proven. The choice of q in BalancedReduction ensures that if the matrix is
actually diagonal, no coefficients flips and thus the reduction of ∥w∥1 is at best q

∑
|Bi,i| per update of q.

However if the matrix is not diagonal, there is also at worst an increase of ∥w∥1 by q
∑

i̸=j |Bi,j |. Since∑
|Bi,i| >

∑
i ̸=j |Bi,j |, ∥w∥1 is then guaranteed to be reduced. Since ∥w∥1 is finite and cannot decrease by

less than q(
∑
|Bi,i| −

∑
i̸=j |Bi,j |) per update of q, BalancedReduction will terminate.

Unlike the previous algorithms where the reduction operations are decided coefficient per coefficient, in
this algorithm the reduction process checks the whole vector and the whole matrix per iteration. This is
reminiscent of the reduction algorithm of [3] where each loop iteration takes the whole vector into account,
although in their case polynomial structures were used.

4 Potential applications for further work

4.1 Application to lattice-based encryption

Having an efficient reduction algorithm and a lower bound on the shortest vector of a lattice naturally allow
for the birth of mathematical encryption primitives. We stress that this section is not the main point of
this paper, but merely a presentation of a relevant application. Diagonal dominance itself is a property used
in several other fields, and we currently do not fully grasp the overall impact of our contribution besides
cryptography. But as we mentioned earlier, cryptography seems a very popular field of application as far as
computational problems on lattices are concerned.

Let us denote L the lattice generated by a diagonal dominant matrix B = D × Id + N . Let R be the
radius in which we can find for any c ∈ Zn a vector m ≡ c ∈ L s.t. ∥m∥∞ < R. Algorithms 1 and 3 offers
us parametrisable radii R directly from a parametrisable B. Evidently, B is kept as a secret trapdoor as it
allows decryption. Let M be the upper bound of the max norm of the vector messages we wish to recover,
such that if the vectors associated to the valid messages belong to a setM, thenM⊆ [−M,M ]n. Here, we
consider that each message is associated to a vector m ∈ Zn we wish to recover, and that the encryption of
m is associated to a ciphertext vector c = m+ v where v ∈ L(B). With a similar approach to [17], we first
show how one can use our results to guarantee correctness in a decryption. Second, we discuss potential
security concerns, which is mostly relevant to cryptographers if they wish to instantiate a cryptosystem.

4.1.1 Guaranteeing decryption of valid messages (i.e correctness)

A sufficient condition to ensure that from any valid ciphertext of the form c = v +m where v ∈ L(B) and
m ∈ [−M,M ]n, we can recover exactly m, is the following:

2M < λ
(∞)
1 (L) and M < R (3)

the first part ensures that if we find m′ ≡ m mod L then their difference must be a lattice vector of size

0 since 2M < λ
(∞)
1 (L), i.e m′ = m. The second part enforces that a vector m′ ≡ m mod L with m′ can

12



always be found. In particular, with our results, equations 3 can be simply verified by fixing

CN(B) <
D − 2M

3
for c.d.d and RN(B) <

D − 2M

3
for r.d.d (4)

which is straightforward to construct.

4.1.2 Security concerns

There are several security concerns that one needs to address if planning to build a cryptosystem. One of
them is to ensure that deciphering c into m is not trivial without the secret key. Heuristically, if c is large
enough, the problem of recovering m from c can be seen as a specific instance of CVP, which is known to be
hard. It is possible to prove that under certain conditions (which are strictly dependent on B), recovering
the message is provably as hard as recovering the secret key B within at most a linear factor n (see appendix
C).

With that in mind, what is left is the security of the public key. Since [24], it makes sense to provide
a basis of L(B) as a Hermite Normal Form for the public key, however other choices might be possible: it
might not even be necessary to provide a basis of L(B) in the first place. Let us assume the public key is
chosen as another basis of the same lattice: in the last decades, it seemed that pure key recovery attacks
on diagonal dominant matrices [34, 37] or close structures [17, 28] are rather unsuccessful. The weaknesses
were mostly on signature scheme instances [32, 13, 14] which do not concern this section. Note that [32] also
consider that the encryption approach of [17] is still secure, and to the extent of our knowledge this claim
has not been challenged yet.

4.2 Application to modular arithmetic

Without entering the details of the number systems concerned, namely AMNS and PMNS, one of the re-
search directions we could pursue is to propose novel bases for number representations and corresponding
algorithms. In those systems, the numbers are represented by vectors modulo a lattice, and thus various
numbers have different and redundant information. Depending on the purpose, we might want to either
reduce or increase the amount of representations a number have. Computations in such systems usually
increase the size of the coefficients in the resulting vectors, thus to avoid overflow and to keep an efficient
arithmetic a process call “internal reduction” is proposed, which can be seen as specific instances of a BDD
problem.

In [11], two ways of producing that internal reduction are exhibited: one is a Montgomery-like reduction,
inherited from [31], and the other one is using Babai’s algorithms to achieve this. With our work, it might
be possible to produce other set of lattices in which those so-called “internal reductions” are processed differ-
ently, maybe giving different trade-offs between redundancy and efficacy: we exhibited stronger guarantees
over the maximum norm than Babai’s algorithms, which is exactly what is more in tune with bounding the
coefficients when using MNS which actually requires no condition over the euclidean norm l2.

Note, that MNS and its improved variants were created with simplifying operations over Z/pZ in mind:
thus, lies an open question: how do we create a diagonally dominant lattice with guaranteed determinant
p? [37] do exhibit a way to create “somewhat diagonally dominant” matrix with a guaranteed determinant
with some probability, but it is not tailored for matrices with a polynomial structure nor does it guarantee
the exact norm of every vector.

5 Conclusion

We gave some improved analysis of the interval where the covering radius lies in the case of diagonally
dominant matrices, by analysing the tools given by PSW and previous work. We also presented an application
for lattice-based encryption as a direct consequence of our results. There is however several avenues to
improve our work.
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1. The novel algorithms we proposed for the c.d.d case and the “somewhere betweem r.d.d and c.d.d”
are inefficient. In particular, we always considered worst-case matrices but it is possible that simple
reductions on worst-case matrices could reduce the bounds on the worst-case (a c.d.d matrix with all
its noise concentrated on the first row might have its noise reduced by lower rows, leading to overall
smaller coefficients).

2. Constructing a worst-case basis where the lower bound of the shortest vector is reached is easy (see
appendix A.1), but it is possible this worst-case only exists in such extreme matrices forms. Studying
the distribution of all possible minima could also be a future direction.

3. It would be also interesting to study specific results concerning other families of lattices besides those
generated by a diagonal dominant matrix, whether or not they have an application to cryptography or
other fields such as number systems using lattice-based algorithms for subroutines [2].
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APPENDIX

A Specific families of diagonally dominant matrices

As we mentioned earlier, there is no better general results that the one we already provided as the bounds
are reached in practice. However additional structures influence the possible covering radii and the behavior
of reduction algorithms. This appendix section explore some possibilities.

A.1 All positive, all negative

This subsection considers the case where every mi,j is positive or negative.

A.1.1 Negative case

The negative case offers simple properties that are useful for experimental measure, for the general under-
standing of diagonally dominant matrices or potential other applications.

Lemma 6 (Shortest vector of the negative case). Let B be a c.d.d. matrix where bi,j ⩽ 0 for all i ̸= j.
Then v =

∑n
i=1 bi,j is a shortest non-zero vector of L(B).

Proof. vi = D − CN(B, i), thus reaching the minimal bound non-zero value in every i.

The advantage of this lemma is to be able to use our bound as the general case when experimenting on
a wide array of possibilities regarding the distribution of the non-diagonal coefficients.
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A.1.2 Positive case

The positive case gives an interesting intuition for reduction algorithms: they give a very attractive graphical
intuition as every vector operation moves every coefficient in the same “direction” (go up or down), i.e the
vector’s coefficient interval range is guaranteed to be shrinking in each iteration until convergence.

As far as the length of the shortest vector is concerned, there is no guarantee it will be higher than the
minimal bound. In fact, the example below show we can reach the general bound:

Example 1. The matrix 
D D − 1 0 0 0 0
0 D D − 1 0 0 0
0 0 D D − 1 0 0
0 0 0 D D − 1 0
0 0 0 0 D D − 1

D − 1 0 0 0 0 D


generates the vector [1,−1, 1,−1, 1,−1]

Some constructions with bounded noise coefficients and specific distributions can force limitations on
how small the shortest vector can be, however those are very specific cases and expanding on it should be
done in another work.

A.2 Polarity-circular blocks

This section deal with matrices that have specific distribution on positive and negative noise coefficients.

A.2.1 2× 2 blocks

Here we consider the case where the noise matrix M takes the following form:[
0 A
B 0

]
where every coefficient of A is strictly positive and B strictly negative. (A and B can be reversed and are
square). In that case, D > CN(B) ⩾ n/2 and the shortest vector is large. In dimension 2, it is clear that
the shortest vector is a vector of the basis. In larger dimension, it is not that simple.

Proposition 6 (Shortest vector of 2 × 2 sign-blocks). Let B ∈ Mn(Z) be c.d.d as described above. Then
λ1(L(B)) ⩾ D − CN(B) + n

4 + 1.

Proof. We mentioned above that we can assume that the sign matrix of M is as follows:[
0 +
− 0

]
.

As given by Theorem 3, one can concentrate on lB with ∥l∥∞ = 1. First consider l such that ∀i ∈ J1, nK, li ⩾ 0
or ∀i ∈ J1, nK, li ⩽ 0. Then clearly ∥lB∥∞ ⩾ D. We will now consider l which have at least two distinct
coefficients with opposite signs. Let us fix I1 = J1, n

2 K and I2 = Jn
2 +1, nK. First let us consider l such that l

is all positive or all negative over I1, i.e. without loss of generality

∀i ∈ I1, li ⩾ 0.

We will distinguish the two cases where there is i2 ∈ I2 with li2 > 0, or ∀i ∈ I2, li ⩽ 0. In the first case we
have |(lB)i1 | ⩾ D + 1, whereas in the second |(lB)i1 | ⩾ D + 1 for i1 ∈ I1 is such that l1 > 0. Now let us
consider l such that

∀k ∈ {1, 2},∃(ik, jk) ∈ I2k , (lik > 0) ∧ (ljk < 0).
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Fix A = {i ∈ I2 | li ⩾ 0. If |A| ⩾ n
4 then one has

(lM)j1 = −D +
∑

i∈I2\A

|limi,j1 | −
∑
i∈A

|limi,i1 | ⩽ −D + (CN(B)− n/4)− 1.

If |A| ⩽ n
4 then one can do the same reasoning with I2 \A and i1.

A.2.2 3× 3 blocks

Now consider the case where the noise matrix M takes the following form: 0 A12 B13

B21 0 A23

A31 B32 0


where every coefficient of Aij is strictly negative and Bij strictly positive (signs of Aij and Bij can be
reversed and are square). We assume further the following:

∀j ∈ J1, nK,
n∑

i=1

mi,j = 0.

Let us fix some notation. We will write:

• I = J1, nK;

• Ik = J (k−1)n
3 + 1, kn

3 K for k ∈ {1, 2, 3}.
Lemma 7. Let M = [mi,j ] i∈J1,nK

j∈J1,nK
∈ Mn(Z) a c.d.d. matrix with a structure such as defined above and

n ∈ 3N, and three different values k1, k2, k3 ∈ {1, 2, 3}. Consider l ∈ {−1, 0, 1}n \ {0} such that li ⩾ 0 for all
i ∈ Ik1

or li ⩽ 0 for all i ∈ Ik1
. Then the following statements are true.

1. (∀i ∈ Ik1 ∪ Ik2 , li = 0) =⇒ ∥lM∥∞ ⩾ D∥l∥∞; (same for Ik1 ∪ Ik3 and Ik2 ∪ Ik3).

2. ∃k ∈ {k2, k3} | ∀j ∈ Ik, lj = 0 =⇒ ∥lM∥∞ ⩾ D.

3. ∀k ∈ {k2, k3},∃ik ∈ Ik | lik ̸= 0 =⇒ ∥lM∥∞ ⩾ D − CN(B)
2 + 1.

Proof. Without any loss of generality, we can assume that li ⩾ 0 for all i ∈ I1 and mij > 0 for all
(i, j) ∈ I2 × I1. The sign matrix of M is as follows:0 − +

+ 0 −
− + 0

 .

The first statement is clear. Now let us prove statement (ii). It corresponds to proving Proposition 6.
Without loss of generality assume lj = 0 for all j ∈ I3 (i.e k = 3). If there is j ∈ I2 such that lj < 0, then
since li ⩾ 0 and mi,j ⩽ 0 for all i ∈ I1, we have

(lM)j = −|lj |D −
n/3∑
i=1

li|mi,j | ⩽ −D − 1,

thus ∥lM∥∞ > D. If lj ⩾ 0 for all j ∈ I2 then ∥(lM)i∥∞ ⩾ D for all i ∈ I1.
Let us now prove (iii). Following the same reasoning as before, one can see that if li2 < 0 then

(lM)i2 = −|lj |D −
∑
i∈I1

li|mi,j |+
∑
i∈I3

limi,j ⩽ −D − 1 +
∑
i∈I3

limi,j < 0

thus |(lM)i2 | ⩾ D + 1− CN(B)
2 . Similarly if li3 > 0 then |(lM)i3 | ⩾ D + 1− CN(B)

2 . Finally if li ⩾ 0 for all
i ∈ I2 and li ⩽ 0 for all i ∈ I3 then ∥lM∥∞ > D and (iii) is true.
Since all of the above can be adapted to the cases where li ⩽ 0 for all i ∈ I1, or where we replace I1 by I2 or
I3 we proved that if there is k ∈ {1, 2, 3} such that all of the coefficients li with i ∈ Ik have the same sign,

then ∥lM∥∞ > D − CN(B)
2 .
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Lemma 8. Let M ∈ Mn(Z) with a structure such as defined above and n ∈ 3N. Then for l ∈ {−1, 0, 1}n,
v = lM has ∥v∥∞ ≥ min{D − CN(B)

2 , D − CN(B) + n
3 + 2}.

Proof. The previous lemma dealt with the case where ∃k ∈ {1, 2, 3} such that ∀i ∈ Ik, li ⩾ 0 or ∀i ∈ Ik, li ⩽ 0.
Now assume the following:

∀k ∈ {1, 2, 3},∃(ik, jk) ∈ I2k , (lik > 0) ∧ (ljk < 0).

Remark that it implies n ⩾ 6. With no loss of generality, let us fix k = 1 and define

A = {i ∈ I2 | li ⩾ 0} and B = {i ∈ I3 | li ⩽ 0}

First assume that |A| ⩾ n
6 and |B| ⩾ n

6 . Then we have

(lM)i1 = D +
∑

i∈A∪B

|limi,i1 | −
∑

i∈I2∪I3\A∪B

|limi,i1 | ⩾ D + 2− 2(
CN(B)

2
− n

6
) ⩾ D − CN(B) +

n

3
+ 2.

Now assume |A| ⩽ n
6 and |B| ⩽ n

6 . Then similarly as before we obtain

(lM)j1 = −D +
∑

i∈A∪B

|limi,j1 | −
∑

i∈I2∪I3\A∪B

|limi,j1 | ⩽ −D +CN(B)− n

3
− 2.

Finally, assume |A| ⩾ n
6 and |B| ⩽ n

6 . This means that |I3 \B| ⩾ n
6 so we obtain

(lM)j1 = −D +
∑

i∈A∪B

|limi,j1 | −
∑

i∈I2∪I3\A∪B

|limi,j1 |

⩽ −D − 1− n

6
+ (

CN(B)

2
− 1) + (

CN(B)

2
− n

6
) ≤ −D +CN(B)− n

3
− 2.

The case #A ⩾ n
6 and #B < n

6 follows a similar reasoning.

Finally, using Theorem 3 one can deduce from the results over l ∈ Zn with ∥l∥∞ = 1 a lower bound for
λ1.

Corollary 1. Consider B a c.d.d. matrix by blocks. Then it verifies λ
(∞)
1 (L(B)) ⩾ min{D−CN(B) + n

3 +

2, D − CN(B)
2 }.

Note that those bounds are reached in the very worst case, and we present below an example that was
built to reach the bound.

Example 2. Set D = 19,CN(B) = 18, n = 6. This gives λ
(∞)
1 ⩾ 5. Consider the matrix

M =



D 0 −1 1− CN(B)
2 1 CN(B)

2 − 1

0 D 1− CN(B)
2 −1 CN(B)

2 − 1 1
CN(B)

2 − 1 1 D 0 −1 1− CN(B)
2

1 CN(B)
2 − 1 0 D 1− CN(B)

2 −1
1− CN(B)

2 −1 CN(B)
2 − 1 1 D 0

−1 1− CN(B)
2 1 CN(B)

2 − 1 0 D



=


19 0 −1 −8 1 8
0 19 −8 −1 8 1
8 1 19 0 −1 −8
1 8 0 19 −8 −1
−8 −1 8 1 19 0
−1 −8 1 8 0 19


and l =

[
−1 1 1 −1 −1 1

]
. This gives out v = lM =

[
−5 5 5 −5 −5 5

]
which has a

norm of 5.

Note that unlike the example above, for large dimensions (and large diagonal value D) it is very unlikely

that the maximum noise with absolute value (CN(B)
2 − n

3 + 1) is picked for uniform distributions. Bounding
the maximum noise coefficient will further increase the minimum possible length of the shortest vector.
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A.3 Example where Babai’s output is worse than PSW’s output

When taking random examples especially in cases where unicity of the solution is guaranteed, it is common
to see Babai’s output being equal to PSW’s output. It is however possible to create instances where Babai’s
output has a larger maximum norm than our algorithms’ output. For r.d.d matrices, shifting a lot of the
non-zero coefficients on the last column increase the probability that Babai’s nearest plane algorithm outputs
a larger vector in the maximum norm than the PSW algorithm. We present below a code example which can
be easily tested on http://magma.maths.usyd.edu.au/calc/.

M:=Matrix ( I n t e g e r s ( ) , [
[ 2 2 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ,−1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−1] ,
[ 1 , 22 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−1 , 1 ] ,
[ 0 , 0 , 22 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 ,−1] ,
[ 0 , 0 , 0 ,22 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ,−1] ,
[ 0 , 0 , 0 , 0 ,22 , 0 , 1 , 0 , 0 , 0 , 0 ,−1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ] ,
[ 0 , 0 , 1 , 0 , 0 ,22 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ,−1] ,
[ 1 , 0 , 0 , 0 , 0 , 0 ,22 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−1] ,
[ 0 , 0 , 0 , 0 , 0 , 0 , 0 ,22 , 0 , 0 , 0 , 0 , 1 , 0 ,−1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ] ,
[ 0 , 0 , 0 , 0 , 0 ,−1 , 0 , 0 ,22 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−1 , 0 , 0 , 0 , 0 ,−1] ,
[ 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,22 ,−1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−1] ,
[ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,22 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ,−1 , 0 , 1 ] ,
[ 1 , 0 , −1, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,22 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−1] ,
[ 0 , 0 , 0 , 0 , 0 , 0 ,−1 , 0 , 0 , 0 , 0 , 0 ,22 , 0 , 0 ,−1 , 0 , 0 , 0 , 0 , 0 , 1 ] ,
[ 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,22 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 ] ,
[ 0 , 0 , 1 , 0 ,−1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,22 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ] ,
[ 0 , 0 , 0 , 0 ,−1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−1 , 0 ,22 , 0 , 0 , 0 , 0 , 0 , 1 ] ,
[ 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ,−1 , 0 , 0 , 0 , 0 , 0 ,22 , 0 , 0 , 0 , 0 , 1 ] ,
[ 0 , −1, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ,22 , 0 , 0 , 0 ,−1] ,
[ 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ,22 , 0 , 0 , 1 ] ,
[ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−1 , 0 , 0 , 0 , 0 , 0 , 0 ,23 , 0 ,−1] ,
[ 0 , −1, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−1 ,22 , 1 ] ,
[ 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−1 , 0 , 0 , 0 , 0 , 0 , 0 , 23 ]
] ) ;

Alpha:=Ce i l i n g ( (22+3)/2) ;
p r i n t ”Wanted max norm <”, Alpha ;

ExpectedPsw:=Vector (
[ 6 ,−6 , 6 , 6 ,−6 , 6 , 6 ,−6 , 6 , 6 ,−6 , 6 ,−6,−6,−6,−6,−6, 6 ,−6 , 6 ,−6 , 6 ]
) ;
ExpectedBabai :=Vector (
[ 6 ,−6 , 6 , 6 ,−6 , 5 , 6 ,−6 , 6 , 6 ,−6 , 6 ,−6,−6,−5,−6,−6, 6 ,−6 , 6 ,−6 ,−17]
) ;

Det:=Determinant (M) ;
c :=Vector ( ExpectedPsw ) ;
f o r i :=1 to 22 do

c+:=Random(−Round( Sqrt (Det ) ) , Round( Sqrt (Det ) ) )∗M[ i ] ;
end f o r ;
p r i n t ” l a r g e vec to r to reduce ” ; c ;

vext := Matrix ( I n t e g e r s ( ) , [ [ 2 3 ] cat [ c [ i ] : i in [ 1 . . 2 2 ] ] ] ) ;
Bext :=Ve r t i c a l J o i n (

Hor i zonta lJo in ( ZeroMatrix ( I n t e g e r s ( ) , 2 2 , 1 ) ,M) ,
Matrix ( I n t e g e r s ( ) , vext ) ) ;
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BabaiVec :=Vector ( [ LLL(Bext ) [ 2 3 ] [ i ] : i in [ 2 . . 2 3 ] ] ) ;
p r i n t ”Recovered Vector by Babai ” ; BabaiVec ;

i :=1;
whi l e Max( [ Abs ( c [ i ] ) : i in [ 1 . . 2 2 ] ] ) gt Alpha do

c−:=Round( c [ i ] / (M[ i ] [ i ] ) ) ∗M[ i ] ;
i :=( i mod 22)+1;

end whi le ;
p r i n t ”Recovered Vector by PSW” ; c ;

p r i n t ”Resu l t s as expected : ” ,
( c eq ExpectedPsw ) and (BabaiVec eq ExpectedBabai ) ;

In the above code snippet, the PSW’s output can be given to Babai’s algorithm as an input which will
increase the maximum norm. We could not find a BaseReduce method nor a BabaiNearestPlane
method, thus to save some lines we used LLL on an extended basis in which we recover an output that is
equal to Babai’s output.

B Complexity analysis of r.d.d reduction

In this part we give a further study of the complexity of the PSW algorithm. In this paper, we have proven
an upper-bound for the worst-case complexity of the PSW reduction algorithm and in [35, 34] experimental
results were given for some specific examples. Recall that in our presentation of the PSW algorithm (see algo-
rithm 1), we did not mention in which order the iterations must occur. We are now making the distinction,
between ogPSW (Algorithm 5) which were used in [35, 34] and maxPSW (Algorithm 6).

Algorithm 5 Original PSW reduction

Require: v ∈ Zn, B a r.d.d matrix, a vector R ∈ Nn

Ensure: w ≡ v mod L(B) and ∥w∥∞ < max(Ri).
1: w ← v, i← 1, s← 0 {initial vector, index, skipped iterations}
2: while s < n do
3: i← (i mod n) + 1
4: if |wi| < Ri then
5: s← s+ 1 {skip iteration}
6: else
7: w ← w − ⌊wi

D ⌉Bi, s← 1 {Reduce |wi|, reset iteration count}
8: end if
9: end while

10: return w

Algorithm 6 Max-choice PSW reduction

Require: v ∈ Zn, B a r.d.d matrix, a vector R ∈ Nn

Ensure: w ≡ v mod L(B) and ∥w∥∞ < max(Ri).
1: w ← v
2: while

∨n
j=1(|wj | > Rj) do

3: i← any index such that |wi| = ∥w∥∞
4: w ← w − ⌊wi

D ⌉Bi {Reduce |wi|}
5: end while
6: return w

In ogPSW, the next index to reduce was chosen using the natural incremental order of the indexes over N.
This choice was made by default, chosen for its simplicity. However in maxPSW, we choose the index i which
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maximizes the ratio |wi|/D, i.e |wi| = ∥w∥∞. This does not guarantee the fastest run time possible: our
reduction proofs so far relied on the decrease of ∥w∥1 which consequently decreased ∥w∥∞, and maximizing
|wi|/D do not automatically ensure ∥w∥1 is reduced maximally for this choice of i. Furthermore, the search
for |wi| = ∥w∥∞ induces further computations that could be seen as equivalent to an extra vector operation
per iteration. Note that ogPSW do not even compute ∥w∥∞, but has to measure the number of skipped
iterations where a count of n indicates a sufficiently reduced vector.

However, there is both a practical and theoretical advantage of maxPSW over ogPSW, which is why we in-
troduce maxPSW: maxPSW performs noticeably less iterations in our experiments compared to ogPSW, and also
provides a worst-case approach based on l∞ that is specific to maxPSW, and provides us with some arguments
to construct heuristic average-case complexities that match more closely the iterations count observed in
practice. Let us first start with a worst-case study of maxPSW after exactly n iterations.

B.1 Worst-case first n iterations

The initial worst-case as input would be a vector w where for ∀i, |wi| = ∥w∥∞: this, given ∥w∥∞, maximizes
∥w∥1 thus maximizes the number of iterations necessary to reach our bounds according to our previous
proofs. It also creates the first problematic phenomena that we have to deal with:

For each iteration, reducing ∥w∥1 can increase ∥w∥∞.

In particular, suppose that in case of equality between the absolute values of each coefficient, we choose to
reuse the incremental order of ogPSW: then, after the first iteration, we have at worst

|w1| ← D/2, |w2| ← |w2|+
|w1|
D

RN(B) i.e ∥w∥∞ ← ∥w∥∞ +
|w1|
D

RN(B)

The next maximum value is then at position 2, thus using maxPSW we reduce w2 which in turn increases
∥w∥∞ again and make the next position 3 (or another), and so on. Note, however, that this incremental
pattern on ∥w∥∞ can only repeat n − 1 times: w1 is at most D/2 after the first iteration, so on the n-th
iteration we obtain

|w1| ← D/2 +
|wn|
D

RN(B)

which gives us our reasoning: we will analyse the worst-case complexity by n consecutive iterations, as
opposed as per iteration. Thus, we consider in our worst-case approach of maxPSW that in every n iterations
we obtain

∥w∥∞ ← D/2 + δ × RN(B)

and we need to determine δ. This can be determined by remarking that the previous pattern is an arithmetico-
geometric sequence up to n− 1 terms, in particular it is the series

ui+1 =
RN(B)

D
ui + u0, r =

u0

1− RN(B)/D
=

u0D

D − RN(B)
, uk =

(
RN(B)

D

)k

(u0 − r) + r

thus giving δ = un−1 =
(

RN(B)
D

)n−1

(∥w∥∞ − r) + r which gives after n iterations on ∥w∥∞

∥w∥∞ ←
D

2
+ RN(B)×

[(
RN(B)

D

)n−1 (
∥w∥∞ −

∥w∥∞D

D − RN(B)

)
+
∥w∥∞D

D − RN(B)

]

∥w∥∞ ←
D

2
+ RN(B)×

[(
RN(B)

D

)n−1 (
1− D

D − RN(B)

)
+

D

D − RN(B)

]
∥w∥∞

∥w∥∞ ←
D

2
+ RN(B)×

[(
RN(B)

D

)n−1 −RN(B)

D − RN(B)
+

D

D − RN(B)

]
∥w∥∞
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∥w∥∞ ←
D

2
+ RN(B)×

D −
(

RN(B)
D

)n−1

RN(B)

D − RN(B)

 ∥w∥∞
This shows that after n iterations the new maximum norm can be higher than initially, while decreasing
its l1 norm by the largest possible factor. In this specific example, the next iterations will not repeat that

pattern however: the update ∥w∥∞ ← ∥w∥∞ + |w1|
D RN(B) will no longer hold as the values of wi will no

longer be equal and in particular wi ≤ D/2 for most i. This observation, however, gives us a framework for
an analysis of an average case complexity.

B.2 Average-case complexity

In our previous approach, we expected the max norm to increase after n iterations, using in each iteration

the worst-case update ∥w∥∞ ← ∥w∥∞ + |w1|
D RN(B). However, for each position, it is not possible to receive

exactly ∥w∥∞
D RN(B) and it is much more likely to receive instead

|wi| ← |wi| ±
(
∥w∥∞
D

× RN(B)

n

)
per iteration of maxPSW, supposing the noise is somewhat equally distributed in every position. However, it
is also possible that in some positions the noise make the value decrease, thus it is hard to determine the
exact value with which we can approximate our reductions. In particular, let us denote by f the noise update
such that our updates in n consecutive iterations goes as

∥w∥∞ ← ∥w∥∞ +

(
∥w∥∞
D

× f

)
Which, when we plug into our previous update after n iterations give us

∥w∥∞ ←
D

2
+ f ×

D −
(

f
D

)n−1

f

D − f

 ∥w∥∞
and more exactly

|wi| ←
⌊wi

D

⌉
± f ×

D −
(

f
D

)n−1

f

D − f

 ∥w∥∞
which is also an arithmetico-geometric sequence, except each term represents the result after n consecutive
iterations. This computed approximation on l∞ show much closer results to the average case than the ones
we used in the worst-case approach on l1. The question is on how to determine the value f : it seems natural
that the value must be lower than maxi ̸=j(B(i,j)) ans it seems to also show experimentally. The correct
value for f also seem to be higher than mini ̸=j(B(i,j)), and could be dependent on the noise distribution
of our samples. We leave the establishment of f as an open question, as it is also not guaranteed that our
approach does not have major flaws. At the very least, f = 0 do perfectly represent the diagonal matrix
with no noise. This approach, which do not rely on the strict diagonal dominance, can also be useful when
testing average-case reductions using a matrix that have large diagonal coefficients but do not conform to a
strict diagonal dominance fitting the Lévy-Desplanques theorem.

C Reducing the security of the key to the security of the message

To achieve this we define two folklore problems in which our keys and messages are just particular instance
of.
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Definition 10 (Problem 1: Basis Completion Problem).
Let D ∈ Mn(Z), a set Sn ⊂ Mn(Z) and L a lattice.
Given D and L, find N ∈ Sn such that L = L(D −N).

Definition 11 (Problem 2: Finding an unique representative).
Let L a lattice and a non-empty setM⊂ Zn.
Given x ∈ Zn such that Y = (L+ x) ∩M and |Y | = 1, find y ∈ Y . (i.e x ≡ y mod L)

Depending on the parameters Sn,M, above definitions can relate to well-known minimization problems
but it is out of this paper’s scope. Rather, our main point is the following lemma:

Lemma 9 (Solving problem 2 can solve problem 1).
Let D, L, M and Sn as defined above. If ∀N ∈ Sn,∀i ∈ [1, n], Ni ∈ M then being able to solve problem 2
for all instances x = Di solves problem 1.

Proof. We aim to find N such that L = L(D −N). D is known, and ∀i ∈ [1, n] we have Di ≡ Ni mod L.
Our conditions state that Ni ∈ M. Thus, we can recover Ni by solving problem 2 on x = Di: the solution
exists, and unicity being enforced by the prerequisite of problem 2 does the rest.

The definitions and the lemma we gave here are generic, but simple enough to fit some parameter sets
for encryption using diagonally dominant lattices (the notations are not coincidental). In crypto-language, it
just means being able to recover certain messages allow full recovery of the secret key. As usual, not fitting
the above properties does not mean a system is insecure itself, but this is a widely different problematic.
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