HODGE-GROMOV-WITTEN THEORY
Résumé
We determine the all-genus Hodge-Gromov-Witten theory of a smooth hypersurface in weighted projective space defined by a chain or loop polynomial. In particular, we obtain the first genus-zero computation of Gromov-Witten invariants for hypersurfaces in non-Gorenstein ambiant spaces, where the convexity property fails. We eventually extend it to any weighted projective hypersurface defined by an invertible polynomial.
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|