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Abstract— This work addresses the problem of 

hyperspectral image classification when the number of 

labeled samples is very small (few shot learning). Our work is 

based on the recently proposed framework of convolutional 

transform learning. In this work, we propose a semi-

supervised version of deep convolutional transform learning. 

We compare with four recent studies which are tailored for 

solving the few-shot learning problem in hyperspectral 

classification.  Results show that our method can improve 

over the state-of-the-art.  

Keywords— hyperspectral classification, supervised 

learning, deep learning. 

I.  INTRODUCTION  

In hyperspectral image classification, the usual protocol is 

to label some samples manually after acquiring the image; 

this forms the training set. The labeled training data is fed 

into some classifier (after feature extraction if needed) in 

order to generate the labels for the remaining unlabeled 

testing samples. Ideally one would like to manually label 

as few samples as possible since this is a laborious time-

consuming process that needs expertise.     

Deep learning is known to be data hungry. 

Consequently, initial studies on deep learning [1, 2] used 

more than 80% of the data as a training set; in practice this 

is infeasible. Over time, deep learning techniques like [3, 

4] have been able to reduce the data requirement, but even 

with the new age of deep neural networks (DNN), the 

number of labeled samples required is usually higher than 

shallow learning techniques like [5, 6].  

Given that DNNs require copious amounts of labeled 

data for training, the only approach is to augment the 

number of labeled samples. The standard approach to 

address this issue had been employing generative models 

[7, 8] in the recent past and meta-learning [9, 10] in current 

years. Classical techniques like Gaussian mixture models 

have also been used for labeled data augmentation [11]. A 

thorough review of different data augmentation techniques 

can be found in [12]. 

Over the years various deep learning architectures have 

been employed for the task of hyperspectral image 

classification. Initial studies used stacked autoencoders [1] 

and deep belief networks [2] for image classification. Later 

on, convolutional neural networks (CNN) showed 

improvement in results [13, 14]. Later more complex 

CNNs like ResNet [15] and DenseNet [16] were employed 

for the said problem. Capsule networks had also been used 

for hyperspectral classification with varying degrees of 

success [17, 18]. Even though not a natural choice recurrent 

neural networks too have been used for hyperspectral 

image classification [19]. In the limited scope of this letter, 

it is not possible to review all deep learning techniques. The 

interested reader can peruse survey papers [20, 21]. The 

said papers are from two years back and do not include the 

latest deep learning techniques for hyperspectral image 

classification based on attention networks [22] and graph 

CNNs [23]. 

The unique and interesting aspect about hyperspectral 

image classification is that the sum of training (labeled) and 

testing (unlabeled) samples are usually fixed, as discussed 

at the beginning of this section. This allows for semi-

supervised learning of the test features [24] while training 

the DNN. This work follows the same paradigm. 

Our work is based on the framework of convolutional 

transform learning (CTL) [25, 26]. CTL overcomes the 

major shortcomings of CNN since it can learn 

convolutional filters in an unsupervised fashion. A recent 

study proposed a supervised version of shallow 

convolutional transform learning [27]. In this work, we 

propose a semi-supervised formulation of convolutional 

transform learning, where the features for both the labeled 

and the unlabeled data are learnt during training of the in-

built classifier. During testing, the features corresponding 

to the unlabeled training data are input to the learnt 

classifier.  

Since the CTL is a relatively new framework, we will 
discuss it in depth in Section II; in the recent past, the said 
framework has been used successfully in other 
hyperspectral imaging applications [28, 29]. This is 
necessary for understanding our formulation discussed in 
Section III. The experimental evaluation is detailed in 
Section IV. The conclusion is discussed in Section V.   
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II. BACKGROUND 

In convolutional transform learning (CTL) a set of filters 

are learnt such that when operated on the data they produce 

the corresponding representations. Formally this is 

expressed as 
( ) ( ) ,   {1... } and {1... }k k

m mt s x m M k K =      (1) 

Here 
( )ks  denotes the kth sample, mt the mth convolutional 

filter and 
( )k
mx  the representation of the kth sample after 

applying the mth convolutional filter. There are a total of K 

samples and M filters. The symbol ‘ ’denotes a 

convolutional operation with zero padding.  

During training, the filters and the representations are 

learnt by solving the following optimization problem.  
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Here ψ is a regularization on the representation and (μ, λ) 

is positive. T is defined as  1 | ... | mT t t= . The log 

determinant term prevents the trivial solution 
( )0, 0k

m mt x= = and also promotes diversity among the 

learnt filters; the other penalty 
2

F
T prevents degenerate 

solutions where 
( ), k

m mt x→ → . The penalty on T is 

borrowed from transform learning [30].  

One can see how it is possible to learnt convolutional 

filters from training data in an unsupervised fashion. CNNs 

do not have the said penalty on the learnt filters and hence 

can end up at the trivial solution. Furthermore, without the 

penalty on T, there is no guarantee that CNNs will learn 

unique filters.  

In matrix-vector form, (2) can be expressed as follows  
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and Ψ amounts to 

applying the penalty term ψ column-wise on matrix X and 

summing. 

The unsupervised formulation for CTL was proposed in 

[27]. Later the label consistency term from [31, 32] was 

added to this formulation to make it supervised [29]. This 

led to the following formulation.  
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In (4), the last term is the supervision term. Matrix Q 

consists of one-hot encoded class labels, M is a linear map 

that projects the representation X to the corresponding class 

labels. Here η is a positive constant that controls the relative 

importance of the label consistency term. Note that in [29] 

the problem was multi-label classification and hence this 

simple label consistency term is sensible.  

In [28] a deeper extension of the unsupervised 

formulation was proposed leading to deep convolutional 

transform learning (DCTL). As the name suggests, in the 

said formulation, multiple convolutional filters were being 

applied to the samples one after the other to generate the 

representation. This is expressed as follows, 
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Hereabove, Ti refers to the ith layer of convolutional 
filters. In each layer, the Ti is formed by stacking the filters 
as columns of a matrix. The formulation (5) is shown for 3 
layers but can be extended further.   

III. PROPOSED FORMULATION 

Let us re-iterate the problem of hyperspectral image 

classification. Once the hyperspectral imagery is captured 

the task is to label each position / pixel. Let us assume that 

there are N such positions. The usual protocol is to label a 

subset of these N (say n) positions manually and train a 

classifier to label the remaining N-n positions. Whatever 

the value of n, the total number of positions to be labeled 

(be it manual or automatic) is always N.  

In this work, we propose a semi-supervised formulation 

where the n labeled samples (corresponding to n positions) 

will be used for training a classifier. During training, all the 

representation / features for all the N samples will be 

generated. At testing, the N-n unlabeled samples will be 

input to the learnt classifier for labeling.  

We add binary cross-entropy (JBCE) loss for supervision 

instead of the label consistency term to the deep 

convolutional transform learning formulation. Note that 

this loss only pertains to the labeled data; for the unlabeled 

portion of the data only deep convolutional transform 

learning formulation is applicable. Our semi-supervised 

formulation can be expressed as, 
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The subscript ‘L’ corresponds to labeled and ‘U’ 

corresponds to unlabelled. The BCE loss is only being 

defined on the labeled data. In (6) σ refers to the sigmoid 

function and Q (as defined before) refers to the one-hot 

encoded label vectors. In a more comprehensible notation, 

our semi-supervised formulation (6) can be expressed as 

the cost of ‘supervised + unsupervised’ terms as follows: 

Here we have shown the formulation for 3 layers. One 
can see that extending it to more layers is straightforward. 
The problem (6) is solved using any standard gradient 
descent algorithm. Here, we have used Adam [33]. The 
activation function used is scaled exponential linear unit 
(SELU). The schematic diagram for 2-layers semi-
supervised deep convolutional transform learning is shown 
in Fig. 1. 

 
Fig. 1.  Schematic diagram of the proposed approach 

IV. EXPERIMENTAL RESULTS 

We evaluate our proposed technique on two benchmark 

datasets – Indian Pines1 and Pavia University2. The 

standard pre-processing steps are performed on these 

datasets prior to classification.  

For both datasets, an extremely challenging 

experimental protocol from [34] is followed. The number 

of labeled samples to be considered is 5 per class; the rest 

are unlabeled – the goal is to label the unlabeled samples. 

All the experiments were carried out 100 times, using 

random splits of labeled and unlabeled samples. The 

arithmetic means of these 100 sets of experiments are 

reported in this work.  

We compare with recent techniques that have been 

specifically tailored for limited training samples. Deep 

few-shot learning (DFSL) [3] is based on the meta-learning 

approach. Dual-path Siamese network (DPSN) [35] uses a 

Siamese network for classification; to augment labeled data 

it uses a combination of a generative adversarial network. 

Dual graph convolutional network (DGCN) [25] uses a 

graph convolutional network for classification followed by 

label propagation. The final work that we compare is 

Intraclass Similarity Structure Representation (ISSR) [36]. 

In [36] this work a novel label propagation approach is 

proposed to increase the number of training samples; the 

augmented data serves as input to a standard deep CNN for 

classification.   

Our proposed network does not consider spatial 

information; only the spectral information for every pixel 

 
1 https://paperswithcode.com/dataset/indian-pines 

is input to the network as 1D data. Our proposed work 

requires the specification of three parameters. We have 

used the values μ=λ=.1 and η=.5. As for the size of the 

filters we have used 7x1, 5x1, 3x1; we also tried with four 

layers but the results deteriorated owing to overfitting and 

hence we are not showing the results. 

 
TABLE I  COMPARISON WITH STATE-OF-THE-ART TECHNIQUES 

Dataset Metric ISSR DPSN DGCN DFSL Proposed 

Pavia OA 80.09 85.02 88.91 86.24 89.79 

AA 80.26 85.69 89.48 87.41 90.08 
Kappa .78 .82 .85 .84 0.86 

Indian 

Pines 

OA 70.36 75.32 77.38 75.85 81.02 

AA 70.95 75.97 77.91 76.30 84.32 
Kappa .69 .74 .77 .75 0.80 

 

The comparative results in terms of overall accuracy 

(OA), average accuracy (AA), and Kappa coefficient are 

shown in Table I. One can see that our method performs the 

best in terms of all the metrics. Among the benchmarks 

DGCN performs the best; in fact, it is better than our four-

layer architecture. The meta-learning based approach 

DFSL also performs relatively well but not as good as 

DGCN. DPSN combines several aspects of deep learning 

and data augmentation but performs worse than DGCN. 

The performance of ISSR is the worst; it has a separate data 

augmentation stage and a classification stage; such a 

piecemeal approach does not perform at par with the other 

end-to-end architectures. For visual clarity we show the 

classification results as images in Fig. 2. It corroborates the 

numerical findings. 

2 https://paperswithcode.com/dataset/pavia-university 



 
Fig. 2.  Top - Pavia University; Bottom – Indian Pines. Pictorial view of classification. Left to Right – ISSR, DPSN, DGCN and Proposed 

 

A. Ablation Studies 

In the first set of experiments, we analyze the different 

aspects of our proposed solution. We will see how the 

results change with depth. We will also see in each depth, 

how the results vary between semi-supervised and 

supervised formulations. The former is the proposition of 

this study and has been discussed in detail. The supervised 

formulation means that the network is only trained on the 

labeled samples; the unlabeled samples are not used during 

training. After training, the learnt filters are used for 

extracting the features from the input data and subsequent 

classification. 
 

TABLE II  RESULTS ON PAVIA UNIVERSITY 

 Metric 1 layer 2 layers 3 layers 4 layers 

Semi- 

supervised 

OA 88.17 89.06 89.79 88.23 

AA 88.45 89.73 90.08 89.14 

Kappa .83 .84 0.86 .84 

Supervised OA 82.16 81.02 78.67 72.38 

AA 81.29 80.64 78.11 71.60 

Kappa .78 .76 0.75 .70 

 

TABLE III  RESULTS ON INDIAN PINES 

 Metric 1 layer 2 layers 3 layers 4 layers 

Semi- 
supervised 

OA 79.84 80.19 81.02 78.68 
AA 83.72 84.01 84.32 82.11 

Kappa 0.77 0.79 0.80 0.76 

Supervised OA 74.12 72.02 70.13 65.03 
AA 74.96 72.42 70.87 65.62 

Kappa 0.72 0.70 0.69 0.64 

 
From Tables II and III we see that for the semi-

supervised formulation the results improve from layers one 
to three and then dips when one more layer is added. This 
is probably due to over-fitting. The supervised formulation 
always yields considerably worse results than the semi-
supervised one. This is because the volume of data used for 
training the network is very less leading to over-fitting. 
Furthermore, for the supervised formulation, the results 
keep on deteriorating with depth. This too is likely due to 
over-fitting. With limited data, learning more parameters 
hampers the generalization ability of the network. 

Finally, we show the empirical convergence plots for 
our proposed algorithm. Owing to limitations in space we 
only show it for the three-layer architecture. For other 
layers, the trend is similar. From Fig. 3, one can see that the 
algorithm convergences in 50 iterations.  

 

Fig. 3.  Cost vs Iteration. Empirical Convergence Plot for 3 Layer 
Architecture. 

V. CONCLUSION 

This work proposes a new approach for hyperspectral 

image classification when the number of labeled samples 

are limited. The work is based on convolutional transform 

learning. A semi-supervised architecture for deep 

convolutional transform learning is proposed. Comparison 

with state-of-the-art techniques on few shot learning has 

shown that our proposed method can improve over rest.  

We believe there is further scope for improvement. The 

current work only accounts for spectral information while 

ignoring spatial information. There can be two possibilities 

for incorporating spatial information. First, we can consider 

2D convolutions on patches / superpixels. Second, we can 

keep the 1D convolutional filters as it is but incorporate the 

spatial information via graph regularization.  

In terms of methodology, we believe that the 
framework of deep convolutional transform learning can 
improve by incorporating metric learning. Recent studies 
like [38] have shown how it can be incorporated into the 
deep dictionary learning framework; we believe that 
similar improvements can be achieved in the deep 
convolutional transform formulation as well. 
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