The unique continuation problem for the heat equation discretized with a high-order space-time nonconforming method - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

The unique continuation problem for the heat equation discretized with a high-order space-time nonconforming method

Résumé

We are interested in solving the unique continuation problem for the heat equation, i.e., we want to reconstruct the solution of the heat equation given its (noised) value in a subset of the computational domain. Both initial and boundary data can be unknown. We discretize this problem using a space-time discontinuous Galerkin method (including hybrid variables in space) and look for the solution that minimizes a discrete Lagrangian. We establish discrete inf-sup stability and bound the consistency error, leading to a priori estimates on the residual. Our main result, proving the convergence of the discrete solution to the exact solution, combines this a priori bound with a conditional stability estimate at the continuous level. The rate of convergence depends on the conditional stability, the approximation order in space and in time, and the size of the perturbations in data. Quite importantly, the weight of the regularization term depends on the time-step and the mesh-size, and we show how to choose it to preserve the best possible decay rates on the error. Finally, we run numerical simulations to assess the performance of the method in practice.
Fichier principal
Vignette du fichier
UC_heat.pdf (611.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03720960 , version 1 (12-07-2022)
hal-03720960 , version 2 (25-02-2023)
hal-03720960 , version 3 (06-06-2023)
hal-03720960 , version 4 (16-10-2023)

Identifiants

  • HAL Id : hal-03720960 , version 1

Citer

Erik Burman, Guillaume Delay, Alexandre Ern. The unique continuation problem for the heat equation discretized with a high-order space-time nonconforming method. 2022. ⟨hal-03720960v1⟩
223 Consultations
306 Téléchargements

Partager

More