Grasp Transfer for Deformable Objects by Functional Map Correspondence - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Grasp Transfer for Deformable Objects by Functional Map Correspondence

Cristiana de Farias
  • Fonction : Auteur
Rustam Stolkin
  • Fonction : Auteur
Naresh Marturi
  • Fonction : Auteur

Résumé

Handling object deformations for robotic grasping is still a major problem to solve. In this paper, we propose an efficient learning-free solution for adapting grasp hypothesis to deformed versions of an object. To this end, we investigate the applicability of functional map (FM) correspondence, where the shape matching problem is treated as searching for correspondences between geometric functions in a reduced basis. For a user selected region of an object, we apply the local contact moment (LoCoMo) grasp planner to generate grasp candidates. Next, these candidates are transferred to an instance of the object that has suffered an arbitrary level of deformation. Finally, the best feasible grasp, is executed on the object while respecting the original finger configuration as much as possible. Experimental validation in simulation shows the efficiency in our approach.
Fichier principal
Vignette du fichier
icra_2021_w.pdf (3.03 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03716426 , version 1 (07-07-2022)

Identifiants

  • HAL Id : hal-03716426 , version 1

Citer

Cristiana de Farias, Brahim Tamadazte, Rustam Stolkin, Naresh Marturi. Grasp Transfer for Deformable Objects by Functional Map Correspondence. IEEE International Conference on Robotics and Automation - Workshop on Representing and Manipulating Deformable Objects, IEEE, May 2022, Philadelphia, United States. ⟨hal-03716426⟩
27 Consultations
52 Téléchargements

Partager

More