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Erik Burman† Guillaume Delay‡ Alexandre Ern§
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Abstract

We are interested in solving the unique continuation problem for the heat equa-
tion, i.e., we want to reconstruct the solution of the heat equation given its (noised)
value in a subset of the computational domain. Both initial and boundary data can
be unknown. We discretize this problem using a space-time discontinuous Galerkin
method (including hybrid variables in space) and look for the solution that minimizes
a discrete Lagrangian. We establish discrete inf-sup stability and bound the consis-
tency error, leading to a priori estimates on the residual. Our main result, proving
the convergence of the discrete solution to the exact solution, combines this a priori
bound with a conditional stability estimate at the continuous level. The rate of con-
vergence depends on the conditional stability, the approximation order in space and
in time, and the size of the perturbations in data. Quite importantly, the weight of
the regularization term depends on the time-step and the mesh-size, and we show how
to choose it to preserve the best possible decay rates on the error. Finally, we run
numerical simulations to assess the performance of the method in practice.

1 Introduction

In the present work, we are interested in solving numerically a data assimilation problem
subject to the heat equation. In this problem, neither the boundary conditions nor the
initial data are known. In order to compensate for the lack of initial and boundary data,
we use the knowledge of the solution in a subdomain. We also investigate the influence
of noise on this additional datum. Specifically, we consider a bounded Lipschitz domain
Ω ⊂ Rd, d ∈ {1, 2, 3}, a subset $ ⊂ Ω, and a time interval J := (0, Tf ) with final time
Tf > 0. Our goal is to approximate the function u : J × Ω→ R that satisfies

L(u) :=
∂u

∂t
−∆u = f in J × Ω, (1)

u = g in J ×$, (2)
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where f ∈ L2(J × Ω) is a given source term and g ∈ H1(J ;H1($)′) ∩ L2(J ;H1($)) is
some datum resulting from measurements. The model problem (1)-(2) is ill-posed. Indeed,
whenever a solution exists (this is the case whenever g satisfies the heat equation (1) in
J×$), it is unique, but there is no a priori estimate on the solution in the usual Hadamard
sense. Another difficulty is that we want to consider perturbed data gδ instead of g to
account for some noise in the measurements.

Although we do not have usual stability estimates, so-called conditional stability es-
timates are available. This type of estimate will play a key role in our error analysis.
Conditional stability estimates essentially allow one to control the norm of a function in a
target subdomain by means of weaker norms in a larger domain. Our analysis hinges on
the following result.

Lemma 1 (Theorem 1 from [7]). Let B be a connected subset of Ω such that $ ⊂ B and
B ⊂ Ω. Let 0 < T1 < T2 < Tf . There exist Cstb > 0 and α ∈ (0, 1] such that for all
v ∈ H1(J ;H−1(Ω)) ∩ L2(J ;H1(Ω)), we have

‖v‖L2(T1,T2;H1(B)) ≤ Cstb

(
‖v‖L2(J ;L2($)) + ‖L(v)‖L2(J ;H−1(Ω))

)α
×
(
‖v‖L2(J ;L2(Ω)) + ‖L(v)‖L2(J ;H−1(Ω))

)1−α
. (3)

The conditional stability estimate from Lemma 1 will be used to prove the convergence
of our approximation method. The constant α therein has an influence on the convergence
rate. For instance, if h is the mesh size and τ the time step, if polynomials of degree k ≥ 1
(resp., ` ≥ 0) are used for the space (resp., time) discretization, and provided the noise in
the measurements is small enough, our main result establishes an error bound with decay
rate O((hk + τ `+

1
2 )α) in the target subdomain B (see Theorem 9). We also mention that

Lemma 1 admits some interesting extensions. First, Lemma 1 still holds true if $ 6⊂ B as
can be verified by using the arguments from [22]. Moreover, in the case of known boundary
conditions (i.e., if we add the additional constraint v = 0 on ∂Ω), then Lemma 1 remains
valid with T2 = Tf , B = Ω, and α = 1 (see Theorem 2 from [7]). This setting will be
considered in our numerical experiments as well. Moreover, in the case of known initial
conditions (i.e., if we add v(0, .) = v0 in Ω for some v0 ∈ L2(Ω)), then Lemma 1 remains
valid with T1 = 0 provided ‖v0‖Ω is added to ‖L(v)‖L2(J ;H−1(Ω)) in (3) [21]. Other stability
estimates are available in the literature, for instance using Cauchy data on the boundary
instead of interior data [19]. For an overview on analysis techniques of unique continuation
for parabolic equations, we refer the reader to [25].

Since the problem (1)-(2) is ill-posed, a regularization must be considered to devise
a reasonable approximation method. The usual approach is to regularize the continuous
problem before embarking on any discretization method. Several regularization methods
are available, for instance the quasi-reversibility method [2, 3, 14] or the Tikhonov regu-
larization [17]. These methods have already been applied to solve the data assimilation
problem subject to the heat equation in the one-dimensional case; see [24, 1]. Other nu-
merical approaches have also been proposed and analyzed for the one-dimensional heat
equation, see [18, 26], but, to the best of our knowledge, none of the above-mentioned
references provides an error analysis balancing the stability of the regularization method,
the conditional stability estimate, and the approximation order of the discretization in
space and in time.
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An alternative approach is to first discretize the ill-posed problem and then regularize
it at the discrete level. The main advantage of discretizing first and then regularizing is
that it makes it possible to design regularization terms that allow for a rigorous numerical
analysis, leading to error estimates with rates that match the best possible rates deduced
from the conditional stability estimates. The discretize-then-regularize approach has al-
ready been considered for instance in [4, 5, 8] for the stationary version of the present
problem. The authors have also extended this method to the data assimilation problem
subject to the Helmholtz equation using a high-order discretization [10]. Data assimila-
tion subject to non-stationary problems was considered in [11] for the wave equation and
in [7, 9] for the heat equation with known Dirichlet boundary data for the numerical tests.
In particular, [7] considers the semi-discretization in space using lowest-order Lagrange
finite elements, discussing several different stability situations, whereas [9] deals with the
full discretization of the problem using the backward Euler scheme in time and still lowest-
order Lagrange finite elements in space. In the latter reference, only the case of unknown
initial data, but known boundary data, is considered. In [13], a method minimizing the
dual norm of the PDE residual augmented by the least-squares error on data fitting was
proposed, together with error estimates for the reconstruction problem. Also in this latter
work, the boundary data are assumed to be known.

In the present work, we use higher-order methods for the discretization in space and
in time. Specifically, we employ a discontinuous Galerkin (dG) method in time and a
hybridized dG method in space (recall that such methods attach discrete unknowns to the
mesh cells and to the mesh faces). The use of a dG method in time is the natural way to
extend the backward Euler scheme to higher order. Furthermore, the use of a hybridized
dG method in space reduces the number of stabilization terms that are needed with respect
to standard finite elements (irrespective of the order of approximation). Indeed, as we shall
see below (see the inf-sup condition from Lemma 3), the hybridized dG method naturally
gives a control on the residuals without the need of any stabilization (which is needed for
standard finite elements). Notice that, at the algebraic level, the discrete unknowns are
globally coupled in time, as is anyway the case for all the methods to solve such problems.

To sum up, the added value of the present work is that we consider the data assimilation
problem with unknown boundary conditions (and initial conditions) and that we devise a
higher-order method in space and in time to discretize the above ill-posed problem. The
salient feature of our approximation method is that the regularization term matches the
decay rates of the approximation method. We also emphasize that we rigorously derive an
a priori error estimate that decays at the best possible rate in view of the approximation
capacities of the discretization and of the conditional stability of the continuous problem.
Finally, we mention that the analysis entails various subtleties because some of the usual
arguments in the analysis of time dG methods cannot be applied here. The reason for this
is that, because of the ill-posed nature of the problem, we cannot invoke a plain coercivity
argument that gives control in the L2(J ;H1

0 (Ω))-norm. As a consequence, we need to add
a stabilization term controlling the time jumps of the discrete solution (and of its gradient)
at all the discrete time nodes.

The rest of this work is organized as follows. In Section 2, we present the high-order
discretization method in space and in time. In Section 3, we perform the error analysis
through the following steps: inf-sup stability of the discrete problem, consistency error
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bound, a priori bounds on the residual and some dual norm on the error. These steps
prepare the stage for our main results, which are the error estimate (Theorem 7) and the
devising of the regularization to achieve optimal error decay rates (Theorem 9). Finally,
in Section 4, we present some numerical results that corroborate our theoretical results.

2 Problem discretization

In this section, we describe the space and time discretization, and we present the numerical
scheme studied in the present work.

2.1 Time discretization

In what follows, for two integer numbers p ≤ q, we use the notation {p:q} := {m ∈ N, p ≤
m ≤ q}. We discretize the time interval J using a uniform time step τ := Tf/N (for
simplicity), where N ∈ N∗ is the number of time steps. We then have 0 = t0 < t1 < . . . <
tN = Tf where tn := nτ for all n ∈ {0:N}. We define In := (tn−1, tn) for all n ∈ {1:N}.

For a piecewise smooth function Φτ defined on J , we use the shorthand notation
Φn := Φτ |In for all n ∈ {1:N}. We define Φτ (t−n ) := Φn(tn), Φτ (t+n ) := Φn+1(tn) and
[[Φτ ]]n := Φτ (t+n ) − Φτ (t−n ). For convenience, we also set [[Φτ ]]0 := 0; this convention is
motivated by the fact that there is no initial condition to enforce in the present problem.
Finally, ∂τt φ

τ denotes the broken time derivative of φτ such that (∂τt φ
τ )|In := ∂tφ

n for all
n ∈ {1:N}.

2.2 Space discretization

Let (Th)h>0 be a family of matching meshes of Ω. In principle, the meshes can have cells
that are polyhedra with planar faces in Rd, and hanging nodes are also possible. How-
ever, the analysis below requires the mesh to be such that the underlying discontinuous
polynomial approximation space has a global H1-conforming subspace with optimal ap-
proximation properties. For simplicity, we will therefore restrict the discussion to meshes
composed of simplices (one can also readily consider meshes composed of cuboids). The
mesh cells are conventionally taken to be open subsets of Rd, and nT denotes the unit
outward normal to the generic mesh cell T ∈ Th. For a subset S ⊂ Rd, hS denotes the
diameter of S, and for a mesh Th, the index h refers to the maximal diameter of the mesh
cells.

The mesh faces are collected in the set Fh which is split into the set of the mesh
interfaces, F int

h , and the set of the mesh boundary faces, F∂h . Any mesh interface F ∈ F int
h

is oriented by a fixed unit normal vector nF . Moreover, for a piecewise smooth function
v and any mesh interface F ∈ F int

h , [[v]]F denotes the jump of v across F in the direction
of nF . We also use the broken gradient and Laplacian operators, ∇T and ∆T , which are
defined such that (∇T φ)|T := ∇(φ|T ) and (∆T φ)|T := ∆(φ|T ) for all T ∈ Th.

To avoid technicalities, we assume henceforth that the mesh family (Th)h>0 is quasi-
uniform. Therefore, we will use h to measure the diameter of any mesh cell or any mesh
face. Moreover, we assume that all the meshes are fitted to the subset $.
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2.3 Discrete spaces and bilinear forms

Let k ≥ 1 be the polynomial degree of the hybridized dG method in space and let ` ≥ 0
be the polynomial degree of the dG method in time. We denote by Pk(S) the set of
polynomials of total degree at most k on the subset S ⊆ Ω. Moreover, for a linear space U
composed of functions defined on Ω, we denote by P`(I;U) the set of U -valued polynomials
of degree at most ` on I ⊆ J̄ = [0, Tf ].

The discrete unknowns in space are piecewise polynomials of degree k attached to the
mesh cells and of the same degree k attached to the mesh faces. We define the discrete
spaces

Ûkh := UkT × UkF , UkT := "T∈ThP
k(T ), UkF := "F∈FhP

k(F ). (4)

For a generic pair v̂h ∈ Ûkh , we write v̂h := (vT , vF ) with vT := (vT )T∈Th ∈ UkT and

vF := (vF )F∈Fh ∈ UkF . We denote by Ûkh0 the linear subspace of Ûkh in which all the
degrees of freedom attached to the mesh boundary faces are null. For a generic pair
v̂h ∈ Ûkh , its degrees of freedom associated with a generic mesh cell T ∈ Th are denoted by

v̂T := (vT , v∂T := (vF )F∈F∂T ) ∈ ÛkT := Pk(T )× Pk(F∂T ), (5)

where Pk(F∂T ) := "F∈F∂TPk(F ) and F∂T := {F ∈ Fh | F ⊂ ∂T} collects the mesh faces
composing the boundary of T . We introduce the space-time discrete spaces

Ũ τh := {v̂τh ∈ L2(J ; Ûkh ) | v̂τh|In ∈ P`(In; Ûkh ), ∀n ∈ {1:N}}, (6)

Ũ τh0 := {v̂τh ∈ Ũ τh | v̂τh|In ∈ P`(In; Ûkh0), ∀n ∈ {1:N}}. (7)

Notice that we have Ũ τh = U τT × U τF with

U τT := {vτT ∈ L2(J ;UkT ) | vnT := vτT |In ∈ P`(In;UkT ), ∀n ∈ {1:N}}, (8)

U τF := {vτF ∈ L2(J ;UkF ) | vnF := vτF |In ∈ P`(In;UkF ), ∀n ∈ {1:N}}. (9)

For a generic function v̂τh ∈ Ũ τh , we write v̂τh := (vτT , v
τ
F ) with vτT ∈ U τT and vτF ∈ U τF .

We can now introduce the various bilinear forms needed to formulate the discrete
problem. Let v̂τh, ŵτh be generic functions in Ũ τh (primal variables) and let ζ̂τh , η̂τh be

generic functions in Ũ τh0 (dual variables). We use the subscript h to indicate the bilinear
forms related to the space discretization, and the superscript τ to indicate those related to
the time discretization. The two bilinear forms associated with the discretization of the
heat equation are

ah(v̂τh, η̂
τ
h) :=

∑
T∈Th

{
(∇vτT ,∇ητT )J×T − (∇vτT ·nT , ητT − ητ∂T )J×∂T

− (vτT − vτ∂T ,∇ητT ·nT )J×∂T
}
, (10)

bτ (vτT , η
τ
T ) :=

∑
n∈{1:N}

{
(∂tv

n
T , η

n
T )In×Ω + ([[vτT ]]n−1, ηnT (t+n−1))Ω

}
. (11)

The stabilization bilinear forms read as follows:

sτh(v̂τh, ŵ
τ
h) := dh(v̂τh, ŵ

τ
h) + dτ (vτT , w

τ
T ), (12)

σh(ζ̂τh , η̂
τ
h) := (∇T ζτT ,∇T ητT )J×Ω + dh(ζ̂τh , η̂

τ
h), (13)
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with

dh(v̂τh, ŵ
τ
h) :=

∑
T∈Th

h−1(vT − v∂T , wT − w∂T )J×∂T , (14)

dτ (vτT , w
τ
T ) :=

∑
n∈{1:N−1}

{
([[vτT ]]n, [[wτT ]]n)Ω + ([[∇T vτT ]]n, [[∇T wτT ]]n)Ω

}
. (15)

(Notice that the stabilization bilinear form for the dual variable is only related to the
space discretization.) Finally, the bilinear forms associated with the regularization and
the measurements are

tτh(vτT , w
τ
T ) := γc(τ, h)2(vτT , w

τ
T )J×Ω, (16)

m$(vτT , w
τ
T ) := (vτT , w

τ
T )J×$, (17)

where γ > 0 and the value of c(τ, h) will result from the error analysis (we shall obtain

c(τ, h) = hk + τ `+
1
2 , see (56)). Finally, for later use, we define

‖wτT ‖2J×$ := m$(wτT , w
τ
T ), `(wτT ) := (f, wτT )J×Ω. (18)

2.4 Lagrangian and discrete problem

We want to find the saddle-point of the Lagrangian defined for all (v̂τh, ζ̂
τ
h) ∈ Ũ τh × Ũ τh0 by

Lτh(v̂τh, ζ̂
τ
h) :=

1

2
‖vτT − gδ‖2J×$ +

1

2
tτh(vτT , v

τ
T ) +

1

2
sτh(v̂τh, v̂

τ
h)− 1

2
σh(ζ̂τh , ζ̂

τ
h)

+ ah(v̂τh, ζ̂
τ
h) + bτ (vτT , ζ

τ
T )− `(ζτT ), (19)

where gδ := g + δ denotes the available perturbed measurement of g. Notice that there
is no boundary condition on the primal variable, whereas there is a Dirichlet boundary
condition on the dual variable.

The discrete problem is derived by seeking a critical point of the Lagrangian and reads
as follows: Find (ûτh, ξ̂

τ
h) ∈ Ũ τh × Ũ τh0 such that

m$(uτT , w
τ
T ) + tτh(uτT , w

τ
T ) + sτh(ûτh, ŵ

τ
h) + ah(ŵτh, ξ̂

τ
h) + bτ (wτT , ξ

τ
T ) = m$(gδ, w

τ
T ), (20)

ah(ûτh, η̂
τ
h) + bτ (uτT , η

τ
T )− σh(ξ̂τh, η̂

τ
h) = `(ητT ), (21)

where the first equation holds for all ŵτh ∈ Ũ τh and the second for all η̂τh ∈ Ũ τh0. For all

(v̂τh, ζ̂
τ
h) and (ŵτh, η̂

τ
h) in Ũ τh × Ũ τh0, we define the bilinear form

Aτh((v̂τh, ζ̂
τ
h), (ŵτh, η̂

τ
h)) := m$(vτT , w

τ
T ) + tτh(vτT , w

τ
T ) + sτh(v̂τh, ŵ

τ
h) + ah(ŵτh, ζ̂

τ
h)

+ bτ (wτT , ζ
τ
T ) + bτ (vτT , η

τ
T ) + ah(v̂τh, η̂

τ
h)− σh(ζ̂τh , η̂

τ
h). (22)

The discrete problem (20)-(21) can be rewritten as follows: Find (ûτh, ξ̂
τ
h) ∈ Ũ τh × Ũ τh0 such

that

Aτh((ûτh, ξ̂
τ
h), (ŵτh, η̂

τ
h)) = m$(gδ, w

τ
T ) + `(ητT ), ∀(ŵτh, η̂τh) ∈ Ũ τh × Ũ τh0.
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3 Analysis

This section is organized as follows. We first introduce a time reconstruction operator to
rewrite the bilinear form bτ . This operator is classical in the context of dG methods in time;
see, e.g., [16, Section 69.2.3] or [23, Section 2.3] and the references therein. Then, we study
the stablity properties of Aτh in a suitable residual norm. Next, we introduce interpolation
operators in space and in time and we bound the consistency error. This allows us to bound
the residual in various norms. We combine these bounds with the abstract conditional
estimate from Lemma 1 to derive error estimates in the target subdomain B introduced
therein. Finally, we state the approximation properties of the interpolation operator, we
tune the size of the stabilization parameter and we establish the convergence rates for the
method.

In what follows, we use the convention A . B to abbreviate the inequality A ≤ CB
for positive real numbers A and B, where the constant C > 0 does not depend on h, τ , the
solution of the continuous and discrete problems. Unless explicitly specified, the constant
C is also independent of the parameter γ.

3.1 Time reconstruction operator

For all vτT ∈ U τT , its time reconstruction Rτ (vτT ) ∈ C0(J ;UkT ) is defined such that
Rτ (vτT )(t+0 ) := vτT (t+0 ) and such that, for all n ∈ {1:N}, Rn(vτT ) := Rτ (vτT )|In ∈ P`+1(In;UkT )
satisfies

(∂tR
n(vτT ), qnT )In×Ω := (∂tv

n
T , q

n
T )In×Ω + ([[vτT ]]n−1, qnT (t+n−1))Ω, (23)

for all qnT ∈ P`(In;UkT ). Since the function Rτ (vτT ) is continuous in time, its time derivative
is well defined over the whole time interval J . The main consequence of (23) is that the
bilinear form bτ can be rewritten as

bτ (vτT , η
τ
T ) = (∂tR

τ (vτT ), ητT )J×Ω, ∀(v̂τT , η̂τT ) ∈ Ũ τh × Ũ τh0. (24)

Moreover, it is well-known that the reconstruction operator can be rewritten as

Rn(vτT )(t,x) = vnT (t,x)− [[vT ]]n−1(x)
(−1)`

2
(L` − L`+1) ◦ T−1

n (t), (25)

for all (t,x) ∈ In ×Ω, where L` is the Legendre polynomial of degree ` defined on (−1, 1)
and Tn is the affine mapping from (−1, 1) to In. A consequence of (25) is that

Rn(vτT )(t−n ) = vnT (t−n ), ∀n ∈ {1:N}. (26)

The following stability properties are useful for the present analysis (the proof is outlined
in Section 3.8.1).

Lemma 2 (Stability properties of Rτ ). For all vτT ∈ U τT , we have

‖∂τt (Rτ (vτT )− vτT )‖J×Ω . τ−
1
2dτ (vτT , v

τ
T )

1
2 , (27)

‖Rτ (vτT )− vτT ‖J×Ω + ‖∇T (Rτ (vτT )− vτT )‖J×Ω . τ
1
2dτ (vτT , v

τ
T )

1
2 . (28)
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Moreover, for all v̂τh = (vτT , v
τ
F ) ∈ Ũ τh , we have

‖h−
1
2 [[Rτ (vτT )]]F int

h
‖J×F int

h
:=
( ∑
F∈F int

h

h−1‖[[Rτ (vτT )]]F ‖2J×F
) 1

2
. dh(v̂τh, v̂

τ
h)

1
2 . (29)

3.2 Residual stability

For all (v̂τh, ζ̂
τ
h) ∈ Ũ τh × Ũ τh0, we define the residual norm

|||v̂τh, ζ̂τh |||2 := ‖vτT ‖2R + ‖vτT ‖2J×$ + tτh(vτT , v
τ
T ) + sτh(v̂τh, v̂

τ
h) + σh(ζ̂τh , ζ̂

τ
h), (30)

with

‖vτT ‖2R := ‖h(∂tR
τ (vτT )−∆T v

τ
T )‖2J×Ω + ‖h

1
2 [[∇vτT ]]F int

h
·nF int

h
‖2
J×F int

h
, (31)

and ‖h
1
2 [[∇vτT ]]F int

h
·nF int

h
‖2
J×F int

h
:=
∑

F∈F int
h
h‖[[∇vτT ]]F ·nF ‖2J×F . Our key stability result

is the following inf-sup condition.

Lemma 3 (Inf-sup condition). The following holds for all (v̂τh, ζ̂
τ
h) ∈ Ũ τh × Ũ τh0,

|||v̂τh, ζ̂τh ||| . sup
(ŵτh,η̂

τ
h)∈Ũτh×Ũ

τ
h0\{(0,0)}

Aτh((v̂τh, ζ̂
τ
h), (ŵτh, η̂

τ
h))

|||ŵτh, η̂τh|||
. (32)

Proof. Let us denote by S the right-hand side of (32).
(i) We first use the test functions ŵτh := v̂τh and η̂τh := −ζ̂τh to get

‖vτT ‖2J×$ + tτh(vτT , v
τ
T ) + sτh(v̂τh, v̂

τ
h) + σh(ζ̂τh , ζ̂

τ
h) = Aτh((v̂τh, ζ̂

τ
h), (v̂τh,−ζ̂τh))

≤ S|||v̂τh, ζ̂τh |||.

(ii) Let η̂τh := (0, (ητF )F∈Fh) with ητF := hJ∇vτT KF ·nF for all F ∈ F int
h and ητF := 0 for

all F ∈ F∂h . Since |||0, η̂τh||| = σh(η̂τh, η̂
τ
h)

1
2 , we have

‖h
1
2 [[∇vτT ]]F int

h
·nF int

h
‖2
J×F int

h
= ah(v̂τh, η̂

τ
h)

= Aτh((v̂τh, ζ̂
τ
h), (0, η̂τh)) + σh(ζ̂τh , η̂

τ
h)

≤ Sσh(η̂τh, η̂
τ
h)

1
2 + σh(ζ̂τh , η̂

τ
h)

≤ (S + σh(ζ̂τh , ζ̂
τ
h)

1
2 )σh(η̂τh, η̂

τ
h)

1
2 .

Moreover, we also have

σh(η̂τh, η̂
τ
h) = dh(η̂τh, η̂

τ
h) =

∑
T∈Th

h−1‖ητ∂T ‖2J×∂T . ‖h
1
2 [[∇vτT ]]F int

h
·nF int

h
‖2
J×F int

h
.

This implies that

‖h
1
2 [[∇vτT ]]F int

h
·nF int

h
‖2
J×F int

h
. S2 + σh(ζ̂τh , ζ̂

τ
h).
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(iii) We now consider η̂τh := (ητT , 0) with ητT := h2(∂tR
τ (vτT )−∆T v

τ
T ). We have

(∂tR
τ (vτT ), ητT )J×Ω + aτh(v̂τh, η̂

τ
h)

= (∂tR
τ (vτT ), ητT )J×Ω +

∑
T∈Th

{
(∇vτT ,∇ητT )J×T − (∇vτT ·nT , ητT )J×∂T

− (vτT− vτ∂T ,∇ητT ·nT )J×∂T
}

= (∂tR
τ (vτT )−∆T v

τ
T , η

τ
T )J×Ω −

∑
T∈Th

(vτT − vτ∂T ,∇ητT ·nT )J×∂T .

Using the definition of η̂τh and recalling the rewriting (24) of bτ , we have

‖h(∂tR
τ (vτT )−∆T v

τ
T )‖2J×Ω

= ah(v̂τh, η̂
τ
h) + bτ (vτT , η

τ
T ) +

∑
T∈Th

(vτT − vτ∂T ,∇ητT ·nT )J×∂T

= Aτh((v̂τh, ζ̂
τ
h), (0, η̂τh)) + σh(ζ̂τh , η̂

τ
h) +

∑
T∈Th

(vτT − vτ∂T ,∇ητT ·nT )J×∂T

. S|||0, η̂τh|||+ (σh(ζ̂τh , ζ̂
τ
h) + dh(v̂τh, v̂

τ
h))

1
2σh(η̂τh, η̂

τ
h)

1
2 ,

since a discrete trace inverse inequality implies that∑
T∈Th

h‖∇ητT ·nT ‖2J×∂T . ‖∇ητT ‖2J×Ω ≤ σh(η̂τh, η̂
τ
h).

Furthermore, invoking again inverse inequalities, we have

σh(η̂τh, η̂
τ
h) =

∑
T∈Th

(
‖∇ητT ‖2J×T + h−1‖ητT ‖2J×∂T

)
. ‖h−1ητT ‖2J×Ω = ‖h(∂tR

τ (vτT )−∆T v
τ
T )‖2J×Ω.

This implies that

‖h(∂tR
τ (vτT )−∆T v

τ
T )‖2J×Ω . S2 + dh(v̂τh, v̂

τ
h) + σh(ζ̂τh , ζ̂

τ
h).

Gathering the previous estimates leads to the expected inf-sup condition.

3.3 Interpolation operator and error decomposition

In this section, we define the space-time interpolation operator used in the error analysis.
Its definition is motivated by orthogonality properties. To facilitate the reading, the
approximation properties of this interpolation operator are discussed later in Section 3.7.

Let us first consider the approximation in time. For all v ∈ H1(J ;H1(Ω)) and all
n ∈ {1:N}, we define Ǐ`n(v) ∈ P`(In;H1(Ω)) by

Ǐ`n(v)(t−n ) := v(tn), (33)∫
In

(Ǐ`n(v)− v, qn)Ω := 0, ∀qn ∈ P`−1(In;H1(Ω)). (34)
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Furthermore, the approximation in space is realized by using L2-orthogonal projections.
Let y ∈ H1(Ω). For all T ∈ Th, we define Πk

T (y) as the L2-orthogonal projection of y|T
onto Pk(T ), i.e., (Πk

T (y), qT )T := (y, qT )T for all qT ∈ Pk(T ). For all F ∈ Fh, we define
Πk
F (y) as the L2-orthogonal projection of y|F onto Pk(F ), i.e., (Πk

F (y), qF )F := (y, qF )F
for all qF ∈ Pk(F ).

We can now define our space-time interpolation operator by setting, for all v ∈
H1(J ;H1(Ω)),

Îτh(v) := (IτT (v), IτF (v)) ∈ Ũ τh ,
where IτT (v) ∈ U τT and IτF (v) ∈ U τF are such that, for all n ∈ {1:N}, all T ∈ Th, and all
F ∈ Fh,

InT (v) := IτT (v)|In := Πk
T (Ǐ`n(v)), InF (v) := IτF (v)|In := Πk

F (Ǐ`n(v)). (35)

We notice that the approximation operators in space and in time commute. Moreover,
proceeding as in [16, Lemma 69.16], we derive the following useful orthogonality property:
For all v ∈ H1(J ;H1(Ω)) and all wτT ∈ P`(J ;UkT ),

(∂tv − ∂tRτ (IτT (v)), wτT )J×Ω = 0. (36)

Let us finally define the discrete and interpolation errors on the primal unknown.
Recall that u denotes the solution to the exact problem (1)-(2) and that (ûτh, ξ̂

τ
h) denotes

the solution to the discrete problem (20)-(21). The discrete and interpolation errors on
the primal unknown are then defined as

êτh := ûτh − Îτh(u), θ̂τh := (u, u|Fh)− Îτh(u), (37)

so that we have θ̂τh := ((θτT )T∈Th , (θ
τ
F )F∈Fh) with θτT := u|T − IτT (u) for all T ∈ Th, and

θτF := u|F − IτF (u) for all F ∈ Fh.

3.4 Consistency and a priori residual bound

We now bound the consistency error in the discrete formulation. To this purpose, we
consider the norm

‖θ̂τh‖2# := ‖∇T θτT ‖2J×Ω + ‖h∆T θ
τ
T ‖2J×Ω + ‖θτT ‖2J×Ω

+
∑
T∈Th

{
‖h

1
2∇θτT ‖2J×∂T + ‖h−

1
2 θτT ‖2J×∂T + ‖h−

1
2 θτ∂T ‖2J×∂T

}
+

∑
n∈{1:N−1}

{
‖[[θτT ]]n‖2Ω + ‖[[∇T θτT ]]n‖2Ω

}
+ τ‖∂τt θτT ‖2J×Ω. (38)

Recall that the stability norm ||| · ||| is defined in (30)-(31). In what follows, we assume that

u ∈ H1(J ;H1(Ω)) ∩ L2(J ;H2(Ω)). (39)

Lemma 4 (Consistency). Let (ûτh, ξ̂
τ
h) denote the solution to the discrete problem (20)-

(21). Let êτh and θ̂τh be the discrete and interpolation errors on the primal unknown defined

in (37). Under the regularity assumption (39), we have, for all (ŵτh, η̂
τ
h) ∈ Ũ τh × Ũ τh0,

|Aτh((êτh, ξ̂
τ
h), (ŵτh, 0))| .

(
‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2
)
|||ŵτh, 0|||, (40)

|Aτh((êτh, ξ̂
τ
h), (0, η̂τh))| . ‖θ̂τh‖#|||0, η̂τh|||. (41)
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Proof. (i) Proof of (40). Using (êτh, ξ̂
τ
h) = (ûτh, ξ̂

τ
h) − (Îτh(u), 0), the equation (20) in the

discrete problem, the definition (22) of Aτh, and gδ = g + δ, we have, for all ŵτh ∈ Ũ τh ,

Aτh((êτh, ξ̂
τ
h), (ŵτh, 0))

= m$(gδ, w
τ
T )−m$(IτT (u), wτT )− tτh(IτT (u), wτT )− sτh(Îτh(u), ŵτh)

= m$(δ, wτT ) +m$(θτT , w
τ
T )− tτh(IτT (u), wτT )− sτh(Îτh(u), ŵτh).

The Cauchy–Schwarz inequality yields

|m$(δ, wτT )|+ |m$(θτT , w
τ
T )| . (‖δ‖J×$ + ‖θτT ‖J×$)‖wτT ‖J×$,

|tτh(IτT (u), wτT )| . tτh(IτT (u), IτT (u))
1
2 tτh(wτT , w

τ
T )

1
2 ,

|sτh(Îτh(u), ŵτh)| . sτh(Îτh(u), Îτh(u))
1
2 sτh(ŵτh, ŵ

τ
h)

1
2 .

Moreover, we have

sτh(Îτh(u), Îτh(u)) =
∑
T∈Th

h−1‖IτT (u)− Iτ∂T (u)‖2J×∂T

+
∑

n∈{1:N−1}

{
‖[[θτT ]]n‖2Ω + ‖[[∇T θτT ]]n‖2Ω

}
. ‖θ̂τh‖2#.

The bound (40) follows by gathering the above estimates.
(ii) Proof of (41). Proceeding as above and using now the equation (21) in the discrete

problem, we have, for all η̂τh ∈ Ũ τh0,

Aτh((êτh, ξ̂
τ
h), (0, η̂τh)) = (f, ητT )J×Ω − bτ (IτT (u), ητT )− ah(Îτh(u), η̂τh)

= − ah(Îτh(u), η̂τh)− (∆u, ητT )J×Ω,

where we used that f = ∂tu−∆u in J×Ω and (∂tu, η
τ
T )J×Ω = bτ (IτT (u), ητT ) owing to (36)

and (24). Recalling the definition (10) of ah, we infer that

Aτh((êτh, ξ̂
τ
h), (0, η̂τh)) =

∑
T∈Th

{
− (∇IτT (u),∇ητT )J×T + (∇IτT (u)·nT , ητT − ητ∂T )J×∂T

+ (IτT (u)− Iτ∂T (u),∇ητT ·nT )J×∂T − (∆u, ητT )J×T
}

=
∑
T∈Th

{
(∇θτT ,∇ητT )J×T − (∇θτT ·nT , ητT − ητ∂T )J×∂T

+ (θτ∂T − θτT ,∇ητT ·nT )J×∂T
}
,

where we used the assumed regularity of u and the fact that ητF = 0 for all F ∈ F∂h to
infer that

∑
T∈Th(∇u·nT , ητ∂T )J×∂T = 0. Using Cauchy–Schwarz and inverse inequalities,

we readily obtain (41).

Lemma 5 (A priori residual bound). Under the regularity assumption (39), we have

|||êτh, ξ̂τh|||+ tτh(uτT , u
τ
T )

1
2 + sτh(ûτh, û

τ
h)

1
2 . ‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2 .
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Proof. Using inf-sup stability (Lemma 3) yields

|||êτh, ξ̂τh||| . sup
(ŵτh,η̂

τ
h)∈Ũτh×Ũ

τ
h0\{(0,0)}

Aτh((êτh, ξ̂
τ
h), (ŵτh, η̂

τ
h))

|||ŵτh, η̂τh|||
.

Moreover, owing to consistency (Lemma 4), we have, for all (ŵτh, η̂
τ
h) ∈ Ũ τh × Ũ τh0,

|Aτh((êτh, ξ̂
τ
h), (ŵτh, η̂

τ
h))| . (‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2 )|||ŵτh, η̂τh|||.

Combining the two bounds gives

|||êτh, ξ̂τh||| . ‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))
1
2 .

Finally, observing that

tτh(uτT , u
τ
T )

1
2 ≤ tτh(IτT (u), IτT (u))

1
2 + tτh(eτT , e

τ
T )

1
2 ≤ tτh(IτT (u), IτT (u))

1
2 + |||êτh, ξ̂τh|||,

sτh(ûτh, û
τ
h)

1
2 ≤ sτh(Îτh(u), Îτh(u))

1
2 + sτh(êτh, ê

τ
h)

1
2 ≤ ‖θ̂τh‖# + |||êτh, ξ̂τh|||,

concludes the proof.

Remark 3.1. (Lemma 5) The a priori residual bound involves three terms, one de-
pending on the interpolation error of the exact solution measured in the ‖·‖#-norm, one
resulting from the presence of noise in the measurements, and one resulting from the
regularization.

3.5 Bound on dual error norm

In this section, we prove another important result bounding some dual norm of the error.
Recall the operator L := ∂t − ∆ so that, for all v ∈ H1(J ;L2(Ω)) ∩ L2(J ;H1(Ω)) and
all η ∈ L2(J ;H1

0 (Ω)), we have 〈L(v), η〉L2(H−1),L2(H1
0 ) = (∂tv, η)J×Ω + (∇v,∇η)J×Ω, where

〈·, ·〉L2(H−1),L2(H1
0 ) stands for the duality product between L2(J ;H−1(Ω)) and L2(J ;H1

0 (Ω)).

The operator L can be extended to discrete functions vτT ∈ H1(J ;UkT ) by setting

〈LT (vτT ), η〉L2(H−1),L2(H1
0 ) := (∂tv

τ
T , η)J×Ω + (∇T vτT ,∇η)J×Ω. (42)

The corresponding dual norm is

‖LT (v)‖L2(J ;H−1(Ω)) = sup
η∈L2(J ;H1

0 (Ω))
‖∇η‖J×Ω=1

{
(∂tv, η)J×Ω + (∇T v,∇η)J×Ω

}
.

It is also useful to introduce the data oscillation term

Θf := f −Πτ (f), (43)

where Πτ (f)|In := Π`
n(f |In) for all n ∈ {1:N}, and Π`

n denotes the L2-orthogonal projec-
tion from L2(In;L2(Ω)) onto P`(In;L2(Ω)).
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Lemma 6 (Bound on dual error norm). Under the regularity assumption (39), we have

‖LT (Rτ (uτT )− u)‖L2(J ;H−1(Ω))

. (1 + τ−
1
2h)‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2 + ‖Θf‖J×Ω.

Proof. Let η ∈ L2(J ;H1
0 (Ω)) with ‖∇η‖J×Ω = 1. Recalling the definition of Θf , we have

〈LT (Rτ (uτT )− u), η〉L2(H−1),L2(H1
0 )

= (∂tR
τ (uτT ), η)J×Ω + (∇T Rτ (uτT ),∇η)J×Ω − (Πτ (f), η)J×Ω − (Θf , η)J×Ω

= (∂tR
τ (uτT ),Πτ (η))J×Ω + (∇T Rτ (uτT ),∇η)J×Ω − (f,Πτ (η))J×Ω − (Θf , η)J×Ω,

where we used the L2-orthogonality properties of Πτ . Let η̂τh ∈ Ũ τh0 be such that

η̂τh|In :=
(
(Π`

nΠk
T (η|T ))T∈Th , (Π

`
nΠk

F (η|F ))F∈Fh
)
∈ P`(In; Ûkh0),

for all n ∈ {1:N}. Invoking the second equation (21) in the discrete problem and recalling
the rewriting (24) of bτ gives

(∂tR
τ (uτT ), ητT )J×Ω + ah(ûτh, η̂

τ
h)− σh(ξ̂τh, η̂

τ
h) = (f, ητT )J×Ω.

Subtracting this equation from the above expression, recalling that f = ∂tu − ∆u, and
re-arranging the terms leads to

〈LT (Rτ (uτT )− u), η〉L2(H−1),L2(H1
0 ) = A1 +A2 +A3,

with

A1 := (∂t(R
τ (uτT )− u)−∆T (uτT − u),Πτ (η)− ητT )J×Ω,

A2 := (∇T Rτ (uτT ),∇η)J×Ω − ah(ûτh, η̂
τ
h) + (∆T u

τ
T ,Π

τ (η)− ητT )J×Ω,

A3 := σh(ξ̂τh, η̂
τ
h)− (Θf , η)J×Ω.

A straightforward calculation using the definition (10) of the bilinear form ah shows that

A2 = (∇T (Rτ (uτT )− uτT ),∇η)J×Ω +
∑
T∈Th

(uτT − uτ∂T ,∇ητT ·nT )J×∂T ,

since we have

(∇T uτT ,∇η)J×Ω − ah(ûτh, η̂
τ
h)

= (∇T uτT ,∇T (Πτ (η)− ητT ))J×Ω

+
∑
T∈Th

{
(∇uτT ·nT , ητT − ητ∂T )J×∂T + (uτT − uτ∂T ,∇ητT ·nT )J×∂T

}
= (−∆T u

τ
T ,Π

τ (η)− ητT )J×Ω

+
∑
T∈Th

{
(∇uτT ·nT ,Πτ (η)− ητ∂T )J×∂T + (uτT − uτ∂T ,∇ητT ·nT )J×∂T

}
= (−∆T u

τ
T ,Π

τ (η)− ητT )J×Ω +
∑
T∈Th

(uτT − uτ∂T ,∇ητT ·nT )J×∂T ,



14

where we used that (∇T uτT ,∇(η − Πτ (η)))J×Ω = 0 in the first equality and the fact that
(∇uτT ·nT )|In×∂T ∈ P`(In;Pk(F∂T )) and the definition of ητ∂T in the third equality. It
remains to bound A1, A2, A3.

(i) Bound on A1. This is the most delicate term. We observe that

∂t(R
τ (uτT )− u)−∆T (uτT − u) = ∂tR

τ (uτT − IτT (u))−∆T (uτT − IτT (u))

+ ∂t(R
τ (IτT (u))− u)−∆T (IτT (u)− u).

Recalling the definition (31) of the ‖·‖R-norm, we have

|(∂tRτ (uτT − IτT (u))−∆T (uτT − IτT (u)),Πτ (η)− ητT )J×Ω| . ‖eτT ‖R‖∇η‖J×Ω,

where we used that
‖Πτ (η)− ητT ‖J×Ω . h‖∇η‖J×Ω.

Owing to Lemma 5, we have ‖eτT ‖R . ‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))
1
2 . Moreover,

the triangle inequality, the estimate (27), and the above bound on ‖Πτ (η)− ητT ‖J×Ω give

|(∂t(Rτ (IτT (u))− u),Πτ (η)− ητT )J×Ω|
.
(
‖∂τt (Rτ (IτT (u))− IτT (u))‖J×Ω + ‖∂τt (u− IτT (u))‖J×Ω

)
h‖∇η‖J×Ω

.
(
dτ (IτT (u), IτT (u))

1
2 + τ

1
2 ‖∂τt θτT ‖J×Ω

)
τ−

1
2h‖∇η‖J×Ω.

Finally, we have

|(∆T (IτT (u)− u),Πτ (η)− ητT )J×Ω| . h‖∆T θτT ‖J×Ω‖∇η‖J×Ω.

Gathering the above estimates gives

|A1| .
(
(1 + τ−

1
2h)‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2
)
‖∇η‖J×Ω.

(ii) Bound on A2. Owing to the Cauchy–Schwarz inequality and (28), we have

|(∇T (Rτ (uτT )− uτT ),∇η)J×Ω| . τ
1
2dτ (uτT , u

τ
T )

1
2 ‖∇η‖J×Ω.

Moreover, using Cauchy–Schwarz and inverse trace inequalities, we have∣∣∣ ∑
T∈Th

(uτT − uτ∂T ,∇ητT ·nT )J×∂T

∣∣∣ . dh(ûτh, û
τ
h)

1
2 ‖∇η‖J×Ω.

Thus, we have

|A2| .
(
τ

1
2dτ (uτT , u

τ
T )

1
2 + dh(ûτh, û

τ
h)

1
2
)
‖∇η‖J×Ω.

Using τ . 1 and Lemma 5 yields

|A2| . sτh(ûτh, û
τ
h)

1
2 ‖∇η‖J×Ω .

(
‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2
)
‖∇η‖J×Ω.

(iii) Bound onA3. Since σh(η̂τh, η̂
τ
h) = ‖∇T ητT ‖2J×Ω+dh(η̂τh, η̂

τ
h), we infer that σh(η̂τh, η̂

τ
h)

1
2 .

‖∇η‖J×Ω. This implies that |σh(ξ̂τh, η̂
τ
h)| . σh(ξ̂τh, ξ̂

τ
h)

1
2σh(η̂τh, η̂

τ
h)

1
2 . σh(ξ̂τh, ξ̂

τ
h)

1
2 ‖∇η‖J×Ω

and σh(ξ̂τh, ξ̂
τ
h)

1
2 is bounded in Lemma 5. Moreover, the bound |(Θf , η)J×Ω| . ‖Θf‖J×Ω‖∇η‖J×Ω

results from the Cauchy–Schwarz inequality combined and the global Poincaré inequality
in Ω. Hence, we have

|A3| .
(
‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2 + ‖Θf‖J×Ω

)
‖∇η‖J×Ω.

(iv) Combining the above estimates and recalling that ‖∇η‖J×Ω = 1 gives the expected
bound.
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3.6 Main result: error estimate in the target subdomain

We are now ready to derive our main error estimate. The idea of the proof is to combine
the results of Sections 3.4 and 3.5 with the conditional stability estimate from Lemma 1.
We use the target (semi)norm

‖v‖trg := ‖∇v‖L2(T1,T2;L2(B)),

where T1, T2 and B are defined in Lemma 1. Recall the quantities Cstb > 0 and α ∈ (0, 1]
introduced in Lemma 1. Recall that the ‖·‖#-norm is defined in (38), the data oscillation

term Θf in (43), that θ̂τh is the interpolation error defined in (37), and that the coefficient
c(τ, h) is used to weight the regularization bilinear form tτh defined in (16).

Theorem 7 (Error estimate in target subdomain). Under the regularity assumption (39),
we have

‖u− uτT ‖trg . Cstb(1 + τ−1h)α(1 + τ−1h+ γ−
1
2 c(τ, h)−1)1−α

×
(
‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2 + ‖Θf‖J×Ω

)
. (44)

Proof. (i) Using an averaging operator in space (see [6, Lemmas 3.2 and 5.3] or [15,
Chap. 22] and the references therein), we can build a piecewise polynomial function ũτT ∈
{vτT ∈ H1(J ;H1(Ω)) | vτT |In×T ∈ P`+1(In;Pk(T )), n ∈ {1:N}, T ∈ Th} such that

‖h−1(ũτT −Rτ (uτT ))‖J×Ω + ‖∇T (ũτT −Rτ (uτT ))‖J×Ω . ‖h−
1
2 [[Rτ (uτT )]]F int

h
‖J×F int

h

. dh(ûτh, û
τ
h)

1
2 , (45)

where the first bound results from the approximation properties in space of the averaging
operator and the second bound from (29) (see Lemma 2). Invoking the triangle inequality
yields

‖u− uτT ‖trg ≤ ‖uτT − ũτT ‖trg + ‖u− ũτT ‖trg,

and we are left with bounding the two terms on the right-hand side.
(ii) Bound on ‖uτT − ũτT ‖trg. We observe that

‖uτT − ũτT ‖trg ≤ ‖∇T (uτT −Rτ (uτT ))‖J×Ω + ‖∇T (ũτT −Rτ (uτT ))‖J×Ω.

The first term on the right-hand side is estimated by invoking (28) (see Lemma 2) and
the second term by invoking (45). Owing to Lemma 5 and since τ . 1, we infer that

‖uτT − ũτT ‖trg ≤ dτ (uτT , u
τ
T )

1
2 + dh(ûτh, û

τ
h)

1
2 . sτh(ûτh, û

τ
h)

1
2

. ‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))
1
2 .

(iii) Bound on ‖u − ũτT ‖trg. Since ũτT − u ∈ H1(J ;H1(Ω)) ⊂ H1(J ;H−1(Ω)) ∩
L2(J ;H1(Ω)), we can invoke the conditional stability estimate from Lemma 1. This gives

‖ũτT − u‖trg . Cstb

(
‖ũτT − u‖J×$ + ‖L(ũτT − u)‖L2(J ;H−1(Ω))

)α
×
(
‖ũτT − u‖J×Ω + ‖L(ũτT − u)‖L2(J ;H−1(Ω))

)1−α
.
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It remains to bound ‖ũτT − u‖J×$, ‖ũτT − u‖J×Ω, and ‖L(ũτT − u)‖L2(J ;H−1(Ω)).
(iii.a) Bound on ‖ũτT − u‖J×$. We have

‖ũτT − u‖J×$ ≤ ‖u− IτT (u)‖J×$ + ‖uτT − IτT (u)‖J×$ + ‖uτT − ũτT ‖J×$,

where IτT (u) is defined in Section 3.3. We have

‖u− IτT (u)‖J×$ = ‖θτT ‖J×$ ≤ ‖θτT ‖J×Ω,

‖uτT − IτT (u)‖J×$ = ‖eτT ‖J×$ ≤ |||êτh, ξ̂τh|||.

Furthermore, the bound (28) (see Lemma 2) and the bound (45) imply that

‖uτT − ũτT ‖J×$ ≤ ‖uτT −Rτ (uτT )‖J×$ + ‖Rτ (uτT )− ũτT ‖J×$
. τ

1
2dτ (uτT , u

τ
T )

1
2 + hdh(ûτh, û

τ
h)

1
2 .

Gathering the above estimates and using Lemma 5 (and τ . 1, h . 1) gives

‖ũτT − u‖J×$ . ‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))
1
2 .

(iii.b) Bound on ‖ũτT − u‖J×Ω. Using the same decomposition, we have

‖ũτT − u‖J×Ω ≤ ‖u− IτT (u)‖J×Ω + ‖uτT − IτT (u)‖J×Ω + ‖uτT − ũτT ‖J×Ω.

The terms ‖u−IτT (u)‖J×Ω +‖uτT − ũτT ‖J×Ω are estimated by using the same arguments as
in Step (iii.a). The bound on ‖uτT − IτT (u)‖J×Ω uses, however, a different argument since
we can only invoke here the regularization. This gives

‖uτT − IτT (u)‖J×Ω = ‖eτT ‖J×Ω = γ−
1
2 c(τ, h)−1tτh(eτT , e

τ
T )

1
2 .

Invoking Lemma 5 gives

‖ũτT − u‖J×Ω . (1 + γ−
1
2 c(τ, h)−1)

(
‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2
)
.

(iii.c) Bound on ‖L(ũτT − u)‖L2(J ;H−1(Ω)). We have

‖L(ũτT − u)‖L2(J ;H−1(Ω)) ≤ ‖LT (ũτT −Rτ (uτT ))‖L2(J ;H−1(Ω))

+ ‖LT (Rτ (uτT )− u)‖L2(J ;H−1(Ω)).

For the second term on the right-hand side, we invoke Lemma 6 to infer

‖LT (Rτ (uτT )− u)‖L2(J ;H−1(Ω)) . (1 + τ−
1
2h)‖θ̂τh‖#

+ ‖δ‖J×$ + tτh(IτT (u), IτT (u))
1
2 + ‖Θf‖J×Ω.

To estimate the first term on the right-hand side, we bound the dual norm by considering
an arbitrary test function η ∈ L2(J ;H1

0 (Ω)) with ‖∇η‖J×Ω = 1. On the one hand, we
have

|(∂t(ũτT −Rτ (uτT )), η)J×Ω| . ‖∂t(ũτT −Rτ (uτT ))‖J×Ω‖η‖J×Ω

. τ−1hdh(ûτh, û
τ
h)

1
2 ‖∇η‖J×Ω,
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where we used an inverse inequality in time, the estimate (45), and a global Poincaré
inequality in Ω. On the other hand, using again (45) gives

|(∇T (ũτT −Rτ (uτT )),∇η)J×Ω| . dh(ûτh, û
τ
h)

1
2 ‖∇η‖J×Ω.

Combining the last two bounds and invoking Lemma 5, we infer that

‖LT (ũτT −Rτ (uτT ))‖L2(J ;H−1(Ω)) . (1 + τ−1h)dh(ûτh, û
τ
h)

1
2

. (1 + τ−1h)
(
‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2
)
.

Altogether, this gives

‖L(ũτT − u)‖L2(J ;H−1(Ω))

. (1 + τ−1h)
(
‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2
)

+ ‖Θf‖J×Ω.

(iv) Combining the bounds from the above steps proves (44).

3.7 Weighting the regularization

The last step in our error analysis is to identify the weighting coefficient c(τ, h) in the
regularization bilinear form. The interpolation operator defined in Section 3.3 fulfills the
following convergence properties (the proof is outlined in Section 3.8.2).

Lemma 8 (Approximation). The following holds for all n ∈ {1:N}, all T ∈ Th, and all
v ∈ H`+1(In;H2(T )) ∩H1(In;Hk+1(T )),

‖InT (v)− v‖In×T . τ `+1‖v‖H`+1(In;L2(T )) + hk+1‖v‖H1(In;Hk+1(T )), (46)

‖∇(InT (v)− v)‖In×T . τ `+1‖v‖H`+1(In;H1(T )) + hk‖v‖H1(In;Hk+1(T )), (47)

h
1
2 ‖∇(InT (v)− v)‖In×∂T . h

1
2 τ `+1‖v‖H`+1(In;H2(T )) + hk‖v‖H1(In;Hk+1(T )), (48)

h‖∆(InT (v)− v)‖In×T . hτ `+1‖v‖H`+1(In;H2(T )) + hk‖v‖H1(In;Hk+1(T )), (49)

‖∂t(InT (v)− v)‖In×T . τ `‖v‖H`+1(In;L2(T )) + hk+1‖v‖H1(In;Hk+1(T )). (50)

Moreover, we also have for all s ∈ In,

‖(InT (v)− v)(s)‖T . τ `+
1
2 ‖v‖H`+1(In;L2(T )) + hk+1‖v‖H1(In;Hk+1(T )), (51)

‖∇(InT (v)− v)(s)‖T . τ `+
1
2 ‖v‖H`+1(In;H1(T )) + hk‖v‖H1(In;Hk+1(T )). (52)

Finally, we have

h−
1
2 ‖InT (v)− v‖In×∂T + h−

1
2 ‖In∂T (v)− v‖In×∂T

. h−
1
2 τ `+1‖v‖H`+1(In;H1(T )) + hk‖v‖H1(In;Hk+1(T )). (53)

We consider the functional space

U∗ := H`+2(J ;L2(Ω)) ∩H`+1(J ;H2(Ω)) ∩H1(J ;Hk+1(Ω)), (54)
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equipped with its natural norm ‖·‖∗. An important consequence of Lemma 8 is that, under
the assumption u ∈ U∗, we have

‖θ̂τh‖# + tτh(IτT (u), IτT (u))
1
2 + ‖Θf‖J×Ω .

(
(1 + h−1τ)

1
2 τ `+

1
2 + hk + γ

1
2 c(τ, h)

)
‖u‖∗, (55)

where we used that τ . 1 and h . 1 to simplify the expression. Notice also that u ∈ U∗
implies that f ∈ H`+1(J ;L2(Ω)).

Theorem 9 (Decay rates). Assume that u ∈ U∗ and that τ . h, h . τ . Set

c(τ, h) := τ `+
1
2 + hk. (56)

We have the following decay rates on the errors:

|||êτh, ξ̂τh|||+ tτh(uτT , u
τ
T )

1
2 + sτh(ûτh, û

τ
h)

1
2 . (τ `+

1
2 + hk)‖u‖∗ + ‖δ‖J×$, (57)

‖u− uτT ‖trg . Cstb(τ `+
1
2 + hk)α(‖u‖∗ + (τ `+

1
2 + hk)−1‖δ‖J×$). (58)

where the hidden constant scales as max(γ, 1)
1
2 in (57) and max(γ, γα−1)

1
2 in (58).

Proof. Plug (56) into Lemma 5 and Theorem 7 and use (55).

3.8 Technical proofs

In this section, we outline the proofs of Lemma 2 and Lemma 8. The proofs use standard
arguments from finite element approximation theory.

3.8.1 Proof of Lemma 2

Let v̂τh := (vτT , v
τ
F ) ∈ Ũ τh .

(i) Proof of (27). For all n ∈ {1:N} and all qnT ∈ P`(In;UkT ), we have

(∂t(R
n(vτT )− vnT ), qnT )In×Ω = ([[vτT ]]n−1, qnT (t+n−1))Ω.

Invoking a discrete trace inequality in time implies

‖∂t(Rn(vτT )− vnT )‖In×Ω . τ−
1
2 ‖[[vτT ]]n−1‖Ω. (59)

Summing over n ∈ {1:N} proves (27) since
∑

n∈{1:N} ‖[[vτT ]]n−1‖2Ω ≤ dτ (vτT , v
τ
T ) (recall that

[[·]]0 = 0 by convention).
(ii) Proof of (28). Since we have (Rn(vτT )−vnT )(t−n ) = 0 (see (26)), a Poincaré inequality

in time over In and the bound (59) yield

‖Rn(vτT )− vnT ‖In×Ω . τ‖∂t(Rn(vτT )− vnT )‖In×Ω . τ
1
2 ‖[[vτT ]]n−1‖Ω.

Summing over n ∈ {1:N} proves as above that

‖Rτ (vτT )− vτT ‖J×Ω . τ
1
2dτ (vτT , v

τ
T )

1
2 . (60)
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Moreover, (25) shows that the operators Rτ and ∇T commute. Hence, using the same
arguments as above shows that

‖∇T (Rn(vτT )− vnT )‖In×Ω . τ
1
2 ‖[[∇T vτT ]]n−1‖Ω.

Summing over n ∈ {1:N} and since
∑

n∈{1:N} ‖[[∇T vT ]]n−1‖2Ω ≤ dτ (vτT , v
τ
T ) gives

‖∇T (Rτ (vτT )− vτT )‖2J×Ω . τdτ (vτT , v
τ
T ). (61)

Summing (60) and (61) proves (28).
(iii) Proof of (29). For all F ∈ F int

h , the operators Rτ and [[·]]F commute. In particular,
we have, for all n ∈ {1:N} and all qnF ∈ P`(In;Pk(F )),

(∂t([[R
n(vτT )− vnT ]]F ), qnF )In×F = ([[[[vτT ]]F ]]n−1, qnF (t+n−1))F ,

and [[Rn(vτT )− vnT ]]F (t−n ) = 0. Hence, using the same arguments as above shows that for
all n ∈ {2:N},

‖[[Rn(vτT )− vnT ]]F ‖In×F . τ‖∂t([[Rn(vτT )− vnT ]]F )‖In×F
. τ

1
2 ‖[[[[vτT ]]F ]]n−1‖F . ‖[[vτT ]]F ‖(In−1∪In)×F .

Summing this relation over n ∈ {2:N}, we get

‖h−
1
2 [[Rτ (vτT )− vτT ]]F int

h
‖J×F int

h
. ‖h−

1
2 [[vτT ]]F int

h
‖J×F int

h
.

Finally, (29) follows from

‖h−
1
2 [[Rτ (vτT )]]F int

h
‖J×F int

h
≤ ‖h−

1
2 [[Rτ (vτT )− vτT ]]F int

h
‖J×F int

h
+ ‖h−

1
2 [[vτT ]]F int

h
‖J×F int

h

. ‖h−
1
2 [[vτT ]]F int

h
‖J×F int

h
. dh(v̂τh, v̂

τ
h)

1
2 .

3.8.2 Proof of Lemma 8

Let v ∈ H`+1(In;H2(T )) ∩ H1(In;Hk+1(T )). Recall that InT (v) := Πk
T (Ǐ`n(v)) for all

n ∈ {1:N} and all T ∈ Th (see (35)), where Πk
T is the L2-orthogonal projection onto Pk(T )

and Ǐ`n is the approximation operator defined in (33)-(34). The stability and approximation
properties of Πk

T are classical (see, e.g., [15, Sec. 11.5.3]); those of Ǐ`n are discussed in [16,
Sec. 69.3.2 & Ex. 69.7].

(i) Proof of (46). The triangle inequality gives

‖InT (v)− v‖In×T ≤ ‖Πk
T (Ǐ`n(v))− Ǐ`n(v)‖In×T + ‖Ǐ`n(v)− v‖In×T .

The first term on the right-hand side is bounded as

‖Πk
T (Ǐ`n(v))− Ǐ`n(v)‖In×T . hk+1‖Ǐ`n(v)‖L2(In;Hk+1(T )) . hk+1‖v‖H1(In;Hk+1(T )),

where we used the approximation properties in space of Πk
T in the first estimate and the

H1-stability in time of Ǐ`n in the second estimate. Moreover, the second term on the
right-hand side is bounded as

‖Ǐ`n(v)− v‖In×T . τ `+1‖v‖H`+1(In;L2(T )),
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where we used the approximation properties in time of Ǐ`n. Combining these two estimates
proves (46).

(ii) Proof of (47), (48), (49), and (50). We can use similar arguments to those invoked
in Step (i) since we have

‖∇(InT (v)− v)‖In×T ≤ ‖∇(Πk
T (Ǐ`n(v))− Ǐ`n(v))‖In×T + ‖Ǐ`n(∇v)−∇v‖In×T ,

‖∂t(InT (v)− v)‖In×T ≤ ‖Πk
T (∂tǏ

`
n(v))− ∂tǏ`n(v)‖In×T + ‖∂t(Ǐ`n(v)− v)‖In×T ,

because the operators Ǐ`n and ∇ commute, as well as the operators Πk
T and ∂t. A similar

argument can also be used when replacing ∇ by ∆.
(iii) The proofs of (51), (52), and (53) employ similar arguments.

4 Numerical results

In this section, we present numerical experiments to check the convergence rates estab-
lished in Theorem 9.

All the errors are computed as the difference between the numerical solution and the
L2(J ;L2(Ω))-orthogonal projection of the exact solution. These errors are measured in
the L2(T1, T2;H1(B))-seminorm, where (T1, T2)× B is specified below for each test case.
A noise is added to the measurements in the following way: at each evaluation of the
exact solution u to compute g (i.e., at each space-time Gauss node that belongs to J×$),
the random noise added to the exact solution is computed as δ(t,x) := a ∗ rand(), where
rand() is a C++ function returning a random number in [−1, 1]. The noise amplitude is
chosen as a ∈ {0, 10−5, 10−3}. Moreover, the Tikhonov regularization coefficient is always
set to γ := 10−3.

All the tests are run with the DiSk++ library [12], and all the linear systems are solved
using the Pardiso solver from the MKL library. During the matrix assembly process, we
compute the value of the coefficients for the first time interval I1 and for its coupling with
the next time interval I2. Then, since the time step is constant, the coefficients associated
with the following time intervals are the same and therefore do not need to be recomputed.

4.1 One-dimensional test cases

In this section, we consider the following one-dimensional setting:

Ω := (0, 1), $ := (0.25, 0.75), Tf := 2, u(t, x) := cos(πt) sin(πx).

All the errors are estimated in the subdomain

(T1, T2)×B := (0.2, 1.8)× (0.125, 0.875).

We consider two settings. First, the case with unknown initial data but with known
Dirichlet boundary data on J × ∂Ω. In this situation, the boundary conditions can be
enforced in a strong way on the boundary face degrees of freedom by searching ûτh in Ũ τh0

and not in Ũ τh . Notice that in this case, we have α = 1 in Lemma 1 (see Theorem 2 from
[7]). We then expect the same convergence rates as for a well-posed problem, i.e., k in



21

Figure 1: L2(T1, T2;H1(B))-seminorm errors for the 1d test case without any noise. Both
cases with known or unknown boundary data are considered. Left: space convergence
(M ∈ {16, 32, 64, 128}, N = 128, ` = 3). Right: time convergence (N ∈ {10, 20, 40, 80},
M = 256, k = 3).

space and `+ 1
2 in time. Then, we consider the case where both initial and boundary data

are unknown.
We use a uniform mesh in space and in time (N cells in time and M cells in space).

Four levels of refinement are considered in space (M ∈ {16, 32, 64, 128}) and in time
(N ∈ {10, 20, 40, 80}). We run two convergence studies. At first, for a good precision
in time (N = 128, ` = 3), we study the error for several successive space mesh sizes
M ∈ {16, 32, 64, 128} and several polynomial orders k ∈ {1, 2, 3}. Then, for a good
precision in space (M = 256, k = 3), we study the error for several successive time mesh
sizes N ∈ {10, 20, 40, 80} and several polynomial orders ` ∈ {0, 1, 2}. The results without
any noise are reported in Figure 1. We observe optimal space convergence at rate k for
k ∈ {2, 3}. Instead, we obtain superconvergence at rate 2 for k = 1. Moreover, we observe
time convergence at rate `+1, for ` ∈ {1, 2}, which is slightly better than the expected rate
`+ 1

2 from Theorem 9. (Recall that the errors are computed as the difference between the
numerical solution and a projection of the exact solution.) Another relevant observation
is that a higher-order scheme is more efficient in terms of degrees of freedom. Indeed,
the scheme with ` = 1 and N = 40 has the same number of degrees of freedom as the
backward Euler scheme with ` = 0 and N = 80, but delivers better results. The same
remark can be made for ` = 2.

Let us now consider some noise in the observations. In this situation, we obtain the
same results as above until the error becomes small and then the convergence stops. To
illustrate this point, let us focus on the case with unknown initial and boundary data. The
results are reported in Figure 2 for ` = 2, M = 256, k = 3, and various mesh refinements in
time. As expected, the higher the noise, the larger the value at which the error stagnates.
Notice that in the case of known boundary data, the sensitivity to noise is much smaller
(results not shown for brevity).
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Figure 2: L2(T1, T2;H1(B))-seminorm errors for the 1d test case. Initial and unknown
boundary data with three levels of noise. Left: space convergence (M ∈ {16, 32, 64, 128},
k = 3, N = 128, ` = 3). Right: time convergence (N ∈ {10, 20, 40, 80}, ` = 2, M = 256,
k = 3).

4.2 Two-dimensional test case

In this section, we consider the following two-dimensional setting:

Ω := (0, 1)2, $ := Ω \ (0, 0.875)× (0.125, 0.875), Tf := 2,

(T1, T2)×B := (0.2, 1.8)× (0.125, 0.875)2, u(t, x, y) := cos(πt) sin(πx) sin(πy).

We show in Figure 3 the domains $ and B. Notice that B ∩ ∂Ω = ∅ and that $ 6⊂ B.
Both cases with and without boundary data are considered.

Figure 3: The domains $ (left) and B (right) for the 2d test case (in red).

The space convergence is performed with the three triangulations shown in Figure 4
and k ∈ {1, 2}. Notice that these meshes are not fitted to $ or B. In practice, we consider
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Figure 4: The three meshes used for the 2d test case.

that a triangle is in $ (respectively, in B) if its barycenter belongs to $ (respectively, to
B); see Figure 4. Moreover, we used N = 10 time intervals and the time degree ` = 2.
The time convergence is performed with N ∈ {5, 10, 20}, ` ∈ {0, 1} and k = 2 with the
rightmost mesh from Figure 4. Notice that the linear system is generally ill-conditioned,
thus precluding the use of effective iterative solvers. The study of adapted preconditioners
could help solving this problem, see for instance [20], but we postpone further studies of
this point to future work.

Figure 5: L2(T1, T2;H1(B))-seminorm errors for the 2d test case with noised data (a =
10−3). Left: space convergence (N = 20, ` = 1). Right: time convergence (third mesh
from Figure 4, k = 2).

The L2(T1, T2;H1(B))-seminorm errors obtained with noised data are reported in Fig-
ure 5. The convergence in space (left panel) indicates that that a better convergence rate
is obtained in the case of known boundary data since the convergence rate is k in this
situation. Moreover, this convergence rate is reduced in the case of unknown boundary
data: we get a convergence at rate less than 0.5 for k = 1. For k = 2, it seems that we
still get a convergence rate around 2, but it is not as clearcut as when boundary data are
known. Also notice that, since the convergence rate for k = 1 is 1 in the case of known
boundary data, we can conjecture that the superconvergence observed in the 1d test case
was due to the fact that the domain was one-dimensional.

The convergence in time (right panel of Figure 5) seems to correspond to a convergence
at rate ` + 1

2 , even if the boundary conditions are not known. Notice that for the one-
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dimensional case, we got `+ 1 for ` ∈ {1, 2}. However, according to Theorem 9, we should
get a convergence rate of (` + 1

2)α. Thus, it seems that, in this numerical experiment,
the reduction of convergence due to the lack of boundary data affects only the space
convergence.
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