TRANSVERSE INSTABILITY OF HIGH FREQUENCY WEAKLY STABLE QUASILINEAR BOUNDARY VALUE PROBLEMS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

TRANSVERSE INSTABILITY OF HIGH FREQUENCY WEAKLY STABLE QUASILINEAR BOUNDARY VALUE PROBLEMS

Corentin Kilque
  • Fonction : Auteur
  • PersonId : 1094470
  • IdRef : 266239293

Résumé

This work intends to prove that strong instabilities may appear for high order geometric optics expansions of weakly stable quasilinear hyperbolic boundary value problems, when the forcing boundary term is perturbed by a small amplitude oscillating function, with a transverse frequency. Since the boundary frequencies lie in the locus where the so-called Lopatinskii determinant is zero, the amplifications on the boundary give rise to a highly coupled system of equations for the profiles. A simplified model for this system is solved in an analytical framework using the Cauchy-Kovalevskaya theorem as well as a version of it ensuring analyticity in space and time for the solution. Then it is proven that, through resonances and amplification, a particular configuration for the phases may create an instability, in the sense that the small perturbation of the forcing term on the boundary interferes at the leading order in the asymptotic expansion of the solution. Finally we study the possibility for such a configuration of frequencies to happen for the isentropic Euler equations in space dimension three.
Fichier principal
Vignette du fichier
Weakly_stable.pdf (751.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03707100 , version 1 (28-06-2022)
hal-03707100 , version 2 (28-06-2022)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-03707100 , version 1

Citer

Corentin Kilque. TRANSVERSE INSTABILITY OF HIGH FREQUENCY WEAKLY STABLE QUASILINEAR BOUNDARY VALUE PROBLEMS. 2022. ⟨hal-03707100v1⟩
84 Consultations
49 Téléchargements

Partager

More