Semi-supervised Deep Convolutional Transform Learning for Hyperspectral Image Classification - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Semi-supervised Deep Convolutional Transform Learning for Hyperspectral Image Classification

Résumé

This work addresses the problem of hyperspectral image classification when the number of labeled samples is very small (few shot learning). Our work is based on the recently proposed framework of convolutional transform learning. In this work, we propose a semisupervised version of deep convolutional transform learning. We compare with four recent studies which are tailored for solving the few-shot learning problem in hyperspectral classification. Results show that our method can improve over the state-of-the-art.
Fichier principal
Vignette du fichier
semisup DCTL.pdf (458.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03723462 , version 1 (14-07-2022)

Identifiants

  • HAL Id : hal-03723462 , version 1

Citer

Shikha Singh, Angshul Majumdar, Emilie Chouzenoux, Giovanni Chierchia. Semi-supervised Deep Convolutional Transform Learning for Hyperspectral Image Classification. ICIP 2022 - 29th IEEE International Conference on Image Processing, Oct 2022, Bordeaux, France. ⟨hal-03723462⟩
97 Consultations
101 Téléchargements

Partager

More