Optimal homotopy reconstruction results à la Niyogi, Smale, and Weinberger - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Optimal homotopy reconstruction results à la Niyogi, Smale, and Weinberger

Résumé

In this article we show that the proof of the homotopy reconstruction result by Niyogi, Smale, and Weinberger can be streamlined considerably using Federer's work on the reach and several geometric observations. While Niyogi, Smale, and Weinberger restricted themselves to C 2 manifolds (M) with positive reach, our proof extends to sets (S) of positive reach. The sample we consider does not have to lie directly on the set of positive reach. Instead, we assume that the two one-sided Hausdorff distances (δ and ε)-between the sample P to the set S, are bounded. We provide explicit bounds in terms of ε and δ, that guarantee that there exists a parameter r such that the union of balls p∈P B(p, r) deformation retracts to S. We provide even better bounds for the manifold case. In both cases, our bounds improve considerably on the state-of-the-art in almost all settings. In fact the bounds are optimal.
Fichier principal
Vignette du fichier
arxiv-NSWmain.pdf (9.32 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03721463 , version 1 (12-07-2022)
hal-03721463 , version 2 (07-03-2024)

Identifiants

Citer

Dominique Attali, Hana Dal Poz Kouřimská, Christopher Fillmore, Ishika Ghosh, André Lieutier, et al.. Optimal homotopy reconstruction results à la Niyogi, Smale, and Weinberger. 2022. ⟨hal-03721463v1⟩
225 Consultations
28 Téléchargements

Altmetric

Partager

More