Complexity and algorithms for Isometric Path Cover on chordal graphs and beyond
Résumé
A path is isometric if it is a shortest path between its endpoints. In this article, we consider the graph covering problem Isometric Path Cover, where we want to cover all the vertices of the graph using a minimum-size set of isometric paths. Although this problem has been considered from a structural point of view (in particular, regarding applications to pursuit-evasion games), it is little studied from the algorithmic perspective. We consider Isometric Path Cover on chordal graphs, and show that the problem is NP-hard for this class. On the positive side, for chordal graphs, we design a 4-approximation algorithm and an FPT algorithm for the parameter solution size. The approximation algorithm is based on a reduction to the classic path covering problem on a suitable directed acyclic graph obtained from a breadth first search traversal of the graph. The approximation ratio of our algorithm is 3 for interval graphs and 2 for proper interval graphs. Moreover, we extend the analysis of our approximation algorithm to k-chordal graphs (graphs whose induced cycles have length at most k) by showing that it has an approximation ratio of k + 7 for such graphs, and to graphs of treelength at most ℓ, where the approximation ratio is at most 6ℓ + 2. * This research was partially financed by the IFCAM project "Applications of graph homomorphisms" (MA/IFCAM/18/39), the ANR project GRALMECO (ANR-21-CE48-0004-01) and the French government IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25).
Origine | Fichiers produits par l'(les) auteur(s) |
---|