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QUASILINEAR BOUNDARY VALUE PROBLEMS

CORENTIN KILQUE

ABSTRACT. This work intends to prove that strong instabilities may appear for high order
geometric optics expansions of weakly stable quasilinear hyperbolic boundary value problems,
when the forcing boundary term is perturbed by a small amplitude oscillating function, with
a transverse frequency. Since the boundary frequencies lie in the locus where the so-called
Lopatinskii determinant is zero, the amplifications on the boundary give rise to a highly coupled
system of equations for the profiles. A simplified model for this system is solved in an analytical
framework using the Cauchy-Kovalevskaya theorem as well as a version of it ensuring analyticity
in space and time for the solution. Then it is proven that, through resonances and amplification,
a particular configuration for the phases may create an instability, in the sense that the small
perturbation of the forcing term on the boundary interferes at the leading order in the asymptotic
expansion of the solution. Finally we study the possibility for such a configuration of frequencies
to happen for the isentropic Euler equations in space dimension three.
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This work takes interest into the (in)-stability of multiphase geometric optics expansions for
weakly stable quasilinear hyperbolic boundary value problems. The formal construction of such
geometric optics expansions goes back to Majda, Artola, and Rosales, in [MR83, MR84, AMS87,
MARSS]. In this paper, we prove that, for a simplified model, infinitely accurate approximate
solutions can be unstable, in the sense that a small perturbation of the boundary forcing term
interferes at the leading order in the asymptotic expansion.
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For uniformly stable problems, the construction of a multiphase asymptotic expansion is
performed, for Cauchy problems, notably in [HMRS&6] for the linear case, and in [JMR95] for the
quasilinear one. In the case of boundary value problems, [Wil96] studies the semilinear case with
multiple frequencies on the boundary, and the quasilinear case is treated in [CGW11] for one
phase on the boundary. The case of multiple phases on the boundary is addressed in a previous
work of the author, [Kil22]. In the weakly stable case, that is, when the weak Kreiss-Lopatinksii
condition is satisfied, an amplification phenomenon occurs, as shown in works of Coulombel,
Gues and Williams. Following the pioneering works by Majda and his collaborators, the first
rigorous construction of a geometric optics expansion in the weakly stable case is performed in
[CG10] for linear boundary value problems. Nonlinear problems are treated in [CGW14, CW14]
for the semilinar case, and [CW17] for the quasilinear one. In [CGW14, CW14, CW17], the
authors consider one phase on the boundary, and the present w work intends to address the
extension of [CW17] to the multiphase case. Here, allowing multiple phases on the boundary
permits us to consider a particular configuration of frequencies on the boundary, which, thanks to
the amplification phenomenon, will lead to an instability for the asymptotic expansion. We show
however that, fixing a locus of breaking of the Kreiss-Lopatinskii condition, this configuration of
frequencies creating an instability cannot happen for the example of gas dynamics. This leaves
hope to justify the validity of the geometric optics expansions with one amplification for the gas
dynamics.

This work is divided in three main parts: (i) the derivation of the equations satisfied by the
profiles in the multiphase case, following [CW17]; (ii) the proof of existence of solutions to the
obtained system in an analytical framework; and (iii) the proof of instability for this system,
namely, that there exists a perturbation of the boundary forcing term interfering at the leading
order in the expansion. The general system being out of our reach for the moment, both for
existence and for the instability mechanism, we deal with simplify models of the general system
of equations for the profiles.

For the boundary value problem considered in this paper, the boundary condition is assumed
to satisfy the weak Kreiss-Lopatinskii condition, namely that the Kreiss-Lopatinskii condition
breaks on a certain locus of the frequency space. More precisely, we assume here that the
locus where the Kreiss-Lopatinskii condition is not satisfied lies in the hyperbolic region (see
[BGS07, Definition 2.1]). For boundary frequencies for which the Kreiss-Lopatinskii condition
is not satisfied, an amplification phenomenon occurs on the boundary. The idea is to consider a
particular configuration of frequencies on the boundary which will turn this amplification into
a strong instability. For this purpose, we consider a boundary forcing term G oscillating at a
frequency ¢, belonging to the locus where the Kreiss-Lopatinskii condition is not satisfied, and
we perturb this boundary forcing term G with a perturbation term H, oscillating at a transverse
frequency v also belonging to the locus where the Kreiss-Lopatinskii condition is not satisfied,
of small amplitude compared to the one of G. In [CW17], the boundary frequency ¢ is assumed
to be non-resonant, in the sense that two interior frequencies lifted from ¢ cannot resonate with
each other. We make the same assumption here, as well as for the boundary frequency . We
assume however that two well chosen resonance relations between ¢ and v exists, which will
allow the perturbation H to ascend towards the leading order, through repeated amplification
and resonances. We study in this article the possibility for such a configuration of frequencies
to happen for the isentropic compressible Euler equations in space dimension 3. We prove
that for a particular choice of locus where the Kreiss-Lopatinskii condition is not satisfied, the
configuration of boundary frequencies considered here is (thankfully) impossible for the Euler
system.

The derivation of equations for the amplitudes from the BKW cascade follows the one de-
tailed in [CW17]. The main difference with the iterative process in the uniformly stable case,
see e.g. [JMR95, Wil96, CGW11, Kil22], is that, for boundary frequencies lying in the locus
where the Kreiss-Lopatinski condition is not satisfied, we cannot a priori determine a boundary
condition for incoming profiles. Indeed, because of the weak Kreiss-Lopatinskii condition, for
such boundary frequencies, the traces of incoming profiles are expressed through an unknown
scalar function. For a given order, the evolution equations satisfied by these boundary terms are



TRANSVERSE INSTABILITY OF WEAKLY STABLE QUASILINEAR BOUNDARY VALUE PROBLEMS 3

derived using equations on profiles of the next order. This is where amplification occurs. The
main difference with [CW17] is that, because of resonances, equations for each profile and for
boundary terms are coupled with each other. Also, in comparison with [CW17], in equations for
the boundary term of a given order, there is a term involving the trace of a profile of the next
order, which was proven to be zero in [CW17], because resonances were absent in that work.
This results into a highly coupled system. Nevertheless we discuss two points about this system,
which are the existence of a solution to it and the creation of an instability.

The existence of a solution to the system of equations for the profiles is proven here in an
analytical setting. The aim is to use the abstract Cauchy-Kovalevskaya theorem, whose proof
can be found in [Nir72] and [Nis77]. We use in this work the formulation of [BG78|. The system
of equations for the profiles is made of incoming and outgoing equations for interior profiles,
whose traces of incoming profiles are expressed with boundary terms that in turn satisfy coupled
evolution equations on the boundary. As already mentioned, the general system is difficult to
treat, so we consider two simplified models of increasing difficulty for the study of existence. Both
retain only a few profiles (which are the ones of interest), and remove some couplings between the
equations. The first is only constituted by coupled equations on the boundary, and we make this
first simplified model more complex into a second one by incorporating interior equations, whose
traces on the boundary are given by the solutions to the equations on the boundary. For the
first simplified model, containing only equations on the boundary, the formulation of [BG78| can
be applied, using a chain of spaces quantifying analyticity by means of the Fourier transform.
The only difficulty is to show that a certain bilinear operator appearing in the equations is
semilinear in the considered spaces of functions, and this result is obtained adapting a result of
[CW17]. For the second simplified model, incorporating interior equations, the aim is to apply
the Cauchy-Kovalevskaya theorem to the interior equations, seen as propagation equations in
the normal direction. Therefore, we need the boundary terms, which are solutions to boundary
equations, to be analytical with respect to all their variables: both tangential space variables
and time. However, if we apply the classical Cauchy-Kovalevskaya theorem to the boundary
equations, we obtain a solution analytical only with respect to tangent space variables, and
not with respect to time. We therefore need to adapt the Cauchy-Kovalevskaya theorem to
obtain analyticity with respect to all variables for solutions to the boundary equations. This is
done using the method of majoring series, and the phenomenon of regularization by integration
in time introduced in [UkaOl], see also [Mét09, Mor20]. We define for this purpose a chain
of spaces of analytic functions, with a formulation adapted from [BG78] to the framework of
majoring series, and prove the result using a fixed point theorem. We also define a chain of
functional spaces suited to apply the Cauchy-Kovalevskaya theorem for interior equations, once
we have constructed the analytic boundary terms. Applying the Cauchy-Kovalevskaya theorem
to interior equations in this chain of functional spaces then presents no difficulty.

To prove that there is an instability, namely, that a small perturbation H of the boundary
forcing term G interferes at a leading order, since the perturbation H is small compared to G,
we consider the linearized version of the general system, around the particular solution of this
system when the perturbation H is zero. We obtain a linearized system with a small boundary
forcing term given by H, and we prove that there exists a boundary term H such that this
system admits a solution whose first order profiles are not all zero. It shows that the small
perturbation H interferes at the leading order for the linearized system, which constitutes an
instability. The existence of H is proven by contradiction: we assume that for all boundary terms
H, all leading profiles are zero, and we contradict a certain condition by constructing the second
order correctors. As for the part about existence, we work here with simplified models, as the
coupling of the general system of equations is too difficult to handle. The first simplified model
allows us to construct explicitly the solution to the linearized system, solving the considered
transport equations by the method of characteristics. For the second one, the coupling is more
complex, preventing us to apply the latter method, and we use a perturbation method and solve
equations with a fixed point theorem.

This article is organized as follows. First we state the problem that we study here, make
structural assumptions about it, and specify some assumptions and preliminary results about
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the oscillations at stake. Then, in a second part, the general system of equations for the profiles
is derived, by detailing the iterative process for the leading profile and then the first correc-
tor, and by writing down the general system satisfied by higher order correctors. We proceed
in a third part with the proof of existence of a solution to simplified models of this general
system. We start by detailing the obtaining of a first simplified model, then defining the func-
tional framework which will be used, specifying the simplified model according to this functional
framework, and applying the Cauchy-Kovalevskaya theorem for boundary equations. Then we
detail how this first simplified model is made more complex into a second one, we define ad-
ditional functional spaces and specify the second simplified model accordingly, and finally we
show existence and analyticity of solutions to boundary equations by proving a new version of
the Cauchy-Kovalevskaya theorem, leading to existence of solutions to interior equations, using
a classical Cauchy-Kovalevskaya theorem. The fifth part is devoted to the proof of instability,
first by deriving the linearization of the general system around the particular solution where the
perturbation H is zero, and then by proving, for two different simplified models, that an insta-
bility is created. Finally, in a sixth part, the example of isentropic compressible Euler equations
in space dimension 3 is studied.

In all the article the letter C' denotes a positive constant that may vary during the analysis,
possibly without any mention being made.

Acknowledgments. The author is particularly grateful to Jean-Francgois Coulombel, whose
brilliant idea is at the origin of this work, and for his numerous advice and proofreading.

1. NOTATION AND ASSUMPTIONS

1.1. Position of the problem. Given a time 7" > 0 and an integer d > 2, let 27 be the
domain Q7 := (—o00,T] x R x R, and wr := (—o0,T] x R¥! its boundary. We denote as
t € (—o0,T)] the time variable, x = (y,z4) € R¥! x R, the space variable, with y € R%! the
tangential variable and x4 € Ry the normal variable, and at last z = (¢,z) = (¢,y,xq4). We also
denote by 2’ = (t,y) € wy the variable of the boundary {z4 = 0}. Fori =1,...,d, we denote by
9; the partial derivative operator with respect to z;. Finally we denote as a € R4 and ¢ € R?
the dual variables of z € Q7 and 2’ € wyr. We consider the following problem

( d
L(uf,d,) u® := s + ZAi(uE) Oiu® =0 in Qr,
i=1
(1.1) Buj, o= e2g° +eMhe on wr,
“Ttgo =0,

where the unknown v is a function from Q7 to an open set @ of R containing zero, N > 1,
the matrices A; are smooth functions of O with values in My (R), the matrix B belongs to
M n(R) and is of maximal rank (integer p > 1 will be made precise below).

The boundary term is a superposition of a reference forcing oscillating term £2 g° (of charac-
teristic wavelength ¢) and a smaller, transverse, oscillating term eM he with M > 3, namely, for
2z e wr,

(1.2a) g(Z)=G <z’, z’;cp) ,

(1.2b) he(z'y=H <z', Z/;ﬁ) ,

where G, H are functions of the Sobolev space of infinite reguarity H Oo(Rd x T), are zero for
negative time ¢, and with boundary frequencies ¢, given in R?\ {0}. Frequencies ¢ and 1) are
taken linearly independent over R, that is, ¥ ¢ Rp. We denote by ¢ the couple ¢ := (¢, 7).
In this paper we wish to place ourselves in the framework of weakly nonlinear geometric optics.
Usually to obtain this framework the amplitude of the boundary forcing term must be of order
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O(e). Here, because we will assume that the Kreiss-Lopatinskii condition is not satisfied for
¢ (and 1), an amplification phenomenon will happen at the boundary for this frequency, so a
forcing term of amplitude of order O(£?) should be chosen on the boundary. This scaling has
been studied in [AM87, MR83, MR84, CW17]. Note that if we set h* = 0 in system (1.1), we
obtain the system studied in [CW17].

To simplify the equations and computations we assume that the coefficients are affine maps,
that is, for j =1,...,d,

Aj(u) = A;(0) + dA;(0) - u

We make the following structural and classical assumption on the boundary.

Assumption 1 (noncharacteristic boundary). The boundary is noncharacteristic, that is, ma-
triz. Ag(0) is invertible.

To simplify the equations and the computations we will study here the case M = 3, but there
is no apparent obstacle to generalize this analysis to any integer M > 4. For the same purpose
we choose to work with the particular case of 3-dimensional vectors (N = 3) since it is sufficient
in this analysis to create instabilities.

In this paper we study a geometric optics asymptotic expansion for system (1.1), namely, we
look for an approximate solution to (1.1) in the form of a formal series

(1.3) usPP(z) = Z e" Uy, (z, ¢22)>,

n=1

where the collection of phases ® will be made precise later. The approximate solution is expected
to be of order O(g) because of the weakly nonlinear framework. The aim is to show that, with
a well chosen configuration of frequencies, there is an instability in this asymptotic expansion,
in the sense that, despite its small amplitude order 0(53), perturbation €3 h° interferes at the
leading order, i.e. in the construction of the leading profile U;. In addition to this instability, we
will study well-posedness for a simplified model associated with the equations for the profiles,
and the possibility for such a frequency configuration to occur in the case of Euler equations in
space dimension 3.

We start by making a series of structural assumptions on system (1.1) and detailing the
configuration of frequencies considered here.

The following definition introduces the notion of characteristic frequency.

Definition 1.1. For a = (7,1,¢) € R x R x R, the symbol L(0, ) associated with L(0,0.)
1s defined as
d—1
L(0,a) := 7T+ Y 0 Ai(0) + £A4(0).
i=1
Then we define its characteristic polynomial as p(t,n,§) = det L(O7 (T,n,f)). We say that

a € R js g characteristic frequency if it is a root of the polynomial p.

The following assumption, called strict hyperbolicity (see [BGS07, Definition 1.2]), is made.
Assumptions of hyperbolicity, whether strict or with constant multiplicity, are very usual, see
e.g. [Wil96, CGW11, JMRO5], and related to the structure of the problem. Assumption of
hyperbolicity with constant multiplicity, which is more general than Assumption 2 of strict
hyperbolicity below, is sometimes preferred like in [CGW11, JMR95]. We chose here to work
with the latter for technical reasons. Recall that we placed ourselves in the particular case where
the size of the system is N = 3.

Assumption 2 (strict hyperbolicity). There exist real functions 71 < T2 < T3, analytic with
respect to (n,€) in R?\ {0}, such that for all (n,€) € R\ {0} and for all 7 € R, the following
factorisation is verified

d—1

3
(Tﬁf)—det<ﬂ+z7hz ) +E&Aq(0 ) I = 7(n,9)
=1

=1
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where the eigenvalues —7x(n, &) of the matriz A(n,§) = Ef:_ll 1 A;(0) + £A4(0) are therefore
stmple.

1.2. Weak Kreiss-Lopatinskii condition. We define the following space of frequencies

Ei={(=(o=7—iymn) € (CxRTN\{0} |y >0},
Si={(eE [+ + =1},
Eo:={CeE|y=0},

Yo :=Zg N

We also define the matrix valued symbol which we get when applying the Laplace-Fourier trans-
form to the operator L(0,0,). For all ( = (o,n) € E, let

d—1
A(C) = —i Ag(0)! (01 +3 Aj(0)>.
=1

The Hersh lemma ([Her63]) ensures that for ¢ in Z\Z(, the matrix A(¢) € M3(C) has no
eigenvalue of zero real part, and that the stable subspace associated with the eigenvalues of
negative real part, denoted by E_((), is of constant dimension, denoted p. Furthermore, the
integer p is obtained as the number of positive eigenvalues of the matrix A4(0). We denote by
E(¢) the unstable subspace A(() associated with eigenvalues of positive real part, which is of
dimension 3 — p.

In [Kre70] (see also [CP82] and [BGS07]) it is shown that the stable and unstable subspaces
E extend continuously to the whole space Z in the strictly hyperbolic case (Assumption 2).
We still denote by E1 the extensions to =. The hyperbolic region, denoted by H, is defined as
the set of frequencies ¢ such that matrix A(¢) has only purely imaginary eigenvalues.

The following assumption is very structural to the problem, and is the one which allows
amplification on the boundary, and thus instability.

Assumption 3 (weak Kreiss-Lopatinskii condition). e For all { € £\ Eg, ker BN E_(() =
{0}.
o The set T := {¢ € 3¥g|ker BNE_(C) # {0}} is nonempty and included in the hyperbolic
region H.
o There exist a neighborhood V of Y in X, a real valued C** function k defined on V, a basis
Ei(C),...,Ey(C) of E_(C) and a matriz P(¢) € GL,(C) which are of class C* with respect
to ¢ € V such that, for all ¢ in V,

B(E1(¢) -+ Ep(¢)) = P(C) diag (v +ir((),1,...,1).

Remark 1.2. First point of Assumption 3, requiring that ker BN E_(¢) = {0} for all { € £\ =,
implies in particular that p, the rank of B, equals p, the dimension of E_({). These two equal
integers will be denoted by p in the following. Assumption 5 below sets furthermore the integer
p = p to be equal to 2.

The so-called Kreiss-Lopatinskii condition is the first point of Assumption 3 that stands in
=\ Ep, and the next two points detail how this condition breaks on the boundary =y of = (for
the uniform Kreiss-Lopatinskii condition to hold, equality ker B N E_({) = {0} is assumed to
be satisfied everywhere in =, see [Kre70]). The second point asserts that the Kreiss-Lopatinskii
condition breaks only in the hyperbolic region H, and the third one ensures that when it breaks,
the space ker BN E_(() is of dimension 1, and that the default of injectivity of B on E_(() is
parameterize by the C* function x. In particular, x must be zero on Y, and nonzero on ¥y \ 1.

Together with Assumptions 1 and 2, Assumption 3 ensures that for all € > 0, system (1.1)
is weakly well-posed locally in time (which depends on €). A proof of a similar result, for
characteristic free boundary problems can be found in [CS08]. Indeed, the three assumptions 1,
2 and 3 are stable under small perturbations around the equilibrium, see [BGS07, Section 8.3].
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1.3. Oscillations. The notion of incoming, outgoing and glancing frequencies is now intro-
duced.

Definition 1.3. Let a = (1,1,£) € R4\ {0} be a characteristic frequency, and k the integer
between 1 and 3 such that 7 = 1,(n,&). The group velocity vo € RY associated with o is defined
as

Vo = vn,{ Tk(nv 5)

We shall say that o is glancing (resp. incoming, outgoing) if Octip(n,§) is zero (resp. mnegative,
positive). Then the vector field X, associated with « is defined as

1 1
(14) X, = W(at Ve V) = W(at — Vyrk(1,€) - Vy = (1) O, ).

Lax lemma, see Lemma 1.10 below, ensures that these constant coefficients scalar transport
operators X, appear naturally in the equations satisfied by the profiles arising in weakly non-
linear asymptotic expansions (see [Raul2]).

We describe now a decomposition of the stable subspace E_(() for { € Ey, that uses strict
hyperbolicity (Assumption 2).

Proposition 1.4 ([Wil96], Proposition 3.4). Consider ( = (1,n) € Z9. We denote by i&;(C)
forj=1,...,M(() the distinct complex eigenvalues of the matriz A(C), and if £;(C) is real, we
shall denote by o;(¢) = (1,m,&;(T,n)) the associated real characteristic frequency. If &;(C) is
real, we also denote by k; the integer between 1 and 3 such that T = 73,(n,&;(C)). Then the set
{1,2,..., M(C)} decomposes as the disjoint union

(1.5) {1,2,..., M(Q)} = G(Q) UZ(() UP(C) U O) UN(Q),

where the sets G(C), Z(¢), P(¢), O(C) and N({) correspond to indexes j such that respectively
a;(Q) is glancing, a;(C) is incoming, Im(&;(C)) is positive, a;(C) is outgoing and Im(&;(C)) is
negative.

Then the following decomposition of E,(C) holds

(1.6) EB Ee @ e P EF(¢

JEG(C JER(C) JEP(C)

where for each index j, the subspace E]_(Q) is precisely described as follows.
i) If j € P(C), the space E’(C) is the generalized eigenspace A(C) associated with the
eigenvalue i §;(Q).

it) If j € R(C), we have E{(C) = kerL(O, ozj(C)), which is of dimension 1.

iii) If j € G(C), we denote by n; the algebraic multiplicity of the imaginary eigenvalue i&;(C).
For small positive vy, the multiple eigenvalue i &;(T,n) splits into n;j simple eigenvalues,
denoted by i§§“(7‘ —iv,m), k=1,...,nj, all of nonzero real part. We denote by p; the
number (independent of v > 0) of the eigenvalues i&f(T —17,7n) of negative real part.

Then Ej_(C) is of dimension p; and is generated by the vectors w satisfying [A() —
i&;(Q)]*w = 0. Furthermore, if nj is even, p; = nj/2 and if n; is odd, p; is equal to
(nj —1)/2 or (nj +1)/2.

Likewise, the unstable subspace E (() decomposes as

(1.7) @ e @ Fe @ F©,

JEG(¢ JES() FEN(C)
with similar description of the subspaces Ei(C) In particular, if the set G(C) is empty, then
3= F_(() ® B4 (C).
For ¢ € =y, we denote by C({) the set of indices such that o;(() is real characteristic, that is
C(Q) :=Z(QUO(Q) UG(C).
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Definition 1.5. A frequency ¢ in Eg is said to be glancing if there exists j = 1,..., M({) such
that a;(€) is glancing, i.e. if G(C) is nonempty, hyperbolic if A(C) has only purely imaginary
eigenvalues, that is if P(() UN(C) is empty and mixed if P(¢) UN(C) is nonempty. We shall
denote by G (resp. H, EH) the set of glancing (resp. hyperbolic, mized) frequencies.

Definition 1.6. For ( € Zy not glancing, according to Proposition 1.4, we have the following

decomposition of C3:
=P Foe P Ee P FQe P E(

JEO(C) JEN(C) JEZ(Q) JEP(C)

In that case we denote by 11¢(¢) the projection from C3 on the stable elliptic component E€ (() :=
GSjep(QE]_(C) according to this decomposition.

The following result is adapted from [CG10, Lemma 3.2] to the case of mixed frequencies.

Lemma 1.7. For all ( € =g nonglancing, the following decompositions hold

(1.8a) = P ker L(0,05(0)) & F
JEC(Q)

(1.8b) = @ A44(0) ker L(0,0;(¢)) & Aq(0) F,
JEC(Q)

where F¢ is the generalized eigenspace of A(() associated with the eigenvalues of nonzero real
part. Furthermore, if we denote by P;j(() and Pr, (resp. Q;(C) and QF, ) the projectors associated
with the decomposition (1.8a) (resp. (1.8b)), then we have

(1.9) ImL(O, aj(C)) = ker Q;(¢),
for all j.

n [CG10], the result is proven only for frequencies ¢ hyperbolic, and the proof is slightly
simpler using directly the diagonalizability of matrix A({). Here the matrix is only block-
diagonalizable, and we have to deal with eigenvalues of nonzero real part.

Proof. The two decompositions come from the block-diagonalizability of matrix A((), the fact
that ¢ is not glancing and the invertibility of matrix A4(0). Indeed, for any nonglancing frequency

¢ € Zp, there exists therefore an invertible matrix 7'(¢) such that T(¢) A(¢) T(¢)~! is the block
diagonal matrix
T(Q)AQT(Q) ™" = diag (1(C); - - i&m (€), A+(C))

where the &;(() are real scalars, and the spectrum of the block A4+ (¢) is contained in C \ iR.
The proof decomposes in two main steps. First we construct a sequence of diagonalizable matrix
converging toward A(¢), in order to be able to adapt the method used in [CG10]. Then using
projectors defined for this sequence of matrix, analogous to P;(¢) and Q;(¢), we are able to
prove relation (1.9), using diagonalizability.

Step 1. We consider a sequernce (A% (0))k=0 of diagonalizable matrices converging toward
A= (¢). For k > 0, we denote by Tj,(¢) the invertible matrix such that

Ti(¢) AL(Q) Te(Q) ™" = diag(iAr, ..., iAg—m,)-
We also denote by Tj(¢) the block diagonalizable matrix
T3.(C) := diag(Im,, T(()),
and we finally define, for k > 0 the matrix A¥(¢) as
AR(C) = T(O) Te(Q) diag (i€1(C), - -+, im (€, iA, - - iAs—m,) Te(Q) T T(O)

Note that the sequence (Ak(C))k>0
converges toward A(¢). Using this diagonalizability we get the two following decompositions of

is by definition a sequence of diagonalizable matrices which
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C3, for k > 0:
me 3—mg¢
(1.10a) C3 = @ker (AF(¢) —i&; (¢ @ ker (A%(¢) —iN)
N 3—mg¢
(1.10b) = @Ad 0) ker (A*(¢) —i&;(¢ @ Ag(0) ker (A*(¢) —iNT).

First we note that, by definition of the matrix A¥(¢), the eigenspace ker (A*(¢) — i&;(¢)1) is
equal to kerL(O, ozj(C)) and that

37m<

P ker (A¥(¢) —iNI) = F,
j=1

Thus we define the projectors Pi’j((:) (resp. Qij(C)) on ker (A*(¢) — i\;I) (resp. Ag4(0)
ker (A*(¢) — i\;I)) associated with the decomposition (1.10a) (resp. (1.10b)). According to
the previous remark we then have

(1.11a) I:PI(C)+...+ng(c)+Pi,l(C)+_ Pk3 ()

(1.11b) :Q1(€)++ch(c)+Qil(C) +Qk3 mg(C)
Step 2. For jo between 1 and m¢, analogously to L(O7 Ozjo(())7 we define

L1 (0, 040 (0)) = 144(0) (Ak(C) — i&p(O)T).

By definition and since the following relation is satisfied

L(0,a;y(€)) = iA4a(0) (A(C) — i&, (),
the sequence (Ly(0,aj,(¢))),, converges to L(0, ay(¢)). We consider Ly (0, aj,(¢)) X an ele-
ment of Im Ly, (0, o, (C)) with X € C3, and the aim is to prove that it belongs to ker @}, (¢). The
latter is a closed space, so, since the sequence (Lk (0, ajO(C)) X)k>0 converges to L(O, ajO(C)) X,

it will follow that Im L (0, o, (¢)) C ker Qj,(¢) and the conclusion then infers because of equality
of dimension of the two spaces. ‘

We have, by definition of the projectors P;(¢) and Pj’i’j (¢) and because of the decomposition
(1.11a),

me 3—m¢
L0y (€)) X = i44(0)(Ai(¢) —ifjo(C)I){Z O X + Z PO X }
7j=1
= iAq(0) D (i&(C) — i€y () P5(C) X +iAq(0 Z (€) — &5 (Q)) PE7(¢) X,
T =
and the last term belongs to
3—my
@Ad 0) ker (A*(¢) —i&;(¢ QB Aq(0) ker (AF(¢) = iMI) = ker Qj,(€),
J#Jo
concluding the proof. O

The interest is now made on the frequencies created on the boundary and then lifted inside
the domain. Recall that we considered a quasi-periodic boundary forcing term of frequencies
¢/e and v /e, with ¢,1 € R\ {0}. In the following we will make restricting assumptions on ¢
and 7 in order to obtain a particular frequency configuration, eventually creating an instability.
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By nonlinear interaction, frequencies ¢ and v on the boundary create the following lattice of
frequencies on the boundary:

Fo =pZDYL.
To avoid the complications induced by the glancing modes, we assume that there is no glancing
frequency in F; \ {0}. This is a common assumption, see [CG10, CGW11].

Assumption 4. We have
(.7-"5,\{0}) ng=790.

To parameterize J;, we introduce the following subset of Z2 \ {0}:

no Ang =1,
n1>0 or n=0,n0>0]["

BZ2 = {(nl,ng) S ZQ \ {0}

of couples of coprime integers of which the first nonzero term is positive. Then, each frequency

:=n1 @ +nz1 of F,\ {0} is parameterized in a unique way by ng := (n{,n9) € Bz2 and \ € Z*
such that (ny,n2) = A (n?,nY).

In the following, we will allow ourselves to alternate without mentioning it between the
following representations of a frequency of ¢ € F, \ {0}: n = (n1,n2) in Z? \ {0} such that
¢ =n1¢+n21 and ng = (nf,nd) in Bzz and A in Z* such that n = Any.

Because of the hyperbolicity of the system, boundary frequencies ¢ of F; are lifted into
frequencies (¢, §) inside the domain, which must be characteristic frequencies due to polarization
conditions. Furthermore, frequencies (¢,£) with Im¢ < 0 are excluded to obtain bounded
solutions, and we have already discarded glancing frequencies by Assumption 4. Therefore, the
set F of frequencies inside the domain is given by

F={0}U{(¢.&(Q) ¢ € F\{0},5 €C(QOUPQ)}-

The following assumption details the configuration of frequencies which is assumed to hold in
order to create an instability. It is a generalization to our case of [CW17, Assumptions 1.7 and
1.9], where the only frequency of the problem, ¢, was supposed to be nonresonant, hyperbolic,
and in Y. In [CW17], the authors explain that allowing the boundary frequency ¢ to be resonant
could lead to an over-determination of the system. Assumption 5 below requires in particular
that frequencies ¢ and v are nonresonant!, hyperbolic, and in Y. We additionally assume two
resonances between frequencies lifted from ¢ and ¥ to hold, which will eventually allow us to
create an instability.

Assumption 5. There exists a frequency v in Fp \ {0} defined by
)\cp @Y+ )\¢ Yv+rv=0

with coprime integers Ay, Ay, such that (—Ay, —Ay) is in Byz, and such that the following condi-
tions hold.

i.) Frequencies ¢, 1 and v are in the hyperbolic region H.

ii.) Frequencies lifted from ¢,v,v, denoted by ¢;,j,v;, j = 1,2,3 are such that ¢;,;,v;,
j =1,3 are incoming frequencies and p2, s, vo are outgoing frequencies.

iii.) We have Fy 'Y = {p, —p, 1, =} (so in particular we have p,1p € T and v € Zg\ T).
iv.) The following two resonances hold:

(1.12a) Ag 1+ Ay b1 + 12 =0,

(1.12b) Ap @3+ Ay 2 + 10 = 0.

v.) There is no other resonance between frequencies inside the domain. More precisely, if
there exists a resonance relation of the form

Arag +Aan +A3a3 =0,

"n the sense that two frequencies lifted from ¢ cannot resonate with each other, and the same for ).
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with A1, A2, A3 € Z* and a1, a9, a3 € F \ {0} noncolinear, then, there exists A\ € Z*, such
that up to a renumbering, \i = Ay, A2 = Ay, A3 = X and (o1 = @1, az = 1 and
ag =) or (a1 = @3, ag = g and ag = ).

Frequencies lifted inside from frequencies o, ¥ and v are depicted in Figure 1. There is an
amplification in the lifting of ¢ and v because these frequencies are in the region T where the
Kreiss-Lopatinskii condition is not satisfied, in contrast to v. Amplification arise since, for a
frequency in T, there is an ascent of small amplitudes toward higher one, namely, a boundary
source term of order O(E"H) occurs in the equations for the profile of order 0(5"). Therefore,
when amplification occurs, inside profiles lifted from boundary terms of order O(s"“) are one
order higher, namely O(s”).

P1 QT QT %1 QT
72 3 v Vs

t/: o ot AN o t

Y Y Y

Tq Zd Ld
A A y

€
S
Y

Legend

O Amplification

FI1GURE 1. Frequencies lifted from ¢, ¥ and v.

Remark 1.8. e Point i.) of Assumption 5 asserts that each frequency ¢, 1 and v is lifted into
three real characteristic frequencies inside the domain.

e Point ii.) of Assumption 5 implies in particular that the integer p, which is the rank of B
and the dimension of the stable subspace E_(() for ¢ in Z, is equal to 2.

e In relations (1.12), the numeration of the frequencies occurring in the resonances (1.12) is
arbitrary. For the first resonance (1.12a), each of the two incoming frequencies lifted from
w and 1 can be chosen. It sets the numbering of the frequencies lifted from ¢ and . Next,
for the second resonance (1.12b), there is no choice, the incoming frequency lifted from ¢
which occurs in the resonance must be the one which did not occur in the first one, @3 in
our fixed numbering, since we already required that A, 1 +1v2 = —Ay 91, and 13 is the only
outgoing frequency associated with ).

e We choose a numbering of «;(¢) for ¢ = ¢, 9, v such that, for any j = 1,2, 3, we have

o;(C) = G,
where the (; are the hyperbolic frequencies defined in Assumption 5.

e The condition (—Ay,, —Ay) € Bzz is not restrictive and only relies on permuting the notation
for ¢ and ¥ or —p and ¢. It is made to simplify notation in the following.

A useful notation is now introduced for the resonances.

Definition 1.9. For ( € {p,¢¥,v}, and j = 1,2,3, the set R((,7) is defined as the set of
quadruples ({1, (2,71, 72) in {@, ¥, 1/}2 x {1,2, 3}2 such that the following resonance holds

)‘C aj(C) + )‘Cl Qjy (Cl) + )‘Cz Qjo (CQ) =0,

where we have denoted )\, := 1.
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For example, we have, according to Assumption 5,
R(p,1) ={(¢,»,1,2), (1%, 2, 1)}, R(p,2) =0, R(p,3) ={(¥,v,3,2),(~,¥,2,3)}, and
R(V7 2) = {((P? /l/)? 17 1)? (@7 ¢? 3) 2)7 (’(/]7 S07 17 ]‘)7 (w? 907 27 3)} .

We conduct now a formal discussion on how the configuration of frequencies ¢;, ¢; and v;, j =
1,2, 3 and the two resonances (1.12) are expected to create an instability, as represented in Figure
2. First, the boundary profiles €2 ¢° and 2 h® of frequencies ¢ and 1 in (1.1) create, because
of the amplification due to the breaking of Kreiss-Lopatinskii condition for those frequencies,
incoming interior profiles of frequencies 1, @3, and 1, 13 of orders respectively O(e) and 0(62).
Then because of the resonance relation (1.12a), the profiles associated with ¢; and v resonate
to create a profile of outgoing frequency v5 and of order 0(52)2. This profile interacts, through
resonance relation (1.12b), with the one of frequency ¢3 and of order 0(5), which is lifted from
the boundary forcing term £2 g°. This resonance leads to a profile of frequency 13 and amplitude
0(52), which is an outgoing profile, so a reflection and thus an amplification occur. Indeed, it
creates a boundary profile of frequency v and order 0(52): we obtain instability. Indeed, this
boundary profile creates, through amplification on the boundary for v, a profile of frequency
11 and order O(e), which is one order higher than the profile of frequency ¥; we started with.
Iterating this process leads to an explosion.

Td

Qr

7 wr

Legend

Order of profile’s

. . B
Q Amplification AW\ Boundary profile € amplitude

v

§ p Resonance —— Interior profile

-

F1GURE 2. Creation of instability through amplification.

We make now a small divisors assumption, which is adapted from [CW17, Assumption 1.9].
This assumption is needed only for frequencies for which the uniform Kreiss-Lopatinskii condition
is not satisfied, so, in our case, for ¢ and 1. Analogously to [CW17, Assumption 1.9], it requires
a polynomial control of the determinant of the symbol associated with combinations of incoming
frequencies, using the fact that frequencies lifted from ¢ do not resonate, and the same for .
The formulation is simpler than the one of [CW17, Assumption 1.9] since in our case there is

20ne of the quadratic term in the equations has a factor 1/¢ in front of it, because the product A;(u®) d;u®
involves a derivative which counts as 1/¢ for oscillating wave packets at frequency of order 1/e.
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only two incoming frequencies, so the only possibility for a combination of it is A1¢1 + A3,
with A1, A3 € Z*, and the same for .

Assumption 6. There exists a constant C > 0 and a real positive number mqg such that, for
C =, for all A\, A3 € Z*,

| det L(0, A1 ¢1+ A3 C3)| = CJ (A, Ag)| ™

Finally, we define several vectors associated with the previously introduced eigenspaces. For
¢ in F \ {0} and j € C((), we denote by r¢ ; a unit column vector of the one dimensional space
ker L (0, a;(¢)), and ¢ j a row vector such that

(1.13) le; L(0,05(0)) =0
with the following normalization: for all ¢ in F \ {0} and for all 7, ;" in C({), we have
(1.14) gC,j’ Ad(O) TC,J' = 5;,

The projectors P;((), Q;(¢) (defined in Lemma 1.7) and the vectors r¢ ; and £ ; are chosen
to be homogeneous of degree 0 with respect to (. Accordingly, we define the partial inverses
R¢ j, which satisfy, for ¢ in F;, \ {0} represented by ng, A in Bzz x Z*,

(1.15) Re L(0,05(¢)) = L(0,2;(Q)) Rej = A (I — Prj)-
Consider ¢ € T. Assumption 3 asserts that the space ker BN E_(() is one dimensional, so

we denote by e¢ a unit vector in this space. Now, since, according to the same assumption, T
is included in the hyperbolic region H and because of Proposition 1.4, we can decompose e; as

(1.16) ec = Z et

JEL(<)
with e ; € Spanr¢ ; for j € Z(¢). We also denote by b a vector of C? such that
(1.17) BE_({)={X eC?|b.- X =0},

that is, a nonzero vector of ker tB| E_(¢)» which is of dimension 1. Notation b; - X refers to the
complex scalar product in C2.

Using vectors 7¢; and £ j, we have the following lemma, analogous to the one of [Lax57].
The proof of this particular result can be found in [CGW11], and is recalled here for the sake of
clarity.

Lemma 1.10 ([CGW11, Lemma 2.11}). For ¢ € F, \ {0} and j € C(¢), we have
Cej L(0,9:) ¢ = Xay(0)s
where X, (¢) s the vector field defined in Definition 1.3.

Proof. Denote by k the integer between 1 and 3 such that, if «;(¢) = (7,7n,£), then 7 = 73,(n, §).
Since ¢ € Fp \ {0}, the frequency ¢ is not glancing, so, according to definition 1.3, we have
Oemi(n, &) # 0. Therefore, according to the implicit function theorem, the function ¢ — &;(¢’)
is differentiable near ¢. Indeed, ; is such that, if ' = (77, 7'),

(1.18) m(n, &7 ) =7 =0.

Therefore®, seen as a function of (, the vector r¢,; is also differentiable with respect to (.
Differentiating relation (1.18) even proves the following relations:

o U
(1.19) 0:&(t,m) = m, 677,,5](7',77) = Derio(n, €) )

Now, differentiating the relation

L(0, (7.m,&(rm))) ¢ = 0

Vp=1,...,d—1.

3Here we extend the definition of r¢,; to any frequency ¢ in =\ G.
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with respect to 7 and 7,, p=1,...,d — 1, and multiplying on the left by £ ;, gives
lejre +0-85(Tm) be i Aa(0) e = 0,
and, forp=1,...,d — 1,

ECJ Ap<0) reg Tt 8,7p§j (7’, 77) ECJ Aq(0) r¢; = 0.
With relations (1.19), the result follows. O

The following result could be seen as an analogue to Lax lemma, for the boundary. Indeed, it
asserts that a certain operator appearing in the boundary equations is actually a linear transport
operator with constant velocity. The result is due to [CG10], and its technical proof is not recalled
here.

Lemma 1.11 ([CG10, Proposition 3.5]). Let ¢ = ¢, 1, and recall that k is the scalar function
of the weak Kreiss-Lopatinskii condition, see Assumption 3. Then, there exists a nonzero real
scalar B¢ such that

be - B (Rm L(0,0.)ec1 + Re 3 L(0,0,) 64‘,3) = B¢ | 076(C) 0 + Z On; K(C) Oz,

Moreover, the coefficient 0:x(C) is equal to 1.

Remark 1.12. In particular, the previous result ensures that the operator b - B (Rg,l L(0,0,) ec1
+ R¢ 3 L(0,0.) 6(73) is tangent to the boundary.

2. DERIVATION OF THE SYSTEM

This section is devoted to the derivation of the general system studied in this article. We
start by detailing the ansatz we choose here, and by displaying the WKB cascade associated
with system (1.1). Then we proceed by trying to decouple this cascade for the profiles.

2.1. Ansatz and WKB cascade. The ansatz for each amplitude U,, of (1.3) must allow to
consider both oscillating modes (associated with characteristic frequencies o () for ¢ € F\ {0}
and j € C(¢)) and evanescent modes (associated with evanescent frequencies «;(¢) for ¢ € F,\{0}
and j € P(¢)). We define at this purpose the following spaces of profiles. We denote by T the
one-dimensional torus.

Definition 2.1. The space of evanescent profiles Py’ is defined as the set of functions UV of

Cp (R;gd, H>(Qpr x ']I‘Z)) which converge to zero as xq goes to infinity.

The space of oscillating profiles P3¢ is defined as the set of formal trigonometric functions
in xq with values in the Sobolev space H>®(Qp x T?), that is, formal series

U*(z,01,02,xa) = > _ U™ (2,01, 62) € <X,
£eER
with Ug™ € H*(Qr X T?) for £ € R.
Finally, Pr is defined as the direct sum
Pr =Prce Py
The ansatz is the following: we look for an approximate solution

/ /
Z z T
USEPP () = 0° (Z, QP’ P d)

€ e ¢

where the formal series v¢ is given by
(21) vs(27017027Xd) = Zgn Un(2791792aXd)7
n=1

where, for n > 1, U, belongs to Pr.
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Formally plugging ansatz (2.1) in system (1.1), we obtain the following WKB cascade® (see
[CW1T7]) for the profiles (Up)p>1:

(2.2a) L£(89,0,,) U1 =0

(2.2b) L(0p,0y,) Uz + L(0,0.) Uy + M(U1,Uy) =0
n n—1

(2.2¢) L(, 0xy) Unt1 + L(0,0.) Up + > M(Un—tr1, Uk) + > N (Uns, Uy) =0,
k=1 k=1

where (2.2¢) should hold for any n > 2. In (2.2), the fast operator £(9p, 0dy,) and the quadratic
operators M and N are defined by

L(0g, 0x,) = L(0,¢) g, + L(0,%) Gy, + Aa(0) Oy,
M(u,v) :=Li(u, ) Og,v + Li(u, 1)) Op,v + dA4(0) - w0y, v

1
= dAL0) - u (pk Og, + 1k gy )v + dAG(0) - u Dy, v,
k=1

d
N(u,v) :=L1(u,0.) v := Z dAg(0) - u O,
k=1
where we have denoted by, for X in C3 and ¢ = ((p,...,(4-1) € RY,

d—1 d—1
L(0,¢) := L(0,(¢,0)) = > GeAr(0),  Li(X,¢) := Y Gk dAx(0) - X.
k=1 k=1

The boundary and initial conditions of (1.1) reads
(2.3&) B (U1) O(ZI, 91, 92) = O, B (UQ)
(2.3b) B (Ug) O(Z/,91,92) = H(Z/,Qg), B (Un)

(2/,61,62) = G(2',61)
(Zla 917 92) = 07 Vn 2 4>

|74, xa= [z q,xqa=0

|4, xa= |z4,xa=0

and
(2.4) (Un)‘t<0 =0, Vn>1

The aim is now to decouple cascade (2.2). First we use polarization equation (2.2a) to obtain
the form of the leading profile Uy, and proceed to show that the mean value U} of U; is zero using
evolution equation (2.2b). Then we need to determine the oscillating part of U;. Equation (2.2b)
leads to a transport equations for each mode. When the equation is outgoing (that is, when
the frequency is outgoing), the transport equation can be solved with a source term eventually
depending on other leading profiles, due to resonances. When it is incoming (i.e. when the
frequency is incoming), we need to determine a boundary condition from first equation of (2.3a).
Two cases may occur. If the associated boundary frequency ¢ is not in T, that is, for { # ¢, 1,
we can write boundary condition (2.3a) for ¢ as B X = F', where source term F' depends on the
trace of the outgoing leading profile for this boundary frequency ¢, and where X (containing
traces of incoming leading profiles) belongs to E_(¢). Since B is invertible on E_({) according
to Assumption 3 and the fact that ¢ ¢ Y, this boundary condition B X = F' leads to a boundary
condition for traces of incoming leading profiles. The second case is more complicated. If ( € T,
that is, if ( = ¢, 1, matrix B is no longer invertible on E_(({). Therefore, boundary condition
B X = F cannot be inverted, and leads to both a compatibility condition (which we shall see
will over-determine the system), and expressions for traces of incoming leading profiles for ¢
and v depending on unknown scalar functions ai, and a}p. Then, to determine these functions
a}pand a}b, we need investigate first corrector Us.

According to equation (2.2b), the first corrector Uy is not polarized. But this equation allows
us to determine of formula for its nonpolarized part, depending on the leading profiles. We write

4We have used here the assumption that coefficients A; are affine maps.
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second equation of boundary condition (2.3a) with these expressions for the nonpolarized parts
which leads to equations on the traces of the nonpolarized parts, and therefore, equations on
the traces of leading profiles, namely ai, and a}p. However, the system of equations obtained is

still not closed, since equations on a}p and aqlz) involve traces of the first corrector Us.

The next step is to obtain equations on the polarized part of the first corrector Us, which is
achieved using equation (2.2c¢) for n = 3. Once again, depending on the frequency, we obtain
incoming or outgoing transport equations with source term depending on leading profile and
first corrector. For incoming equations, when the associated frequency ( is not in T, boundary
condition (2.3a) can be inverted to obtain a closed system. Otherwise, when ¢ belongs to T, the
same arguments as for the leading profiles leads to compatibility conditions (that are these time
always satisfied by previous construction) and expressions for traces of incoming first corrector
profiles for ¢ and ¢ depending on unknown scalar functions ai and ai.

Investigating the nonpolarized part of the second corrector Us leads, in its turn, to equations
on afo and ai, depending once again on trace of the second corrector Us, preventing to close the
system. This method applies recursively to any order.

2.2. Rewriting the equations: leading profile and first corrector. This subsection is
devoted to the almost-decoupling of the cascade (2.2), (2.3) and (2.4). The computations are,
for the most part of it, formal. Except for the leading profile, we will not detail the obtaining of
formulas for the evanescent part, as it will not be interesting for the instability analysis, since
all three frequencies ¢, ¥ and v are hyperbolic.

2.2.1. Leading profile. We start by deriving the polarization condition for U; from (2.2a), re-
calling the analysis of [Les07]. If we write Uy in Pr as

U1(2797 Xd) UOSC(Z7 97Xd> + Ulev(zﬁ 07 Xd)
Z ZUlosc zn6‘ zgxd+ Z Ulev Z X) zn@
nezZ™ R nezm
equation (2.2a) reads
DD iL(0, (€ €) Upe™(z) e etox
nez? EER
+ > {iL(0,n - ¢) + Ag(0) Dy, } Ux™ (2, xa) €™ = 0.

nez?

Therefore, on one hand, for the oscillating part, we get L( (n- ¢, {)) IOSC = 0 for every
n € Z2\ {0} and ¢ € R, so, if (n- ¢, &) is noncharacteristic, U1 ¢ =0 and 1f§ =¢j(n- () for
some j € C(n- (), we find that Urll’gsc belongs to ker L(0, a;j(n C)) = Spanry.¢ ;. Thus we write

Up e = Oho i Tno-C.
if n = Ang with ng € By2 and A € Z*, and where Urlno,j,/\ is a scalar function of 7. On the other
hand, for the evanescent part, we get U&’ev =0, and, for n € 72\ {0}, multiplying by A4(0)~1,

00, UL — Aln- ) UN™ =0
Solving this differential equation in P7" leads to
Un® (2, xa) = XA (0 - ) U™ (2,0).
In short, polarization equation (2.2a) asserts that U; reads
(2.5) Ui(z,0,xq) Z Z Z (2 e Al giAE(nC) xa Tnc,j
neB,s jeC(n-¢) AeZ*

+ Y AR O (- ) UYY(2,0) ™.
nez2\{0}
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We start by showing that the mean value U7 is zero, using equation (2.2b). The oscillating
part of L(0,0,) Uy + M(Uy,U,) is given by L(0,0,) UP* + M (U, UP*) and according to (2.5)
and the expression of the quadratic operator M, the latter reads

(2.6a) LO0,0) U+ > Y > L(0,0:) op iy e ePlxag
neB,s jeC(n-§) AeZ*
(2.6b) + 3 S LU idaj(m- Q) ray oh i €N NGO

neB, jeC(n-¢) AEZ*

(2.60) + Z Z Z L1 (Tnl'C,jl s ) )\2 Qo (HQ : C)) T'ns-¢,j2
ni,n2€8,2 j1€C(n1-¢) A\1,A2€Z*
j2€C(n2:C)

ol 1 et (Aimi+Aan2)-0 i (A&, (n1-¢)+A285, (n2-C)) Xa

n1,j1,A1 Ina,j2,\0 )

where, for a = (ag, a1, ..., aq) € R and X € C3, we have denoted

d
Li(X,0) =) ajdA(0) - X.
k=1

We now isolate the nonoscillating terms in (2.6), to obtain a system satisfied by the mean
value Uf. In equation (2.6), the terms in the sums in (2.6a) and (2.6b) are always oscillating
since n € Byz. As for them, the terms in the sum in (2.6¢)are not oscillating if and only if
)\1111 —l—)\2n2 =0 and )\1 é-jl (n1 C) +)\2 §j2(n2 . C) = O, that iS, if n; = no, )\1 = —>\2 and jl = jQ.
Therefore, we deduce from (2.6) that we have

(2.7) L(0,0,) Uy + Z Z Z Ly (rn.gj, —iAoj(n- C)) Tnc,j 01117j7/\ Urll,j,—A =0.

neB,s jeC(n-¢) AEZ*

By a change of variable A = —\ we prove that the second term in the left-hand side of (2.7) is
actually zero, so we have the following linear constant coefficient equation

L(0,0,) Uy = 0.
With the following boundary and initial conditions obtained from (2.3a) and (2.4),
B(L"T)\.’r(,%,:o =0, (Ul*>\/,gu =0,

we get that the mean value U; satisfies a system which is weakly well-posed, see [Cou05], with
zero source term, boundary forcing term and initial term, so the mean value U7 is zero.

Since U7 is zero, equation (2.2b) now reads, for each nonzero characteristic mode A a;(n- (),
withn € Byz, j € C(n-¢) and X € Z*,

. 2, 1
(2.8) iL(0,aj(n-¢)) Un,gj?n() + L(0,0:) 0q jx Tn¢,j
: 1 1
+ > L1 (rny-.gi A2 055 (02 €)) Tny¢ o Oy jy Ay Ting gohe = 05
(n1,n2,51,52,A1,A2)

where the sum is over the set of 6-tuples (ny, na, j1, j2, A1, A2) in (B’Zz)2 xC(n1-¢)xC(ng-¢)x (Z*)?
such that A\joj, (n1-¢)+Aeaj, (n2-¢) = Aaj(n-¢). There are two possibilities for that to happen.
e Either frequencies A; o, (ny-¢) and A2 o, (ny-¢) are colinear (therefore colinear to oj(n-¢)),
that is to say n; = no = n and j; = jo = j. This is called self-interaction of frequency
aj(n - ¢) with itself. Note that the obtained frequency Ao, (ng - ¢) + Aaaj,(ng - €) is then
always real characteristic.
e Or frequencies A\j oy, (n1-¢) and A2 aj, (n2-¢) are noncolinear, in which case a true resonance
in the sense of Assumption 5 occurs, namely (1.12a) or (1.12b). For example, if aj(n-¢) = 92
(i.e. if n = (0,1) and j = 2), then according to Assumption 5, it implies that A = kX, for
some k € Z* and, up to a permutation, ny = (1,0), j1 = 3, A = —kAy and ng = (=Ay, —Ay),
Jo =2, Ao = —k.
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Recall that, for a frequency A\( = An-¢ € F, \ {0} with n € By2 and A € Z*, we alternate from
the representations A ¢ and (A, n), so we shall denote

Ué,j,k = Urlx,jw Vi=1,2,3,Y\ € Z".

According to the previous analysis, we can now write the system satisfied by the leading
profiles. For example, for 1) which is involved in resonance (1.12b), multiplying equation (2.8)
for n = (0,1) and j = 2 by the vector £y cancels the first term of (2.8), according to (1.13).
Thus we obtain, for A € Z*,

L2 L(0,0:) Ty 2040y + Ly L (T2, ¥2) rp2 Y 120l oy Ohian,
Al t+HAo=A

+ ]lA:k)\wéqp,z{Ll (1.3, —12) Tv2 + L1(rv2, —Xp03) 7”@,3} ik C’;,?),—k)w, Ui,2,—k =0.

In the left-hand side of the previous equation, the first term, the transport one, corresponds to
the second term of the left-hand side of (2.8), the second one, the Burgers type term corresponds
to the self-interaction part of the third term of the left-hand side of (2.8), while the last one,
the resonant term, corresponds to the resonance part of the third term of the left-hand side of
(2.8). This splitting between transport, self-interaction and resonance terms can be generalized
to any frequency. For ( = ¢, ¢, v, j =1,2,3 and A € Z*, we have

1 . 1 1
(292) X ) 0ln+ Dy D, ol 0l

Alt+A2=A
ke D AR ROl i o, Tl kg, = 0
(C1,€2,91,32)
ER(C.7)
and for other frequencies ¢ € Fp \ {0, ,%,v}, 7 € C(¢) and X € Z*,
1 o 1
(2.9b) Xay©0liatDeg Y, a0l 080, =0,
Al+A2=A

We have denoted, for ¢ € F, and j € C(¢), the vector field Xa;(¢) and the self-interaction
coefficient D¢ ; as

(2.10&) Xaj(o = fgj L(O,az) T<7j, DCJ = ECJ L1 (rgj,aj(g“)) TC;j?

J§1 J1

and, for ((1,¢2,J1,J2) € R(¢,J) (in the case ( = ¢, 1), v), the resonance coefficient Coin

(2.10b) Jg’]]; = fc}j L1 (T§1,j1 N )\gg Aoy (CQ)) T¢a,42-

According to the Lax Lemma 1.10, the operator £ ; L(0,0.) r¢ j of (2.10a) is equal to the vector
field (1.4) which has already been denoted by X a;(¢)» 80 the notation is coherent. In the following,
for ¢ € 7 \ {0} and j € C((), we denote by X¢ ; the vector field X, () and v¢j = v, () the
velocity vector associated with it.

For all frequencies ¢ = n - ¢ with n € By2 except for ( = ¢,v,v, and for all j € C(¢), since
the frequency a;(¢) does not occur in any resonance, if we denote by oé’ ; the series

0¢,(2.0) Z g 2) e,
AEZ*
then, according to (2.9b), we have the Burgers type equation

(2.11) Xcjol;+ Dejotdect; =0,

along with the initial condition (0%7‘7%:0 = 0, which is a nonlinear scalar transport equation
in the half space Q7. If the frequency «;(() is outgoing, i.e. if the last component of v¢ ; is
positive, there is no need for a boundary condition, so we deduce from (2.11) that 027 j is zero.
Therefore, for A € Z*, we have aé A= 0. The same arguments can be applied for the outgoing
frequency 9 since there is no resonance for it.
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If ;j(¢) is incoming we need in this case a boundary condition to determine the trace of
aék(z, ©) at x4 = 0. From boundary condition (2.3a) for the frequency A\(, A € Z*, writing of
Ui (2.5) and the fact that all outgoing frequencies for ¢ have been proved to be zero, we deduce
that

1l,ev
(2.12) B Z 3N fog=0"6d T B (U3 1 0m0 = O
JEZ(C

Since AC € F, \ T (because for now we consider ¢ # ¢,1) and, according to decomposition (1.6)
of the stable subspace E_((), the vector in (2.12) to which matrix B applies lies in E_(A(),
on which B is invertible, according to Assumption 3. Therefore we deduce from the previous
equation (2.12), using vectors (¢ ;, that

(213) (O—%ej)h:d:o - 0’ V] € I(C>

Along with (2.11) we get Uéj’)\ = 0 for all A € Z*. We have therefore proven that for all
frequencies ( = n - ¢ with n € B2 except for ( = ¢, 9, v, and for all j € C(¢) and \ € Z*, we
have

1 —
¢ jx =0
In the same way we deduce from (2.12), using decomposition (1.6),

( /i&ev)lxd,Xd=0 =0,

so, according to (2.5), we can set the evanescent part U of U to be zero.

We now need to determine boundary conditions for the incoming frequencies ¢;, 1; and v;
for 5 = 1,3 as well. For the frequency v we obtain, in the same fashion as before, since v is in
the hyperbolic region H, for A € Z*,

B ((Ui,l,,\)lmdzo U2 (011’727>\)|xd=0 T2 T (0573”\)‘%:0 TV’3> -0

so, for j = 1,3, according to the normalization (1.14),

(Ji,j,A)p:d:o = —Ly; Aa(0) (B\E—(V))_l B(O-IE72,)\)|xd=0 2

We denote by p,,;, for j = 1,3, the coefficient

-1
(2.14) po,j = —Ly,j Aq(0) (B|E_(,,)) Br, o,
so that, for j = 1,3, we have
(2.15) (UIE»J})\)\:M:O Tv,j = Hu,j (0-;2:)\)‘1'(1:0 Tv,j

For ¢ we have, in a similar manner, since ai} 9y is zero for A € Z*,
1<

B ((Uslo,l,,\)la:d:() o1+ (0;73»/\)\xd:0 7“%3) =0

for every A in Z*, so, according to (1.6), the vector in factor of B in the left-hand side belongs
to ker BN E_(yp). But since ¢ is in T, the latter space is of dimension 1 and reads Spaney, so
there exists a scalar function a, ) of wr such that,

(o 510:1,/\)\3:(1 oTed T (003 A)|zd:0 Tos =y €p.

Therefore, according to decomposition (1.16) of e¢, for j = 1,3,

1 1
(216) (O-SOJvA) ‘fL‘d:O T@’j - agva eg@,j'
Finally the case of the phase ¢ gather the two previous ones. We have, for \ € Z*,

b <(Ui,1,x>\xd:o roa + (7620 jrymo o2 + (030 gm0 ’"1"73) =0
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In particular, because of (1.6), it implies

1
1 t
B(0y o) pymo T2 € T Bip_ ) = (ker B|E7<w)> :

Therefore, according to the definition of by, the following necessary condition follows:

b’[l] . B(O’i’z/\)lmd:o 7"¢72 = 0.

But since the scalar by, - By 2 is not zero®, we necessarily have
1 —
(2.17) (7.20) jpgm0 = 0
When it is satisfied we can write, in the same way as for ¢, for j =1, 3,
1 1
(2.18) (0050) (gm0 T0d = T €35

with ay \ a scalar function of wy.

At this point we have obtained an constant coefficient equation for U}, and transport equations
(2.9a) and (2.11), associated with (when incoming) boundary conditions (2 13), (2.15), (2.16)
and (2.18), but the last two ones are expressed through scalar functions aC , Which are still to
be determined, so the system is not closed at this stage. Also note that condition (2.17) might
raise an issue of over-determination of the system.

To determine the equations satisfied by coefficients a}w\ and aql/w\, we need to study the
nonpolarized part of the first corrector Us.

2.2.2. Nonpolarized part of the first corrector. For the first corrector we no longer have a po-
larization condition such as (2.2a), so noncharacteristic modes may appear through quadratic
interaction of characteristic modes. Thus the first corrector U, reads

Ua(z,0,xd) = Z Z Z U2 N el Al GiAg;(n:C) xa

neBb,s jeC(n-¢) \eZ*

+ 30 S U (2 xa) € 4 UP(2,0, xa),
neB,s AeZ*

where Uj is the mean value of Us and U?"¢ corresponds to the noncharacteristic modes. Ac-
cording to (2.2b), the noncharacteristic part U%"¢ satisfies (since there are only characteristic

modes in L(0,0,) Uy),

(2'19) £(897 aXd) U = — Z Ll(rCl g1 Qo (@)) T'¢a,52 A2 aél,jl,kl Uéz,jz,)\g

(¢1,€2,41,42,
AL A2)ENR

etAmi+Aonz)-0 Ji(Ai&j, (C1)+A285,(C2))xa

where N'R denotes the set of 6-tuples ({1, (2, j1, j2, A1, A2) such that the frequency
A1y (C1) + Az ajp (G2)

is noncharacteristic (which is such that there is no resonance). Note that in (2.19), only occur
the boundary frequencies ¢, and v, since for all the others, the first profile is zero. Since all
frequencies in U?"¢ are noncharacteristic, equation (2.19) determine U?"¢ totally. Indeed, for
each mode of noncharacteristic frequency A1 v, (1) + A2 v, (G2) with (¢1, G2, 71, J2, A1, A2) € NR,
the operator £(dp, dy,) reads i L(0, Adyaj, (C1) + A2evj, (¢2)), which is an invertible matrix.

Since for every boundary frequency ¢ = n-¢ € Fp \ {0, ¢, 1, v}, the oscillating profile 027 ix
is zero for j € C(¢) and X\ € Z* and since there is no resonances generating theses frequencies,
according to (2.2b), the profile U ’ f satisfies

L(0,0(C)) UZS% =0,

Sthe linear form by - B is not uniformly zero and is already zero on two of the three vectors 74,1, ry,2 and 7y 3
constituting a basis of C3, so cannot be on the third one
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so it is polarized, and we denote by 02 N the scalar function of {27 such that

20sc_
U, njA Ugg,ﬂ”c,]

With the same arguments as for the leading profile, we get the following polarization condition
for the evanescent part: Uy = 0, and, for n € Z2\ {0}
Uﬁ’ev(z, Xd) = eXaAn-C) I(n-¢) Ufl’ev(z7 0).

Therefore, Us reads as the more precise following way,

(2.20)

Us(z,0, xa) Z Z Z U2;s§ eiAn0 JiXE;(n¢) xa
neb;s jeC(n-¢) \eZ* 7
+ 30 3 O m QUR (2,0) e
neB,s \eZ*

+ U27nc(za 97 Xd)

Writing down boundary equation (2.3a) for Uy will lead to equations on boundary terms a
and a}b.

. + ol
%)
Thus we need to determine the nonpolarized part of the amplitudes associated with
frequencies lifted from ¢, 1, v. For ( =n-¢ € {gp,w, v}, j=1,2,3, and X € Z*, from polarization
equation (2.2a), we get, (using the notation U, ’Oi\c : UQ’E.)S;)
i L(0,0;(Q)) UZSY =

N == L(0,0:) 0 jare i — Li(re, ai(Q)) re 5 Z 1A20¢ 531 O¢ i

Al t+A2=A

- ]b\:k)\g Z ik {Ll (TC1 g1 Az Wiy (CQ)) T¢2,52
(€1,¢2,71,72)

ER(¢:)

1 1
+ Ll (TC27j27 )\Cl ajl (Cl)) rC1,j1 } JCl,jl, k’)\cl 0‘(2,]’2,*]6)\42 .
Then we multiply this equation on the left by the partial inverse R ; to obtain, according to
relation (1.15),

(2.21)

iN(I=Pej) UGS =

— Re; L(0,0:) 0 jares — Reg Ln(reg ai(Q)) rey Y. ihaoljn 0bing

A+A2=A

— Re ]b\:k& Z ik {Ll (TChjl’ A¢s (42)) T'¢a,52
(€1:€2,51,52)

ER(C.H)

1 1
+ 1 (7’(2,3'27 AG (<1>) r(l,jl} T¢i,g1,—kAey 9Ca.d2,—kAc,

We now write the boundary conditions for the first corrector Us, for the frequencies ¢ and ¥

: © (o) i
so II¢(¢) is also zero. Therefore, boundary condition (2.3a) for mode ¢ reads, according to
equation (2.20),

Note that since ¢ is in the hyperbolic region, the stable elliptic component E€ (¢) is zero
. (p i ’
(2.22)

B P, (Ui,l,x)m xa=0 T B Fe, 3 (Uzs, M zaxa=0
+B (I P‘P 1) (U¢:17A)\md xa=0 +B (I P@ 3) (U

©3, )‘)\xd,Xd 0

2 2,nc

+B (U<P72 >\) |xd7xd:0 + B (U )\xd,xd 0 G)”
where we have expanded the source term G in Fourier series as

Z G M@

AEZ
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and where we have denoted by U 5’1;\0 the sum of all the terms of U?"° of which the trace on the

boundary of the associated frequency is equal to Ay, namely,

2, -1
U(p,r)l\c = - Z L(O’ )\10éj1 (€1)+)\2a]2 (€2)) Ll (TChjl ? ajZ (Cz)) TCQJQ >\2 O-él 7j17>\1 Gég,jg,)\z

(€1,62,51,2,
Al ,)\Q)GNR
A11+A2(2=Ap

tAimi+Aom2)-0 Si( A&, (C1)+A2855(C2))xa

We investigate now which frequencies occur in this sum. If we denote by, for ¢ = 1,2, (; =
m;p + n;ep with (m;,n;) € By, since there are only frequencies lifted from ¢, v, v in N'R, we
necessarily have (m; = 1 and n; = 0) or (m; =0 and n; = 1) or (m; = A, and n; = Ay). In this
notation, the condition A;(; + A2(s = Ay is equivalent to

Almy+domy = A
Aing 4+ Aang =0,

and using that Ay, Ay, are coprime integers, we find that this system admits the following solutions

(mlanl) = (170) (mhnl) = (07 1) (mlﬂnl) = ()‘80’ )‘w)
(mg,ng) = (1,0) , (mg,ng) = ()‘SO’ )\w) , and (mg,nz) = (0, 1)
AL+ A=A ()\,)\1,)\2) :k()\@,—)\w,l) ()\,)\1,)\2) :k()\@l,—/\w)

Selecting only 6-tuples of N'R, we obtain that Uf)’r)l\c is equal to

2,n —1
(2.23) U%)\C = ]l/\=k>\¢ Z L(07 kvj, — Awk%z) {)‘w Ly(rvjis i) T4, 2
J1,52=1,2,3
(j17j2)¢(271)7(2a2)
- Ll(r¢7]27 Z/Jl) Ty7j1 } k O‘Iijlyk 0.1»107]277)\1[)]6 e

- Z L(0, A\11 + >\2$03)_1{)\1 Li(ry3,01) o1
Al +A2=A\

ikApO1 Gi(kEjy (V)= AypkEjo (¥)Xa

1 1 NG i(A A
F A2 L1(rp1,93) T3} 0p1n Opang €00 etMi&i (@) FAats(@))xa,

Since the vectors P, 1 (U£717/\) I and Py 3 (U£737A) (2dxa =0
and E3 (), by definition (1.17) of by, we have

b, B P, (Ui,l, )

in (2.22) are respectively in E! ()

b, BP,3 (U2

(p,S,)\) |xd:Xd:0 - 0

|Id7Xd:O -
So if we take the scalar product of b, with equality (2.22) multiplied by i), using (2.21), (2.23)
and the boundary conditions (2.16) for the leading profile associated with Ap, we get the am-
plitude equation

(2.24) XJ;OP aim + Dé(’p Z 1\ (%1;,/\1 aio)\z +iA Z Yo (A1, A3) aiml a}am

A1t+A2=A A1+Az3=A
ok -7 1 1 . 2 ;
+ ]l)‘:k/\go FT ’Lk aw’_k/\w (O-V,Z—k;) ‘Id:O = Z)\ b(p . B (U9072’)\)|Idvxd,:0 — I/A b<p . G)\,
with
(2.25a) XEP = by - B (R L(0,0:) ep1 + Ry L(0,0:) €3,
(2.25b) D™ :=b, - B (Rso,l Li(ep,1:01) €p1 + Rz L (€3, 93) %,3),

(225C) ’Ygo()\la )\3) = bcp - B L()\lsol + )\3@3)_1{)\1 L4 (6%3, 301) €p1+ A3 Lq (6%1, @3) 6%3},

(2.25d) % :=b, BR,, (Ll(ewl, —3) g + L1 (T2, —Agtht) ew)

€
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—1
+ b B Y gy Ly — Ay, {L1(w,j1, Vja) Tvjo
j1:1737j2:17273
(41,J2)#(1,2)

- Ll(ru,jza %1) 7’%]’1 )\w}

Equation (2.24) differs from the analogous one of [CW17, equation (2.19)] by the two terms

1 1 : 2
Ly=kr, I'? ik Wk, (JV7277k)|xd:0 and iAb, - B (USO:QJ‘)‘%d,Xd:O' The first one appears here

because of the resonances, and the second one wasn’t in [CW17] because profiles Ué,z \ were

zero®. Computing L()q(pl + )\2@3)_1 on 1,2 leads to the following alternative expression for

'790()‘17 )‘3):
i\ 5%2 Eél + i3 ﬁ(p,g Ef3

M (&1(p) — &2(0)) + A3 (&3(0) — &a(p))

Yo(A1,A3) = by - By,
where we have denoted

B, = Li(ep3,#1) €p1, EY 3= Li(ep1,¥3) €3

This rewriting, which can be found in [CW17], will be useful in the following to study the bilinear
operator associated with the symbol v, (A1, A2) of (2.25¢c). Finally, according to Lemma 1.11,

the operator X}D‘Op is actually equal to the tangential vector field
Bo (00 + Vr(e) - ¥y ).
which we still denote by X<I;0p.

Similarly, for ¢ we have
(2.26) BPy1(U,,) w0 T BPus (U2 3.2) a0
+B(I—Py1) (U ) gm0 T B = Py3) (U7 3.2)

+B (Uf20) +B (U

|97d7Xd=0

I

[£q,xa=0 |£q,xa=0 —

where the vector U, ir)l\c is given by
2, -1

(2'27) Uwf\c = ]l/\:kkd, Z L(O’ kl/jz - AwkSOJd) {>\g0 Ll(""udzv Soj1) To,51

j1:1737j2:17273

(j17j2)¢(1=2)7(372)
- Ll(r%jlﬂ ij) TV,jz} k azlz,jg,k Ugla,jl,—A¢k

-1

- > D L0, My, A Aathy) T La(ryys i) T s A2

J1,52=1,2,3 A1 +A2=A
J1#72

eik)‘ﬂﬂel ei(kij (V)fAQOkéjl (W))Xd

O-,LlpvjlyAl O-,Llpy]27)\2 €Z>\ 62 eZ(Algjl (,¢)+A2€j2 (w))Xd.

If we take the scalar product of by, with equality (2.26) multiplied by i), using (2.21), (2.23)
and the boundary conditions (2.26) for the leading profile associated with A\, we get the second
amplitude equation

Lop 1 ) . 1 1 . 1 1
(2.28) X,V ay \+ vy Z A2 Ay 5, Gy T A Z Yap (A1, A3) @y x, Gap g
Al+A2=A A1+A3=A

+ Jl/\:]‘,./\u 'Y ik (O',,jz’]‘/;) 0 (17]9_7/\;/1,7 =i\by - B (UEQ/\

‘-’T,’(/: ) "77(/«,/\((/:0.

6Note that here, with a more precise analysis, we could also show that every profile U ,  is zero, since frequency
(2 does not occur in any resonance. We choose however to not detail it, in order to simplify the whole analysis,
and since Uy 5 y will not be zero, and proving that U7 , 5 would not simplify the solving of the equations
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with, using once again Lemma 1.11,

X = by - B( Ry L(0,0:) g1 + Rys L(0,0:) ey
(2.290) = By (01 + Vy(8) - V)
(2.29b) v = by - B( Ry L (ep,1, 1) €01 + Ry L (e, 05) €3 )
(2.29¢) (A1, A3) == by - BL(A1gh1 + )\3%)_1{)\1 Li(ey,s, 1) epa + Az Li(ep,1,¥3) ep 3}
(2.20d) D% = by B Ry (Li(eg, —v2) roa + Li(r2, — A1) 1)

—1
+ )‘1/1 bw -B Z M, jo L(ij - )‘SOSOJ&) {L1(6<P7j17 ij) Tv.j2
Jj1=1,3,j2=1,2,3
(j17j2)¢(172)7(372)

- )‘<P Ly (TV,jzv 90]’1) €op,41 }
Again, comparing to [CW17, equation (2.19)], equation (2.28) features two additional terms
L=k, 'Y ik (O’V727k)|zd:0 aglo,f)\@k and iAby - B (Uil)\)\xd a=0 for the same reason. The is no

boundary forcing term here because the one for 9 is of order O(¢?). In the same way as for ¢
we have

iA Ly 2 E;ffl + i3 Ly 2 Ef3

(A1, A3) = by - Bry o A (E1(9) — &) + A3 (&3(v) — &)

where we have denoted

By = Li(eys, 1) epr, By i= Lilep1,s) eps.

In conclusion, in this paragraph, we have determined the nonpolarized part of the first cor-
rector, with (2.21), and the evolution equations (2.24) and (2.28) satisfied by aij)\ and a}w\.
However, the obtained system of equation is still not closed since equations (2.24) and (2.28)
involve traces of the first corrector Us, of which the polarized part is still undetermined.

Therefore we proceed inductively, by deriving equations for the polarized part of the first
corrector Us, and then studying the nonpolarized part of the second corrector Us, in order to
obtain evolution equations on the boundary terms for the polarized part of Us.

2.2.3. Polarized part of the first corrector. For ( =n - € F \ {0} with n € Bye, for j € C(()

and \ € Z*, we decompose the profile U2 Y Ufl’;.’sf P Uﬁ ;’S)f + I = Py) Uﬁ’?sf . Recall

that the nonpolarized part (I — P ;) UIQ1 ;)S/\C is given by (2.21), so it remains to determine the
polarized part, which is written as

2050_
Pe; U G T ch,A ™E

n

with 037 ;. ascalar function of 7. We start by determining the mean value U3, as in the general
case of a corrector U,, the mean value U appears in equations for the polarized components.
According to equation (2.2b), Uj satisfies the equation

L(0,0.) Uy + Z Z Z L <rn<c.j= *i)\(l,j(n ’ C)) Tn.¢,j (U}l.j./\ Ui_j.f/\ + Ui.j.A Urllfjf/\>

IIEBLQ jCC(rLC) ez

+ Z Z Z - nC/)(Té(;H)(\ 7[/\(1< C)) O’}l.j‘ ATn¢,j

neb, o jeC(n¢) A

+ Z Z Z L n/)\ IA(I](DC)) <]7P11‘C-,7>(VlijS(A,nCl
neB,o jeC(n-¢) \eZ*
£ S o) i o

neb o jel(n-¢) \eZ*
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The change of variable A = —X shows that the second term in first line of previous equation is
zero. Boundary and initial condition (2.3a) and (2.4) as well as writing (2.20) for Uz leads to
the following boundary and initial condition for Uj:

B ([3‘) |xq=0 - G() - B ([j(‘f’nc B < ;;(

~>\[,s§() =0,

) |zq,xq=0’

where G is the mean value of the forcing term G and Ug "¢ is the sum of all terms of U?"¢
of which the trace on the boundary has zero frequency. According to expressions (2.21) of the
nonpolarized parts and (2.19) of U?", the mean value Uj satisfies an initial boundary value
problem which is weakly well posed and of which the source and boundary terms depend only
on the leading profile U; (with possibly a first order derivative applied to it).

We consider now modes Aa;(¢) with ( =n-¢ € F \ {0,0,¢,v}, n € By, j € C(() and
A € Z*. Recall that it has been proven in the previous part that for these modes, the profile
Uﬁ:?sc is polarized, that is

2,0sc 2 )
Unzj - O—C’j’A 71(7] '

Since there is no resonance generating frequency «;(¢), since the mean value U} is zero and
since profiles aéj)\ are also zero, the terms M(Uy,Us), M(Us,Uy), and N (Uy,Up) contain no
term of frequency o;(¢). Therefore, analogously as for the leading profile, multiplying equation
(2.2c) for n = 3 on the left by ¢ ; leads to the following system of transport equations for the
scalar functions O'g’ It

2 2
(2.30a) Xo;©)Cix =0, (UCJA)ugo =0.

When frequency «;(¢) is outgoing, transport equation (2.30a) leads to U?,j,x = 0. When fre-
quency «;(¢) is incoming, according to boundary condition (2.3a) and decomposition (2.20) of
Us, since ( is not in T, since G does not contain any oscillation in ¢ and since the outgoing
profile aéj’/\, j € O((), is zero, we have

(2.30b) (02j0) gm0 = —le. Aa(0) (Bis_ ()

where US ¢ is the sum of all terms of U?™ of which the trace on the boundary is A¢. It is

-1 2,nc
B (Ug,//r\lc)\xd,xdz()’

fully determined by (2.19), and thus depends only on (027 ;. )\)de=0 for ( = ¢, 1, v. Therefore, if
the traces (027].7/\)‘%:0 for ( = ¢,1,v are determined, system (2.30) allows us to construct the
profiles 03].7)\, for ¢ € F \ {0,¢,v¢,v} and j € Z(().

We now take interest into modes ¢;, ¥; and v; for j = 1,2, 3. Applying £, ; to equation (2.2c)
for n = 3 leads to the following equation for O'g’ I3e

(2.31)

.2 . - 2 1 (2,72 + 1 2
Xejoijnt D Z N j O gae T Ia=kae Z JE 5 KOG i —kae, OCaga—kAe,
A1+A2=A (¢1,¢2,1,42)
ER(C,)

A1+A2=A

—Lej Y Li(reg,§) (1= Poj) UZja, ida oy,
A1+A2=A

- ]l>\=k>\< Z e jik {Ll (TC1,J'17 — A Oy (CQ)) (I - PCzyjz) UC22,j2,—kJ>\C2 Uél,jl,—k‘)\gl
(C1,¢2.1,42)
ER(C.5)

2 1
+ Ly ((I - PCz,jz) U@,jg,—m(?a —>\C10‘j1(41)) T¢1g1 9¢1,g1,— kA, }

1 1
—Lej Z Ly (Uc,j,A1 T'¢.5s az) 9¢,5.x TCi
A1+A2=A
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— Ia=ka Z bejLa (Ugl‘l,jl,—k/\,;l 7¢1 10 0z) UéQ,jQ,—k,\Q UCNE
(€1562,71,72)
ER(C.7)
Note that the source term on the right-hand side of equation (2.31) only depends on the lead-
ing profile Uj, according to formula (2.21) for nonpolarized parts, with possibly second order
derivatives applied to it (since in the expression of the nonpolarized part, first order derivatives
are applied to Uy).

For the incoming frequencies ¢1, @3 and so on, boundary conditions must be determined to
solve the above transport equations (2.31). We have already seen that boundary equation (2.3a)
for Us reads, for mode Ap, as (2.22). From this boundary condition, according to decomposition
(1.6) of E_(¢) and relation (1.17) defining the vector by, we get the following necessary solvability
condition

by - (B (I —Py1) (Ug,l,/\)m,;(d:o

+B (U;,Z N

+B(I - P@,S) (U£,37>\)Izd7><d=0

) =y G,

which is satisfied as soon as the scalar functions a, y satisfy the evolution equation (2.24), since
these two equations are different writings of the same one. Thus we obtain, for j = 1,3, in a
similar manner than for the leading profile,

2,nc
|zq,xa=0 +B (U#?J\ )Imd,xd:(]

2 2 2

with a?m y a scalar function defined on wr and where, for j = 1,3, we have denoted by Fg ix the
function

F2ja = o - Aa0) (Bip_ () (GA = B(I=Pp1) (UZ13) 1ny xumo
- B (I - P%?’) (U£73,>\)\xd,xd=0 - B (I - P@vQ) (U£72,>\)|xd,xd=0
= B (020) ooz = B (U2 fruamo) T

In the same way, for ¢, from (2.26), the following condition must be satisfied:

by (B (I = Py1) (Ug10) iy xumo + BT = Pu3) (Ug50) 1, o

2 2,nc —
+B (Uw’Q’)‘)Wd,Xd:O +B (U¢v)‘ )|9Cd,Xd:0) o 0’
and it is the case when ay, ) verify equation (2.28). Therefore, for j = 1,3,
(2.33) (0%50) gm0 "0 = Gpx €65+ Ffja

with ai’ y a scalar function of wr, and where we have denoted by Fij , the function
~ —1 2
Fy =Ly ;- Aq(0) (Big_(y)) (B (I = Pya) (Uwvlv/\)\xd,XFO
+ B (1= Pu3) (Ug30) 1, xm0 + BU = Po2) (Ui2n)

= B(0}22) 4,002 T B (Uiﬁc)|md,><d:0>'

Note that expressions (2.32) and (2.33) of incoming traces (ai7j7/\)‘xd:0 and (012!}7j7/\)|xd20 for

|74,x4=0

j = 1,3 is respectively coupled to the outgoing trace (O‘?DQ A)\xdzo and (a?p 9 A)\xdzo through
terms Fjj 5 and Ei] \-

Finally, for amplitudes associated with the boundary phase v, we need to write a boundary
condition for the first corrector. Boundary condition (2.3a) for U reads

B PI/,]. (Ulal,)\) |35d7Xd:0 + B PV73 (U3,37>\)|zd,xd=0

+B (I - Pu,l) (U3,17/\)|xd7xli=0 +B (I o P”’S) (U’i?”/\)lmd,m:o
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[q,xa=0 +B (U2 HC)

where U 3;6 is the sum of all the terms of U?*"® of which the trace on the boundary of the

associated frequency is equal to Av, which is fully determined by (2.19). Therefore, since
veF\T, we get, for j =1,3,

(2.34) (025) [pym0 " = g (0020 (g T + Frjirs

where p,, j has been defined in equation (2.14) and where we have denoted by j the function

+B (UV2,2,)\) )

|$d7Xd 0

Fixi=—lyj-Ad0) (Bp_) (B (I—-P1) (U%M)de,xdz —0

+ B (I - PV73) (U3737)\) |xd,Xd=0 + B (I B PV72) (UV727)\) |xd7Xd:0 + B (Ui’;\lc) |xd,Xd:0) :

In the same way as for the leading profile, we need to investigate the nonpolarized part of the
second corrector to find equations on ai, ) and ai \r

2.2.4. Nonpolarized part of the second corrector. We follow the same analysis as for the first
corrector. With similar arguments we get that the second corrector Us reads

(2.35) Us(z,0,xq) = + 303 S U (e A A

neBb,s jeC(n-¢) \eZ*
+ Z Z €di(n.C) He(n . C) Ur?;,eV(Z’ O) ez‘)\n.e + U3’HC(Z, 97 Xd)a
neB,s \eZ*
with U5 the mean value of Us, U 3¢ the noncharacteristic terms, and where, for ( = n- ¢ €

Fp\ {0}, n € By, j € C(¢) and A € Z*, profile Ui’?sf decomposes as
3 3s
Upin = 0 jaTei + (I = Pog) Usy,

n? K
with ag’ ;. a scalar function of Qr. Furthermore, according to (2.2¢) for n = 2, the noncharac-
teristic part U>"° is given by

(2.36)  L(9g,0y,) U™ =

1, U2 2, U
o Z (Ll (UCl?jschq i A20j (CQ)) C2OJS2C>\2 + Ly (UCl?jsf,)\l i A20tjy (<2>) C2OJSQC>\2

(€1562,41,92,
/\1,)\2)€NR
LU0 U, i s Gt

where the set AR of nonresonant frequencies has already been defined. Since all frequencies
in U3 are noncharacteristic, equation (2.36) totally determines U>"°. Note that opposite to
what was done for the first corrector, this is no longer true that in U3 there are only profiles
of modes ¢;, ¥; and v, since now second order profiles ag,j,)\ for ¢ € F,\{0, ¢, 1, v} are possibly
nonzero.

For the same reason, profiles Uﬁ;’sf for n-¢ € F, \ {0, p, 1, v} are not necessarily polarized.
Therefore we derive now the nonpolarized part for each frequency ( =n-¢ € F, \ {0}, n € By
and j € C(¢), A € Z*. Multiplying equation (2.2c) for n = 2 and frequency X a;(¢) on the left
by the partial inverse R ; leads to the relation

(2.37)  iA(I-Pc;) U3’;’S§ —

2 1 2
— Rej L(0,0.) 08 jare — Rej Li(re oo () rey Y iATE jx 08,
A+A2=A
— Re ;1= Li(re, jir = Ay (G2)) 7 kol o2 .
¢ L=k, 1\"¢1 510 C2Gj2\62 G2,72 Crd1,—kAey ¥ 2,02, kA,

(¢1,€2,51,52)
€R(C,9)

— Re j 0. terms in (U1, (I — P)Us, Us),
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where notation 0, terms in (U 1,I—P) Ug) refers to quadratic terms involving the leading profile
Ui, the nonpolarized parts of the first corrector Uz and the mean value U;, with possibly first
order derivative in front of it. The key point is that since the leading profile is polarized and

since the mean value U7 is zero, all the terms involving a profile a?,} }BY, depend only on leading
order polarized profiles aé,,’ G and not on (I — P)Uy or U;. We now write the boundary
conditions for the second corrector, for the frequencies ¢ and v, which will lead to equations on
the amplitudes a?p and ai.

For ¢ we have, according to boundary condition (2.3b) and writing (2.35) of Us, since the

elliptic component E¢ (¢) of the stable subspace E_(() is zero,
(2.38) BP, (U2 ,) gm0 T B Pos (Us

%37/\) |#q,xa=0

¢737A) |Zd,Xd:0
3,0sc 3,nc
+B (U5 +B (U2

)|5’7d7Xd:0 )|5047Xd:0 =0,

nc

where U;” y is the sum of all the terms of U 31m¢ of which the trace on the boundary of the
associated frequency is equal to \ ¢, namely, according to expression (2.36) of U3"¢,

(2.39)

3, -1
USS =Toacen, Y. L0 kv = Agkths,) ™ {NLa(ruus i) P gs — D1y o Vi) g }

j17j2:'17273
(J1.J2)#
(2,1),(2,2)
1 2 2 1 ikAo01 (ki (V) —AukEis (V) Xa
’f{%,jl,k%,jg,—mk+Uu,jl,k%j2,—xwk}€ o0 i (W31 ()= A3, ()

-1
— > L0, M1+ Aaws) T { A1 La(rgs, 1) Ton + Ao Li(ro1,03) T3}
A1+A2=A
1 2 2 1
{0-80717A1 0-90737)‘2 + 0-90717>‘1 0-90737A2} €

+ azﬁ terms in (Ul, (I — P) UQ, (P UQ)C#So’w’V, U;),

iX01 6i(>\1£1 (@) +X283(9))xa

where the notation 9, terms in (Ul, (I = P)Us, (PU2) ¢t UQ*) refers to quadratic terms in
Ui, the nonpolarized part of Us, the polarized part of Us of which the associated modes are
different from Apj, A\p; and Av;, and the mean value Uy, with possibly one derivative in front
of it. Once again, the key point here is that since U; is polarized and of zero mean value, and
since only the profiles 027 i for ¢ = ¢, 4, v are nonzero, in U ;’:I)l\c, every term involving 027 I3V for
¢ = p, 9, v, is a quadratic term with a profile aé,’j,)\,, for ¢ = @, 9, v.

Similarly as for the leading profile, taking the scalar product of b, with equation (2.38)
multiplied by i, using (2.37), (2.39) and expression of traces (2.32), (2.33) and (2.34), we get
(240) XLPal \ +DEPix > alby aly, N Y (M) (e, ad s, +ady, aly,)

A1+A2=A Ar+A2=A

0 1 2 2 1
+ ]lA:k)‘tﬁ %k { (0-142;—]@) |zq=0 a¢a_kA1s) + (O-V~,27—k) |zq=0 al‘ba_k’)\u‘; }

+ 82,9 terms in [F\za (ﬁza a/glp)a (E%a (Ui,2)|.rd:0)a ((UZ)\md:m a‘ig)» ((O.Eb)hzd:()v (O.i,Q)\a:d:O)}

= iAby - B (U

%27/\)‘%,%:0 + 0,9 terms in (Ul, (I = P)Us, (PU3)¢tpp0 U;)

‘$d7Xd:0’

where Xg;Op, D<I;°p, Yo(A1, A2) and T'? have already been defined in (2.25), and where
az,@ terms in |:F31 (an a<1p)> (qua (Ui,2)|zd:0)> ((0—920)|l‘d:0’ CL}p), ((Ui)\xd:m (0—11/72)|:cd:0)}

reAf/ers to linear terms in Fij’/\ for j = 1,2 and A € Z*, and quadratic terms in (fij,)\,a;)\),

(Fi,j,)\’ (Ui,z,x)lzd:())v ((Ji,j,A)\wd:Ov a’gla,)\) or ((Ui,j,A)\xd:O’ (011/,2,A)|$d:0) for j =1,2 and A € Z*,
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with, for all these terms, possibly one derivative in front of them. Recall that terms Fg and Fi
depend on the traces (052072)\)‘“:0 and (0?1172,)\)‘%:0.
For phase 1 we have the following boundary condition

3 3
(241) B Pw71 (Uw’l,)\) |1'd7Xd:0 + B Pw73 (Uw’g,)\) |1'd7Xd:0
+B (I N Pw’l) (Ufz’l)‘) | 4,x4=0 +B (I a Pw’g) (Ui 3 )‘) |zq,Xqa=0

+B (U3 5.5) ﬁ-B(U3“3 = H,,

|xd7Xd:0 |ffd:Xd 0

where we have expanded H in Fourier series as

Z H 1)\6

AEZ

and U, TIZI/{C is the sum of all the terms of U™ of which the trace on the boundary of the associated
frequency is equal to Ay, that is,

(2.42)

3,nc -1
Uph' =Tain, D Llkvg = Ackein) ™ {Ae Li(ruga, 031) o — Li(rogu s Vi) T }
Jj1=1,3,j2=1,2,3
(41,52)
#(1,2),(3,2)
1 2 2 1 kAo i(KEj (V)A€ (9))Xa
k {J g2k .51, — Aok + Ov,ja,k 0—907.7'17*)\«;;]4} erTrT e o

1 1 2
- Z Z )\177[}]1 + )‘2¢J2) Ll(rw,jl ) wjz) T4, jo A2 {Jllhh,)\l T%,52, A2

71 ,]'2 ]:,2,3 Al+A2=A
J1#j2

+ 0-72/)7_7'1 7)\1 0-1})7‘7'27)\2 } ez}‘ 02 ei(Alfjl (¢)+>\2€]2 (w))Xd

+ 0,9 terms in (U1, (I — P) Us, (P U2)¢ o0, Us ).
If we take the scalar product of by, with the equality (2.41) multiplied by A, using (2.37), (2.39)
and expression of traces (2.32), (2.33) and (2.34) we get the amplitude equation
(2.43) X,I,,Op 2 A+ DEP i) Z , HiA Z s (A1, A2) (ag n, adx, + Q5 x, Qi)
A1t+A2=A /\||/\2)\

+ Ay—pr, 'V ik {(Ui_Q,A7)‘J;(l:(') ai.f/\;k + (03,2,0‘% 0 Yo, — Aok }
+ 0;;,9 terms in |:]?/12« (1??, “i;)ﬂ (Fj (0—11/2)\1?([ ())= ((J’L&r)\wd 0> a/[l,v)s ((O—i)\wd 0> (O—II/,2>‘1‘(1 0)}

= iXby B (USSS) 1oy sno — Nbu - H

- 02"0 terms in <Ll (I P) DZ (P 1]2)475»91 2 L‘Yx)

‘I{l Xd= 0’

where Xg;(’p, DquOp, Y¢(A1, A2), and T'¥ have already been defined in (2.29), and where

3z,9 terms in [}\7’3, (fziaa ) (F2 ( u2)|zd 0) ((Ji)ud:O?a}p)’ ((04,20)|wd:0a (011/,2)\:vd:0)]

refers to linear terms in F2 PR for 7 = 1,2 and A € Z*, and quadratic terms in (Fi’j’/\,a}w\),

(F2 (002 )z,=0), (o ?p,j,x)\wdzm%,x) or ((02 5 \)jza=0+ (7)5 \)jag=0) for j =1,2 and X € Z*,
with, for all these terms, possibly one derivative in front of them.

Note that equations (2.40) and (2.43) can be seen as linearizations around the trace of the
leading profile U; of equations (2.24) and (2.28). This is usual in weakly nonlinear geometric
optics, where equations for the leading profile are nonlinear, and equations for higher order
are linearizations of the former equations around the leading profile U;. Again, the obtained
system of equations is still not closed since traces of the second corrector Us appear in amplitude
equations (2.40) and (2.43).
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With the obtained equations, can have the intuition on how lower terms ascent toward higher
order terms, eventually leading to an instability. In equation (2.43) for amplitudes a?h \» the
boundary forcing term H occurs, and therefore this forcing term ascents to first corrector profiles
ai jafor j =1,3 and A € Z* through boundary conditions (2.33). Eventually, because of the
resonances (1.12) leading to resonances terms in transport equations (2.31) for first corrector
profiles, the boundary term H arises in profiles 051,2, y for A € Z*. In their turn, these profiles
03}72’ ) for A € Z* interfere in amplitude equation (2.28) for a}/% y» for A € Z*, because of the trace
(Ui,l A)de,idzo‘ Then this reasoning can be applied recursively to obtain that the boundary

forcing term H interferes in leading profiles Ué,j,)n for ( = p, ¥, v, j =1,2,3 and A € Z*.

2.3. General system. The above arguments can be extended recursively to any corrector U,
n > 3. Doing so we get that the n-th profile U, reads

(2.44) Uyn(2,0,xaq) + 30 3T ST umey et s O

nebys jeC(n) \eZ*

+ Y0 Y AN (- ) UR (2,0) €A™ £ UM (2,0, xa),
HGBZQ AEZL*

with U;; the mean value of U,, U™"° the noncharacteristic terms, and where, for ( =n-¢ €
Fp\ {0}, n € By, j € C(¢) and X € Z*, the oscillating profile Ug;i\c decomposes as
Unjn = 0Ciarcs + (I = Pej) Uiy,

n,j,

with o7 ; | a scalar function defined on Q7. According to equation (2.2c) for n — 1 and since Uy
is polarized and of zero mean value, U™" is determined by the formula

(2.45) Lo, aXd) Unhe = — Z Ly (TC1 g1 Qo (¢2)) TCaja A 0%1 J1A1 ?2,]12,)\2

(¢1,62,31,32,
A1,A2)ENR

tAini+Aamz)-0 Ji(A1&, (C)+A285, (¢2))xa
+ 0, terms in (Ul, coryUp—o, (I = P)Uy—1, Uf{,l),

where notation 9, ¢ terms in (Ul, coisUp—o, I =P)Up_1, Uz_l) refers to quadratic terms involv-
ing the profiles Uy, ..., U,_2, the nonpolarized parts of the corrector U,,_; and the mean value
*_1, with possibly first order derivatives in front of it. As for it, for ( = n-¢ € F, \ {0},

n € Bz and j € C(¢), A € Z*, the nonpolarized part (I — P ;) ng]oic of Un]f\ is given by
(2.46) i\ (]_PC,J') Un’;S)\C =

n
1 1
— Re; L(0,0.) 00 3 re s — Re Ln(re oo (Q)) ey Y iA0E ;0 087A,
Al +Aa=A

" -1
= R U=k Z Ly (TCIvjl’ G, (CZ)) T R O¢i,51,—kAg UgQ,J'zﬁk)\Cz

(€1562,51,52)
ER((.4)

- RCJ 8279 terms in (Ul, ey Un_g, (I - P) Un—l; Un*fl)'

This formula is obtained by multiplying equation (2.2c) for n — 1 by the partial inverse R ;,
using that U is polarized and of zero mean value.

We specify now equations satisfied by the mean value U;; and the polarized components JC i
Since U; is polarized and of zero mean value, equations (2.2¢), (2.3b) for n and (2.4) lead to the
following system for the mean value U,::

< ), 0 > e ()7 0 terms in <[ Lyeees (/n Ly (I* P) Uﬂ)

(2.47) B (Uy) 2ym0 = ln=3 Ho— B (Uy™™) (340

B (U*) r<0 = U

n
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where Uj"" refers to the sum of all terms of U™ of which the trace on the boundary is of zero
frequency.

For a frequency ( = n-¢ € F \ {0, 0,0, v}, n € By, j € C(¢) and A € Z*, multiplying
equation (2.2c) by /¢ ; leads to, since all harmonics aéj)\,, A € Z* are zero and since Uj is
polarized and of zero mean value,

(2.48a) Xa;(0) (Tg;j’)\ = 0,9 terms in (Ul, co s Up—1,(I = P) Uy, U;)

(2.48b) (o7, A)w <=0

with initial condition (2.4), and, if j € Z(¢), boundary condition (2.3b) gives, since ( € F \ T,
(2.48¢) (025) om0 = —Lc.j Aa(0) (E—(¢)™ B (U7 S

Finally, for ( = n-¢ € {¢,¢,v}, j € C(¢) and A € Z*, multiplying equation (2.2c) by #¢ ;
gives, with the same arguments,

(2.49a)
- 1 C " y 1
Xejola+Deg D iMalin0lintamine D IR0 Gy o Tk,
A FAa=\ (¢1,62,51,42)
ER(C4)

= 0,9 terms in (Ul, corysUp—1, (I = P) Uy, U;),

where the notation are defined by (2.10). Equation (2.49a) is coupled with the following initial
condition,

(2.49D) (0253 j1<0 = 0-

It remains to determine the traces on the boundary of the corresponding incoming frequencies.
The trace of the amplitudes associated with the boundary phase ¢ on the boundary is given by,
for j =1,3,

(2.50a) (0550 jaymo Tod = A2 i + F s

with azz ) & scalar function defined on wz and

Fs?,j)\ = —Lp; - Ad(0) (Blﬂ(cp))_1 (B (I —=Pp1) (Ugf,sf)\xd,xlizo

T,08C 7,08C
+B(I—-P,3) (Ucp,?»,)\)\xd,Xd:O +B (1= Fpp) (U%?v/\)lzd,xfz:()

+B (0-272,)\)|de0 ro2+ B (US,’QC)W,XFO) To,j
For v we have, for j =1, 3,
(2.50b) (UZ%;J;A) 2g=0 "% = g\ Epj T F:f,‘,‘,x
with a:}) y a scalar function of wr and
=~ —1
Pl = =L A4(0) (Bip_() ™ (= s Ha + B (T = Py) (U5
,08C ,08C
+ B (I - PT/%?’) (U'Z,g,)\) ‘xd7xd:0 + B (I - P¢’2) (U'ZZ,S,A) |xd7Xd:0
+ B (0-17272:)\)|zd:0 Ty + B (UZ:;IC)md’Xd:O) Tap,j-

Note that Fg,j,A and FJ;JW

(0372’)\)@'1:0 and (03’2)\)“%:0. Finally, for v,we have for j =1, 3,

)\Id,XdZO

for j = 1,3 and A € Z* depends respectively on the traces

(2.50¢) (0050 jagmo Trd = Hg (O02.0) (gm0 Td T Fuljn

with

Fly = by - Ag(0) (Big_m) " (B (I = Pot) (U210) 1y o
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+B (I N PV’S) (UZL’?”)‘) |z 4,x4=0 +B (I o PV’Q) (U’Zz)‘) |z 4,xa=0 +B (Un HC) |z, Xd= 0)

Coeflicients 1, ; have been introduced in (2.14).
Scalar functions aj,  and ay) satisfy the following equations, which are derived using bound-
ary condition (2.3b) and formulas (2.45) and (2.46),

(2.51a)

Lop n Lop a . 1 n n 1
X D A E Cl 4)07)\2 +2A § ’Y«p(/\h )\2) (a@,)q ago,/\z + a’tp,)\l a@)\Q)
A1+A2= A1+A2=A

+ L=k, Fw@k{( 0,9 k)m o O — —kAy + (o VQ,—k)‘xd:Oa}/J,—kAw}

+ 0,9 terms in [F” (FJJ, <p) (Fw (002 [24=0) ((03)1z4=0, a}p), (CAIP (011’2)‘“:0”
=1\ bcp -B (UZ,;,&OSC)IJSde:O
+ 02,9 terms in (U17 cey Unflv (I o P) Un’ (P U7L>C;£<p,d),l/7 U*)

"/ |zg,xa=0’

and
(2.51b)
XIop —|—DTOP A Z al Ao + A Z o (A1, )\2 1) >\| ay, /\)—Q—al By (11 )\)
A1+A2=A A1+A2=A
+ Ly=pa, 'Y 77‘{( VZ]\)\I'(,—()QE—)\' k:+<<’3,2,k)\1, 0 % —A A}

+ d~6) terms in {ng <FLh*ai) (F: ( u2)\1r1 ()) ((U/Z}v)\;r(lz(): (12;)1 ((Ug)\;m:() ( Oy, 2)\ rq= ())}

. n—+1,0sc
=1\ bu - B (Ul 2.0 >‘~”7(1-X{1:U - ]ln:i% b’L_f : H/\
+ 0,9 terms in (L oo s Une1, (I = P) Uy, (PUy) ¢t U,f) a0’
where the notation have been defined in (2.25) and (2.29). These two equations come with the
following initial conditions

(2.51c) (@52) 1o =0, (air) 4o =0

The system of equations (2.47), (2.48), (2.49), (2.50) and (2.51) is highly coupled. In
all equations for the corrector of order n, there are terms depending on Uy,...,U,—1,(I —
P) Uy, (PUy)¢tpm,0, Uy, but this is not a big issue, since, if the lower order correctors Uy, .. .,
Upn—1 are constructed, (I — P)U,, (PUy)¢£p,0, Uy can be determined with (2.46), (2.47) and
(2.48). The terms inducing coupling which seem the most problematic are the terms Aby -

1, 1, . . .
B (Ugy—;)\osc)|$d,)(d:0 and \by - B (UQ’Z,—57>\OSC)|Id,Xd=0 in (2.51a) and (2.51b) which couple evolution

equations for a; » and ay, (and therefore evolution equations for the corrector U™ of order n),
with the corrector of one order higher, U"*!. In equations (2.51) there are also traces of profiles
of order n, which prevents to solve this equations (having determined lower order correctors)
before solving the evolution equations for U™.

In addition to being highly coupled, system of equations (2.47), (2.48), (2.49), (2.50) and
(2.51) seems also over-determined. Indeed, condition (2.17) imposing that the outgoing leading
profile 05)72’ y is of zero trace on the boundary gives one more boundary condition than the two
boundary conditions prescribed by the structure of the problem. Therefore, this is not clear
at all that the system of equations (2.47), (2.48), (2.49), (2.50) and (2.51) admits a solution
satisfying the additional condition (2.17).

3. EXISTENCE OF AN ANALYTIC SOLUTION

In this section we focus on the well-posedness of (2.47), (2.48), (2.49), (2.50) and (2.51).
Both because of the high coupling of the system, and the over-determination of it, we choose
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to concentrate on a simplified version of the general system and try to prove well-posedness for
it. This simplified model should focus on the profiles associated with frequencies ¢;, 1; and
vj, because on one hand it greatly reduces the number of equations, and therefore complexity
of the system and of the functional framework, and on the other hand because it seems that,
due to amplification and resonances, equations on the profiles associated with ¢;, 1; and v;
carry the main difficulties of system of equations (2.47), (2.48), (2.49) and (2.51). Indeed, we
already pointed out that if profiles O'ZjJ\ form>1,¢(=opyY,v, j=1,2,3and A € Z* are
determined, system (2.47)-(2.48) becomes upper triangular, and could be studied in a rather
classical way, see for example [Kil22]. Since we wish to study simplified versions of the system
(2.47), (2.48), (2.49), (2.50) and (2.51) in an analytical setting, the initial conditions in (2.47),
(2.48), (2.49) and (2.51), requiring that the profiles o¢ ; » and their boundary terms a¢ ) are zero
for negative times t are not suited for analytic functions, since it would imply that these profiles
and boundary terms are zero everywhere. Therefore, in the simplified models, we modify, in a
non equivalent way, these boundary conditions into conditions requiring that the solutions are
zero at t = 0, which are now adapted for analytic functions.

We start by describing a first simplified model, very simple, which concentrate on boundary
equations, and detail the functional framework which will be used to prove well-posedness of
it, and proceed with the proof. Then we describe a second simplified model, more elaborate,
which incorporates interior (incoming) equations, introduce additional functional framework ,
make some specifications on the simplified model with regard to the functional framework, and
state the main result, before proceeding by proving it.

3.1. First simplified model. For the first simplified model, we focus only on boundary equa-
tions (2.51). In these equations, terms

Lop n Lop Z 1 n . Z 1 n n 1
XgPag\,  DgPiA gy Gy, and iA Yo(A1, A2) (aw,/\l Ao ay T Ao\ aso,/\g)
Ar+A2=X A1+A2=A
as well as the analogous ones for 1 appear in the chosen first simplified model, and the last one
is rewritten as a semilinear term. On the contrary, terms

@ 1 n n 1
Ly=kr, IV ik {(O-V,Q,—k)|xd:0 Ay, T (O-V72,—k)|wd:0 Ay Xy, },

En (n 1\ (T 1 1 1
0.9 terms in [Fg’ (Fg.a)s (g (00,2)12a=0)s ((00)1z4=0 ) (03 jzg=0: (f’u,2)\xd:0)]
and the analogous ones for ¢ are removed in the simplified model, since they involved traces of
outgoing interior profiles (recall that Fg i and Fjix depend respectively on (O‘Z j A)de=0 and
(Uz,j,A)\xd:O)' For the same reasons, terms

i\ bgﬂ . B (Un+1,osc

®» 2.2 )‘q;d Xd:() and ZA bw . B (Un"’_l,OSC

2,2 )\xd,Xd:()

are not kept. Finally, source terms

0, ¢ terms in (Ul, s Un1, (I = P)Up, (P Up) ¢ tpap,0 U;;)

|zq,xa=0

involves quadratic terms in the traces of profiles Uéj)\ for1<k<n, (e F\{0},5€C() and
A € Z*, with possibly derivatives of order up to n in front of it. They are simplified in three
ways: we keep only traces of profiles associated with boundary frequencies ¢, ¥ and v, we express
traces only through functions aé ) for ¢ = ¢,1, and we choose only first order derivatives in ©
(but we shall see in the following that considering derivatives in y would present no additional
difficulty). Finally, boundary terms G and H are represented by functions H, belonging to
a space specified later on. Multiplying equations (2.51) by ¢® for © € T a periodic variable
therefore leads to the following simplified model amplitude equations
n—1
(3.1a) XJ;OP ag + D;“p Jo (a}o a:;) +wy, O [8@ 0,919, Oo a:;] = Hj + K,’I;()p Z Oo (af; asz),
k=1
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n—1
(3.1b) X, al + Dy 0o (ay, al}) + wy BN [0 ay, 0o afy] = Hij + K " de (akal %),
k=1
where, for ( = ¢, 1, we have denoted by a the function of wr x T defined as
)= 3 s
AEL*

where, for ¢ = ¢, ), the bilinear operator Fger is defined as

'La)\ b)\ iAO
(3.2) Fperab g E — gz e,
AEZ* A1+ A3 _y A0 + A3 ¢
A1A3#0

with 5% and 52’ scalars defined as

5. &0 —&(Q) 53 .= 8(0) —&(Q)
CTeO-al) T sO-al”
and where w,, Wy, KJ;OP, Ki‘)p € R. Here we have used analysis of [CW17, Section 3.1] to rewrite
terms involving the y¢(A1, A3) coefficients in (2.51) as w, F}™ [dg a}p, do a:}] , up to changing
definition of the coefficients D?Op. Note that since ¢ and 1 are nonresonant, the denominators in
equation (3.2) defining Fger are nonzero. Up to changing all notation by a harmless multiplicative

constant, we can assume that, for ¢ = ¢, 1, vector fields X gf °P read

(3.3) X =0, —vi® -V,
with VICJOp € R?1. Equations (3.1) are coupled with the initial conditions

(3.4) (ag)‘tzoz(), (a7} )\z 0 =0

Again, these initial conditions (3.4) are not the same as (2.51c), and are written in this (non
equivalent) form to be suited for the analytical framework. Note that equations (3.1) are quasi-
linear for aw aw when n = 1, and linear for ag, aw when n > 2. As we will prove later that
terms F™ [de %,a@ ag,] and ]Fie}r [0e a¢,8@ a¢] are semilinear, equations (3.1) are transport
equations, with a Burgers type term (when n = 1), a semilinear term, a source term and a
convolution type term. System of equations (3.1), (3.4) is a simplification of system (2.51) for
which we propose to set up the analytical tools to solve it.

The aim is to solve system (3.1)-(3.4) with the following Cauchy-Kovalevskaya theorem. First
proofs of this kind of result are due to [Nir72] and then [Nis77], and the proof of the following
formulation goes back to [BG78].

Theorem 3.1 ([BG78]). Let (By)ry<r<r, be a decreasing sequence of Banach spaces (with 0 <
ro <rp < 1), i.e. such that, forro <r' <r <y,

Br - Br’a HHr/ < H”r .
Let T, R,C and M be positive real numbers, and consider a continuous function F from [—T,T]x
{ue B, ||lull, < R} to B, for every ro < r’ < r < ri which satisfies
C

(3.5) sup ||F(t,u) — F(t,0)], < ——
[t|<T r—=

vll,
forallrg <1v' <r<ry, [t| <T, and for all u,v in B, such that ||ul|, < R, ||v||, < R, and

M
(3.6) sup [F(t,0)], < ——.
‘t|<T Tl — T

for every ro < r < ry.
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Then there exists a real number § in (0,T) and a unique function u, belonging to C*((—d(ry —
r),0(r1 —r)), Br) for every ro < r < rq, satisfying

sup  lu(®)]l, < R,
[t]<8(r1—r)

and the system
u'(t) = F(t,u(t)) for |t| < p(ry —r)
u(0) = 0.

We therefore need to define a chain of Banach spaces of analytic functions adapted to our
problem (3.1).

3.2. Functional framework.

3.2.1. Functional spaces. For a function u of L?(R%~!), the symbol @ refers to the Fourier trans-
form of u, with the following convention

)= [ u)e e R

For a complex vector X, notation |X| refers to the norm v X - X*, and we denote by (.) the
Japanese bracket, that is, for a complex vector X,

(X) = (14X

We set d* to be an integer such that d* > mg + 2+ (d + 1)/2, where my is the nonnegative real
number of Lemma 3.7. The following definition quantifies analyticity by means of an exponential
decay of the Fourier transform.

Definition 3.2. Fors € (0,1), the space Ys is defined as the space of all functions u of L?(R4™1 x
T) such that, if their Fourier series expansion in © reads

0) => ualy) €™,

AEZ

Jul, = / S eBI0O ()2 a3

)\GZ

then

| d¢ < 4o0.

The following results make precise how y and © derivatives act on Y, and assert that Y; is a
Banach algebra.

Lemma 3.3. There exists C > 0 such that, for 0 < s’ < s <1, for u in Yy, functions V,u and
dou belong to Yy, and we have

C C
(3.7) 1V, UHy;/ < P [ully, —and ||8®UHYS, < P [Jully, -

Proof. We prove the estimate for V,, u, the one for dgu being similar. We have, by definition of
the Yy-norm,

IVyuly, = [ S0 0)* fePaof g

AEZ
. C?
<ol [ T o e e = o i,
(s — 8?2 Jra v (s —s')
since [£]? exp(25|€]) < C2 exp(2s[€])/(s — s')? for € in RY, with C' > 0 independent of s, s’ and
¢, which reads precisely C' = 2e~ L. O

Lemma 3.4. For s € (0,1), the space Ys is a Banach algebra, up to a positive constant, that
is, there exists C > 0 (independent of s), such that for u,v in Yy, the function uv belongs to Yy
and we have

lwvlly, < Cllully, [lv]ly, -
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Proof. Let s be in (0,1), and consider u,v in Ys;. We have,

[ S oo e

AEZ
2

/Rdlz 211 (), €))% /Rdlzu“ Yor—p(§E —m)dn| dE

AEZ

LE(L.X A

AEZ

d*
Lo e uny?

WEZL

u(’7)|2625|()\—u7€—n)\ (A=, & —m))** |ox—u(€ — 77)|2 dn dg

2
< Clully, vy, ,

(182"

HEE () > ((A—p&—m))
respect to (A, §). We conclude by making the proof of this latter result.

For 1, A\ € Z and &, € R*!, we have
(O < 2| +2|(A = € = )|

by Cauchy-Schwarz inequality, if [pa_1 Y 57 dn is bounded uniformly with

SO

(N <2((m)? +2((A—mE—m)?,

and
(N <28 ((ym))* 27 (A = € — )™
Therefore, by a change of variables (n, u) = (§ —n, A — ),

(/\ )" d 12 d*+2
/]Rd 1 Z )\ M7§ n))?d* <2 x/]Rd 1 Z 2d* g 2

with C depending only on d*, since d* is such that d* > d/2. O

As we work with sequences of functions (a’;)n>1 and (az)n%, we define a functional space
accordingly. We also specify the norm chosen on the product space, since we will work with
couples of sequences.

Definition 3.5. For s € (0,1), the space Y is defined as the set of sequences a = (an)neN of
Y, such that
d* 2
lall3, = e*" (n)** llanlly, < +oo.
n>1

For s € (0,1), the norm on the product space Y?2 is defined, for (a,b) € Y2, as

I, )13 = llally, + bl

The space Y satisfies analogous properties as the ones of Lemmas 3.3 and 3.4 (with the
convolution on sequences for product), but they will not be used directly.

3.2.2. Specifications on the simplified model. We are now able to precise some properties of the
study system (3.1), (3.4).

Boundary source terms H7, H " for n > 1 are taken such that, defining H := (H@, Hw)
(HZ,H;L)”%, function H is in C([ T,T],Y?). In the statement 3.9 below of existence and

uniqueness for system (3.1), (3.4), there will be an additional assumption on H, requiring that
there exists M > 0 such that, for 0 < s < 1,
M

sup [|H|ly> < —-
||< Y5 \ 1—s
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This assumption on H is stronger than requiring H and G of (1.1) to be in H*(R? x T), as
it imposes analyticity with respect to space variables, but with bound on the norm increasing
with regularity. We denote by 9 > 0 a positive constant such that, for ¢ = ¢, v,

1/2
(3.8a) |VL0p| Yo, |DL°p| Y0, Iwel <79” and |KLOp| 0,
and, for s € (0,1), for u,v in Y, and for ¢ = ¢, 1),

(3.80) [F2 (90 w00 0] |, < 0" luly,llvlly,-

All estimates relies on the fact that scalars D?Op, we and K é“ °Pvectors VIC“Op and operators }Flger
are indexed by finite sets. As for it, estimate (3.8b) asserting that the operator Fger, composed

with derivation in O, acts as a semilinear operator, is a result of [CW17, Theorem 3.1]. The
proof in our case is a straightforward adaptation to our functional framework of the one of
[CW17], which we detail here.

Proposition 3.6 ([CW17, Theorem 3.1]). There exists a constant C > 0 such that for s € [0, 1],
foru,v inYs and ( = p, ¥, we have

(3.9) |2 90 w06 ]|, < Cllully, lolly,.

Proof. The result relies on the following lemma, which constitutes a reformulation of the small
divisors Assumption 6. Its proof is the same as the one in [CW17], and is recalled here for the
sake of completeness.

Lemma 3.7 ([CW17, Lemma 3.2]). There exists a constant C' > 0 and a real number mg such
that, for A1, s € Z*, and for ( = ,v, we have
1

3.10 —_
(3.10) RS

< C'min (|A1]™, | A3[™).

Proof. Without loss of generality, we consider ( = . The aim is to use the bound of Assumption
6. Using equality L(0, ¢2) 7,2 = 0, we get,

L(0, A1 @1 + A3 p3) rp2 = [Al (&1(p) — &2(0)) + A3(&a(p) — 52(@))]Ad(0) T2

so the quantity A1 (&1(¢) — &2(0)) + A3(&3(p) — £2(¢)) is nonzero since otherwise 7,2 would be
a nonzero vector in the kernel of L((), AL 1+ A3 cpg), contradicting Assumption 5 asserting that
A1 p1 + A3 3 is never characteristic for A\, A3 € Z*. Therefore we have

1
‘)\1 (&1(p) — &(p)) + A3(&(p) — 52(90))‘

with a constant C' > 0 independent on A1, A\3. Using Assumption 6 and a polynomial bound on
the transpose of the comatrix, we get that there exists a nonnegative real number mg such that

1
‘)\1 (&1(p) — &2(0)) + As(&3(p) — 52(90)))

with a new constant C' > 0 independent on A;, A3. Up to changing constant C' > 0, we obtain,
1
|>\1 (530 + A3 53 |

)

<O||LO Mg+ Ases) ™!

< C’(Aly )‘3)‘77105

(3.11) (A1, As)|™.

To get the formulation of (3.11) with a minimum, we see that two cases may occur. Either

|16, 4+ A3 02| > |6}, and in this case, with C' > 1/]51] we have

1
e < <

<O ™
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since mg > 0. In the other case, if })\1 5L+ A3 53‘ |5s10|’ we have

1
IA3] < |A10) + As 83| + Mﬁﬂ\‘whhh

|5 | [33] 12|
so, up to changing constant C, estimate (3.11) rewrites
1 _
————— < O |\q|™.
ot + 207
Applying the same arguments for A3 leads to the aimed estimate (3.10). O

The proof of Proposition 3.6 also relies on the following technical result, whose formulation
is the one of [CW17]. Its proof is an immediate adaptation of a result of [RR82], and is not
recalled here.

Lemma 3.8 ([RR82, Lemma 1.2.2],[CW17, Lemma 3.3]). Let K: R¥ 1 x Z x R x Z — C be
a locally integrable measurable function such that, either

K(&, A, dn < +
o o DA <

or

sup /RMZ\Kﬁknu!d&<+oo

(n,u)ERI-1 X7, NeZ
Then the map
(f,9 H/ D KE N 1) FE = A= p) g(n, 1) dn
ueZ
is bounded on L*(R%™! x Z) x L2(R4™! x Z) with values in L*>(R*! x Z).
We now proceed with the proof of Proposition 3.6, and we consider without loss of generality

¢ =¢. For ¢ € R X\ € Z and for u,v in Y;, the Fourier transform of the A-th term of the
Fourier series expansion of Fper [0e u, Do v] is given by

F2™ [0e u, 0o v] :—Z/Rd ) Z /\ M 51 +M53 Un—p (& —n) Ou(n) dn.
M#OA

Therefore, to obtain inequality (3.9), we have to estimate the quantity

2

Lo L e P ials = m ) dn de.

AEZ HGZ
where we have denoted, for A\, 4 € Z,

pA—p) :
F(\, ) i= { Q-moi+nd if 1 # 0, A
O OtherWiSe,

and we will do it using Lemma 3.8. We consider two nonnegative functions x1, x2 on R? x R?
such that x1 + x2 =1 and

Xl(év Aﬂla/ﬁ) =0 if <(777M)>
X2(€7 Aﬂla/ﬁ) =0 if <(777M)>

We first consider the quantity

(3.12a) /Rd1 YA, m) OO )T PN, 1) ur=a(€ — ) Tu(n) dn,

WEZL

(2/3) (€, 2)
(1/3) (€, 1)) -

g

2
<



TRANSVERSE INSTABILITY OF WEAKLY STABLE QUASILINEAR BOUNDARY VALUE PROBLEMS

rewritten as

X1(& A, 1) el )T F(A, p)
(3.12b) /Rd . Z # eslO=m€nl (X — p, & — )" eslml (i, 7))

. (es|(x—u,£—n)\ (=€ =) Ta(€ =) () () ) )

We have
2O < 28l ()l 28| (A=pE=m)]

and, on the support of x1,

(A= &=m) = (X)) = {(w,m) = 5 (X, €)),

oom—n

SO

/Rdlz

X1 1, 1) IO )T F(\, p)
esl A&l (X — pu, & — )" eslml (11, m))

d*

<cf Yoo

MEZL
Using Lemma 3.7 we get
A— 1 &3 p? =
,LL( - :u) 5| =7 | 90/; 5 < O|'u|m0+2’
(A — ,u)5<p + poy |5¢| (A= ,u)éw + pdg
SO
X1(& A, ) el )T F(A, )
(ENeRI-1xZ JRI-L 27 esl(A—p.g—n)| (A=, &—m)) esl ()| ((ym))

2m0+2
€ [ Z g i<

7 ()"

39

since we chose d* > mo+2+ (d+1)/2. Applying Lemma 3.8 to the quantity in (3.12) we obtain

2

L2 52 160000 (O RO Tple = 1)l

AEZ

2 2
< Clully, [lv]ly, -

Applying similar arguments for s leads to the analogous estimate for ys, and combining esti-

mates for y; and ya gives the sought one (3.9), concluding the proof.

O

We are now able to prove well-posedness for system (3.1), (3.4), using Theorem 3.1, with the

above properties.

3.3. A Cauchy-Kovalevskaya theorem for boundary equations. System (3.1), (3.4) reads

(3.13) {at a= F(t, a) := La — 0g D"P (a, a) — [Fper (8@ a, do a) +H + Ko (a, a),

a(0) =0,
where a := (a,,ay) := (ag,ag)nx, and, if ¢ := (cg,c:f))n%,
. L L
La:= ( WOP Vyawv Op-Vyaz)n%,

L
DY (a,c) = (DL? ol cf, DI ),

FP(a, ) := (wy, F2ag, cp], wyFyag, ¢jl) o1



40 CORENTIN KILQUE

System (3.13) is now in the right shape to apply Theorem 3.1, and we prove the following
result.

Proposition 3.9. For My > 0, there exists 6 € (0,T) such that for all H in C([—T, T],Y?)
satisfying, for 0 < s < 1,

My
(3.14) sup [ H()llyz < 1=
[t|<T ) -

system (3.13) admits a unique solution a in C'((—0(1 — s5),8(1 — s)), Y2) for every 0 < s < 1.

The key estimates to prove this result are the following. These are classical, and their proof
is recalled here for the sake of completeness.

Lemma 3.10. There exists a constant C > 0 such that for 0 < s’ < s < 1, for b,c in Y2, the
following estimates hold

C 7o [[[bllly=
(3.15a) L blly>, < stlY
Co [[blllyzllelly:
LO B s
(3.15b) H)&@D p(b’c)H’Yg, S s—s ’
(3.15¢) IF* (9o b, doc) [[ly2 < ColIblly:llelly::

(3.15d) H’KLop(b c)m . Yo Ibllyzllclly:
s, .

s— s

Proof. First, estimate (3.15a) follows directly from estimate (3.8a) and Lemma 3.3 since L is a
linear combination of a bounded vector and a first order derivative. For the second one (3.15b),
we have, according to Lemma 3.4, for { = ¢,9 and n > 1,

L 1 1
HDCoprcg . gC%HbC Lty < orlblly: |2, -
Therefore, according to Lemma 3.3,
Lop ;1 n C Lop ;11 n C’VO n
Joo Dttt < =5 [ atet],, < =5 bl ]

Multiplying by e?" <n>2d* and summing over n > 1 and ¢ = ¢, ¥ gives the estimate (3.15b) for

the Y2-norm. With (3.8b), the proof of (3.15¢c) is analogous but simpler since the operator is
semilinear. Finally, for (3.15d), according to Lemmas 3.3 and 3.4, we have, for n > 1,

n—1 C n—1

k n—k k
Dol )| <=y vk
k=1 k=1
Thus, by Cauchy-Schwarz inequality,

n—1
23" (n)* Y 06 (o 7
k=1

n=1

n—=k
Gy

Y, Y,

Yy

2

Yy
n—1

SGoape i,)Q S e (n)** (Z HbZZHYS
n>1 k=1

2 n—1 <n>2d*
SGo9)p > (Z PEATE k>2d*>

n=1 \k=1

n—=k
Gy

2
YS>

o28(n—k) (n— k,>2d* chfk‘

% Z erk <k,>2d*

2 2

k
bw P

Y, Ys
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C? 9 )
< mnmnwgmduyg,

2d*
since Zz;% Mikw is bounded uniformly with respect to n > 1, and the result follows. [

We proceed with proof of Proposition 3.9, which essentially amounts to verify assumptions of
Theorem 3.1.

Proof (Proposition 3.9). We apply Theorem 3.1 to system (3.31) with the scale of Banach spaces
(Y2)0<S<1 First note that assumption (3.6) is satisfied as soon as assumption (3.14) for H is

verified. Next we take interest into continuity assumption for F and assumption (3.5). For
0< s <s<1,and for t,t € (~T,T) and b,c in Y2, we have,

F(t,b) —F(¢,c) =L(b—c) — 96 D*®(b,b —c) — 9 D"*(b — c, )
— F** (9o b,d6 (b — c)) — F** (0o (b — ¢),do ) + H(t) — H(t')
+ Klop (b, b — c) + Ko (b —c, c)

so, according to estimates of Lemma 3.10,
(3-16) [[F(t.b) —F(t'c) v,
—clly

IIb
< [|[E@) — HE) ly; + C0(1+ 3lIbllyz +3lelly:) ——,

Therefore, since H is continuous from [-T,T] to Y%, if we set R > 0 (which is therefore
arbitrary), we both get, from (3.16), continuity of F from [T, T] x {b €Y2||blly: < R} to

Y2, and (setting ¢’ = ¢) estimate (3.5), with constant C given by C (1 + 6R). Theorem 3.1
therefore applies here and gives the sought result. (I

Here we used that system (3.1), (3.4) presents quadratic nonlinearities, but, using the same
arguments, other types of nonlinearities could also be treated.

3.4. Second simplified model. We now refine the previous simplified model by incorporating
interior equations in it. According to remarks from the introduction of this section, in the new
chosen simplified model, we remove the coupling with profiles of frequencies different from ¢;,
1; and v;, which were appearing in (2.49a) in terms 0, g terms in (Ul, oy Up—1,(I=P) Uy, U;:)
The latter terms are also simplified since they carry derivatives of order higher than one’, and
we keep only first order derivatives in © (once again, considering derivatives in y presents no
additional difficulty). They are therefore represented through terms of the form

Z Z Za’ Jéljl C2J2)

C1,¢2=p, v j1,j2=1,3 k=1

We also remove couplings with outgoing frequencies s, 12 and 12, as incoming equations will
be solved seen as propagation in the normal variable equations, a form which is not suited to
solve outgoing equations. Finally, we multiply equations (2.49) by €*® for © € T a periodic
variable. It leads to the following study interior evolution equations, for n > 1, { = ¢, ¥, v and
J=13,

1 €2,
(3.17) X, sz + D¢ ; O (UZJ UCJ) + Z de JC? ]i [UCl 31’042,J2}
C1,G{pp, v}
j17j26{173}

:KCJ Z 28@ UCl,Jl Cz,]z)

CLCQ{%va} k=1
J1,52€{1,3}

"In expression (2.46) of nonpolarized parts, there are already derivatives.



42 CORENTIN KILQUE

where we have defined 0? ! function of Qp x T, as

)= ) 0ija(2)e™?,
AEL*
and where K¢ ; € R for ( = ¢,%,v and j = 1,3. For ((1,(2,71,J2) € {o, 1, v} x {1,3}?, the
bilinear operator Jgi;? is defined as
(3.18) WG lor] = Jgdt 3 oamae®
AEZ*

J gfj]f Similarly as for the boundary equations, up to changing all notation

with some coefficients
by a harmless multiplicative constant, according to expression (1.4) of vector field X ;, it can
be assumed to read
XCJ = 8t — V¢ Va;,

where vector v ; has been defined in Definition 1.3. Recall last component of each vector v ;
is positive. Equation (3.17) is not provided with an initial condition, as we will see it as a
propagation in the normal variable equation.

For boundary conditions for profiles oty =13, the coupling terms in (02‘72) g =0 (appearing

in terms in FZ; | for boundary conditions for profiles associated with ¢ and 1) are not kept,
since it would require trace estimates to solve interior equations, and we do not have such
estimates in our possession. Terms in Fg’j ) also convey first order derivatives of lower order

terms aé, ey ag_l. For the functional framework chosen later, these derivatives are an issue, and
since coupling with lower order terms aé, . ,a?_l will be expressed in evolution equations for

a?, terms l?'cnj , are only represented in the study equations by boundary terms 9¢ > belonging
to one of the spaces defined later on. This lead to the following study boundary conditions, for
J=13,

(3.19a) (Ug,j)|xd=0 = (e%j . T%j) CLZ, + gz,j, (U:l},j%l.di() = (ﬁu.j ’ ”l:.,j) ay, + 91”/?,.7':
(319b) (O—Svj)lflfdzo - qlqj,jv

where, for ( = ¢, ¥, we have denoted by a the function of Q7 x T defined as

0) = Z al \(2) o,

AEZ*
Finally, equations for boundary terms aj and ay, are the same as for the first simplified model,
namely,
n—1
(3.20a) XLOP ag + DLOp Oo (a a ) + w, FO [3() a,,, Do ag] Hj + KLOP Z 80 aw az k),
k=
n—1
(3.20Db) ng”p ar, + DLL/,OP 0@((1{, ay,) + Wy F] [00 ay, 0o ay)| = HJ) + I’LOP Z de (a kol A)-,

]\7
coupled with the initial conditions

(3.21) (a%) o =0, (af),_, =0

The strategy to solve the above system of equations (3.17), (3.19), (3.20) and (3.21) is to
apply a Cauchy-Kovalevskaya theorem such as Theorem 3.1 to interior system (3.17), (3.19),
seen as a propagation equation in the normal variable. In order to do that, we need the boundary
terms in (3.19) to be analytical with respect to all variables (even with respect to time). For
the first simplified model, in Proposition 3.9, we obtained only continuity with respect to time.
Therefore we need to refine this result to obtain analyticity with respect to all variables. In the
next part we define functional spaces which will be used for this purpose.
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3.5. Additional functional framework.

3.5.1. Functional spaces. We define two different types of spaces, which all are spaces of functions
defined on wp x T, analytical with respect to all variables (¢,y,©). The first ones, which will
be denoted by E, and E,, will be used to solve boundary equations (3.20)-(3.21), which will be
viewed as a fixed point problem in E,. The second one, denoted by X, X, are the one fitted
for interior system (3.17)-(3.19), where equation (3.17) will be seen as a differential equation
with values in X,.. Features and relations of this spaces are summarized in Figure 3. In addition
to defining the functional spaces, we have to describe action of differentiation on it, and to prove
that every function of E, is in X,.

Previously introduced spaces Ys, s € (0,1), are used to defined spaces E,, p € (0,1). If I CR
is an interval and E a Banach space, we denote by C¥(I, E') the space of analytic functions from
I to E.

Definition 3.11. For p € (0,1), the space Ep 1s defined as
E,= N C“’(( (1 —s),p(1— s)),Y;>.

s€(0,1)

In the next definition we use the Catalan numbers (see [ComT74]), defined by, for n > 0,

¢ 1 <2n)
n+1\ n

They satisfy, for n > 0,

n
(3.22) d e, i =Ch.
i=0
The Catalan numbers appear in the power series expansion of z — (1 — a:)_l/ 2,
1 1 (n+1)!¢,
3.23 = —— ",V 1.
(3.23) 12 ;n! o T Vkel<

Next definition takes inspiration from the method of majoring series, see for example [Joh91,
Chapter II], since, in this formalism, it requires for a function to admit a dilatation of z
(1 —2)~1/2 as a majoring series.

Definition 3.12. For p € (0,1), the space E, is defined as the set of functions a of Ep such
that there exists M > 0 such that for all s € (0,1) and v € N,

(I—s)v+t (4p)¥

The infimum of all M satisfying condition (3.24) is denoted by |||a|||Ep.

(3.24) 10¢ a(0)ly, <

If a is in E, for some p € (0,1), then, for s € (0,1), for [t| < p(1 — s), by expanding a
in power series with respect to ¢ at 0, using estimate (3.24) and the power series expansion of
z— (1—2)" Y2, we get

llalll z ( It] )—1/2
< L - .

We find here the formulation of [BGT78].
Since we work with couples of sequences of functions, we define a space accordingly, and we
specify the norm used on the product space.

Definition 3.13. For p € (0,1), the space E, is defined as the set of sequences a = (an)neN of
E, such that

2 2d* 2
llallg, == > e*?™ (n)*" JlanllF, < +oc.
n=>1
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For p € (0,1), the norm on the product space E% is defined, for (a,b) € E%, as

Il (2 B) I = lalls, + bl

Spaces E, and E, are not normed algebras, and neither do they satisfy a derivation property
such as (3.7). Indeed, for a function a of E, with p € (0,1), we have, by Lemma 3.3, for
0<s <s<1,

1 |”a‘”Ep v+ 1e,
s— g (1 _ S)V+1 (4p)u
To obtain an estimate for (3.24), it seems that we should have the existence of C' > 0 such that
forall0 < s’ <s<1landv >0,

174 1 14
16 00 a(0)lly,, < —— 18Fa(0)lly, <

1 C
(s —s)(1 —s)vtt = (1 —g)v+l’

which is false. However, as we shall see later, estimating ¢ — fot Jo a(s) ds instead of Jdg a
could solve the problem. This is what is referred to as reqularization by integration in time, see
[Uka01, Mor20]. These spaces seem well suited to prove existence of solutions to boundary system
(3.20), analytical with respect to all variables, but the absence of above mentioned properties
prevents to apply a Cauchy-Kovalevskaya theorem with these spaces for interior system. This
is why we need to define other, more appropriate spaces.

Spaces for interior equations are spaces in (t,y,©) variables since interior equations will be
seen as propagation equation in x4, valued in these spaces. In the following, H¢ denotes the
Sobolev space HY" (Rz_l x Tg) of regularity d*. Recall that d* has been chosen such that
d* > mgp+ 2+ (d + 1)/2, where my is the real nonnegative number of Lemma 3.7. The next
definition is based on the classical way to characterize analytic functions. For a (d + 1)-tuple
a=(ag,...,aq) € N1 notation a! refers to a! := ag!--- ayg!.

Definition 3.14. Consider p € (0,1). For r € (0,1), the space X, is defined as the set of
smooth functions a of (t,y,0) € [—p/2,p/2] x R¥~1 x T with values in C such that there exists
M > 0 such that for every a in NO+1,

102,.0a(0, -, )|,y <

The infimum of such M > 0 is denoted by ||al| . -

Ma!
rlol (ja2H1 + 1)

Note that in the previous definition, the space X, depends on the fixed constant p € (0, 1),
but we chose not to include this dependence in the notation since in the following p will be
fixed. The time interval of the form [—p/2, p/2] is required because, in the following, functions
of X, will come from functions of E,, which are defined on time intervals ( — p(1 — s), p(1 — s))
for s € (0,1), so we choose arbitrarily s = 1/2. Analogously as for E,, we define a space for
sequences of X,.

Definition 3.15. Forr € (0,1), the space X, is defined as the set of sequences a = (an)neN of
X, such that

2 2d* 2
lallk, =" 2™ (m)** [lanll%, < +oc.
n=>1

For r € (0,1), the norm on the product space X8 is defined, for a = (ay,...,as) € X8, as
2 2 2
llallixe == llasllx, +--- =+ llas[lx, -

The following result asserts that, for every p € (0,1), there exists r € (0,1) such that space
E, is continuously injected in X,., with a constant independent of p. The proof is recalled here
for the sake of clarity.

Lemma 3.16. There exists C > 0, such that, for p € (0,1), if a is in E, then there exists
r € (0,1) such that a belongs to X, (for the same p) and, furthermore,

lallx, < Cllalllg,-
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with some /@

‘ r € (0,1)

|
|
|
|
I
I
|
|
: depending
|
| on p
|
|
|
I
|
|
|
|
|
|
|
|
|
|

®

[C(It,L%Rg—l x T@))N}

(1, IA(RY x To)) |

[LQ(Rcyl—l X T@)N]

[LQ(Rg—I X T@)]

| Spaces for Spaces for .
Spaces for | p p : Underlying
first study | boundary interior Shaces
model | equations equations P
Legend
derivation property .

and algebra

regularization by
integration in time

@
O,

continuous injection

is used to define

F1GURE 3. Features of functional spaces and links between them

Proof. Let a = (a”
in N x N=! x N, we have, for s € (0,1) and n > 1,

000" 0. = [ e

/1212

</
- Z 2(|o/[+8
R‘“Aezsqa' :

2pz
= $2(0a'1+B) 10} °a (O)H%S )
using the inequality
o B8
(597 (1) _
o'l 5!

Since a” is in E, (because a is in E,), we therefore have

Jn>1 be in E, for some p € (0,1). For a = (ao,

SIEN]

o181 lla”[ll g, (o + 1)1 €qy

o, B) =

(g, a1,y ..

— 2
00a5(0,€)| d

HED (& ) o 0,6 de

Cllla” |l 5, oo

o/1B3!

108,000, |- <

using (ao + 1) €aq)/(4p)*°

ol Clla™llg,

ST (1= )0t (1p)0
< C/(3p)®. Finally, we have, if s <

X sla/[+8 (1 _ 8)a0+1 (3p)a0

min(p, 2/3),

Cla” llg, !

o 00 e < 2

with s’ < s, because s/l (|a|241 + 1) < Csl®l. Therefore,

< Clla”llg,,

(3.25) lla™lx,

slal (ja|2d41 4+ 1)’

)ad—laﬁ)
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with a constant C' which does not depend on n > 1. Therefore, multiplying inequality (3.25) by

e2s'n (n >2d and summing over n > 1 leads to

lallx_, < Cllallg,,
so a belongs to X, with » < min(p,2/3) which depends only on p, concluding the proof. O
Following results state that partial derivatives with respect to ¢,y,©® act on X, in the same

way as partial derivatives with respect to y, © act on Y;, and that spaces X, satisfy an algebra
property. For the sake of completeness, we recall the proof of these classical results.

Lemma 3.17. There ezists C > 0 such that, for 0 <’ <r <1, forain X, and fore; in N+l
with |ej| =1, function 622798 belongs to X, and satisfies
o -

ol < .

Proof. In the same way as for the previous Lemma 3.16, proving the estimate for the space X,
leads to the one for X, and the associate result, by multiplying by e2s'n <n)2d* and summing over
n > 1. Let a be in X,. Without loss of generality, we make the proof for e; = g = (1,0,...,0).
For o = (g, o/, 8) in N x N9~ x N, we have, by definition of X,-norm,

(a + 60)!
|95 055.00(0: )| e < Nl oo
o! (Joo24FT + 1) (1)l

= ‘”a‘”XT (7,/)|a\ (|a|2d+1 + 1) (|a + 6|2d+1 + 1) «
Since (|a|?™! +1)/(|a 4 e|?¥*! 4- 1) is bounded uniformly with respect to o € N9*! and since

r)lel (")l 1
(Ot() T 1)r‘04|+1 = (’a‘ + 1) r‘a|+1 < r—r7r

the result follows. O

/\

Lemma 3.18. For r € (0,1), spaces X, and X, are Banach algebras (the latter for the con-
volution on sequences), up to a positive constant, that is, there exists C' > 0 (independent of
r € (0,1)), such that for a,b in X,, the function ab belongs to X, and we have

llabllx, < Cllallx, [P,

and the analogous estimate for X,..

Proof. We make the proof for spaces X,, and the result for X,. follows using the same arguments
as in the proof of Lemma 3.4. Let r be in (0,1) and consider a,b in X,.. We need to show that
there exists C' > 0 such that for all & € N+, we have
108, o (ab)(0,...)| Clllally, llollx, o
t,y,0\@ s || g r\a|(]a\2d+1+1)

So consider o € N4*1. We have, since d* > d/2, so H 4" is an algebra,

18,0060 <€ 5 (5) a0 55800,
llally, £ 0]l ., (a = B)!
CZ( )rﬂ' |6|2)§+1+1> rlel= ‘ﬁ'(\z— 2441+ 1)

_Clldle Pl s~ (o 1
T (a7 + 1) 2 (AP 4 1) (la— BT+ 1)

. 2d+1 1
and the result follows since Zﬁga (‘mmﬂ(ﬁl) (lajﬁ‘)zdﬂﬂ)

a € Na+1, O

is bounded uniformly with respect to
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We summarize the main features of the functional spaces introduced in this section in Figure
3. The concept of regularization by integration in time is detailed below, in Lemma 3.21.

3.5.2. Specifications on the simplified model and main result. In view of the functional spaces
defined above, we are able to make precise the study system (3.17)-(3.19)-(3.20)-(3.21).
Boundary terms ggj appearing in (3.19) are taken such that, if we define g¢ ; := (QC,J)neN’
then function g¢; is in Xy for ¢ = ¢,?,v and j = 1,3. Analogously, source terms H of
boundary equations (3.20) are taken such that, defining H¢ := (Hg-’)n>l, sequence H¢ is in E;
for ¢ = ¢,1. Once again, assumption on H; imposing it to be analytical with respect to all its
variables is stronger than requiring H and G to be in H>(R? x T). We also denote by 7o > 0 a

positive constant such that, for ( = ¢,¥,v and j =1, 3,

(3.26a) [ve,il < 7, < and K¢ | <o,
for ¢ = ¢,,
(3.26b) ’VLOP| Y0, !DLOp\ Y0, |wel <Vé/2, and |K Pl < 70,

for r € (0,1) and for 0,7 in X, for (1,{2 = ¢, ¥, v and j1,752 = 1,3,
(3.26¢) )

12200 7|,, <0l i,
and, for s € (0,1), for u,v in Y, and for ¢ = ¢, 1,
(3.26d) 2= (00 .00 ]|, <2’ Iy, liely, -

All estimates relies on the fact that scalars D¢ ;, K¢ ;, D?Op, w¢ and K?Op, vectors v ; and

V?OP and operators ,J]Cl ’] , and FZ® are indexed by finite sets. Estimate (3.26d) is the result of
Proposition 3.6, and (3 260) is the result of the following lemma.

Lemma 3.19. There exists a constant C > 0 such that, for r € (0,1), for o,7 in X,, (1,2
in{p, ¥} and ji,jo in {1,3}, we have

(3.27) [Peiem|], <clolx, i,

Proof. Without loss of generality, we make the proof for (; = (s = ¢ and j; = jo» = 1. Recall
that Ji:i is defined by (3.18) as

Jiﬁ J% Z oaATy e
AEZ*
For a = (o/, ag) in N? x N, we want to estimate in H? the following function
1 , !t .
(3.28) 9P, oI T] (0, ) =T Y0 Y ( 6') N8 a2 (0,.) 05,7 7(0,.) €.
AEZ* B'<a’

We prove now an intermediate result. For every function u, v defined on R4 x T, whose Fourier

series expansions read
0) =3 w(y)e®,  v(y,0) = ),
A\EZ A\EZ

we have,

0) = > _ua(y)ualy) e

AEZ Hd*

_ j{: jgd 1 (0, )2

keZ*

2

| mo e —m | ag
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(A, €) )
<2 /R -1 </R — ()TN € =)t d”

kezZ*
<O B (O~ (7~ ande
2 2
(3.29) <Cl(y,0) — ZUA(Q) J2C] (y,0) ka(y) oiNO 7
AEZ a- ez e
{0, )*"

with a constant C' > 0 independent on u» and v, since fRd—l o dn is bounded

()" (A€
uniformly with respect to (), §). We have, according to (3.28),

2
S]]
/ .
< (2" >0 </3) (8:0) = Y (IN)*07,03(0,.) 97, 7 (0,) €2°

B'<a’ AeZx

(3.30) ‘

so, applying inequality (3.29) to quantity (3.30) we get

1
|62, 6921 [0.7)0,,)|[ .
2
/
<C<J:§:11)2 Z (;/) HZ ’L)\ daﬁ 0./\ 0 y) [2\C)
B'<a’ A\EZ a
2
X Zaa B’ )
\EZ Ha*
= 12 (B8',aq) (/—p',0)
o C(J:j:l) Z ( ) Hazy7®d U( : HHd* t,y,@ T( P HHd* .
B'<a!
Therefore, by definition of the X,-norm,
2
H ty@ ](O7a) Fa*
<C Z llollx, B! 116l 5, (o' — B')!
e B ) B (|(B, aq)|24tT + 1) rle =18 (|of — B/[24+1 4 1)
_ Cllal, Il o! 5~ (o1 1 1)
ol (a2 4 1) 2, (7, 0a) PP+ 1) (jo? — A1 1)
and the result follows since ZB’< o (|(B’,ad)|2d5r|?ff)+ (1|I/125/‘2d+1+1) is bounded uniformly with re-
spect to o € NA+1, 0

The rest of the section is devoted to the proof of the following existence and uniqueness result.

Theorem 3.20. For ecvery My, My > 0, there exist 0 < r1 < 1 and 6 > 0 such that for

every g in X8 and H in E3 satisfying respectively |HH|HE% < My and ||gllxs < M, sys-
T

tem of equations (3.17), (3.19), (3.20) and (3.21) admits a unique solution given by o in

CH(=8(ry —7),0(r1 — 7)), X8) for each 0 < r < ry and a in X2, where we have denoted o :=

(0271703,3703717037370{}717 1/73)71217 g = (g<p717gtp737g¢,17g1/1,37gl/,17gy,3) and H := (H<p7H1/J)

To prove this result, we will start by proving existence for boundary system (3.20)-(3.21),
with the Banach fixed point theorem applied in a closed ball of Ez for some p € (0,1). We
will therefore have a solution a of (3.20)-(3.21) analytical both with respect to space and time.
The strategy is to write equations (3.20) as a fixed point, by the change of variables b := 9, a,
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to obtain a problem like the one of [BG78]. This will allow us to prove that the operator at
stake is a contraction, using the phenomenon of regularization by integration in time. Then we
proceed with the existence of solution for interior system (3.17)-(3.19), by applying a classical
Cauchy-Kovalevskaya result, in X¢ for some r € (0,1). For this purpose, equations (3.17) will
be seen as propagation equations in the normal variable. Verifying assumptions of Theorem 3.1
for interior equations presents no difficulty. Finally Lemma 3.16 will be used to assert that the
obtained solution a of (3.20)-(3.21) in E% is actually in X2 for some r € (0, 1).

3.6. Time analyticity on the boundary and Cauchy-Kovalevskaya theorem for in-
coming equations.

3.6.1. Ezistence and time analyticity for boundary equations. This part is devoted to solving
boundary system (3.20)-(3.21). The goal is to obtain solutions which are analytical not only
with respect to (y, ©) but also with respect to time. In the same way as for the first simplified
model, system (3.20)-(3.21) can be displayed in the form

(3.31) Oya= La— 0g DP (a, a) — [Fper (8@ a, dg a) +H + Klop (a, a),
' a(0) =0,
where a := (a,,ay) = (ag,ag)nN, H .= (HwHw) and, if ¢ ;= (cg,cz)n2l,

La:—(LOpVa V Vaw)

Vo Y Yo n>1’

DP(a,¢) := (DLOP aslo ag, DLop ailb az)mp

FP (a, c) = (w, F2"[ag, ¢}, wy [awvcw])nﬂ’

QO’
Lop L Lopn_1 k n—k Lopn_1 k n—k
K" (a,c) == ( K, Za@(%cw ),Kw Zﬁe(awcw )n>1.
k=1 k=1 -

Setting b := Osa, system (3.31) is equivalent to
t t t
(3.32) b(t)=1L / b(o) do — de DLOp( / b(0) do, / b(o) da)
0 0 0
t t t t
—Fper(ae / b(c) do, de / b(o) da) +KL°P( / b(c) do, / b(o) da) FH@),
0 0 0

with a(t fo o)do. The aim is to solve equation (3.32) with a fixed point theorem in E2
SO we start by provmg the following key estimates, which will allow us to prove contraction for
the operator at stake.

Estimates (3.33a), (3.33b) and (3.33d) below constitute what we call regularization by in-
tegration in time, where composing derivation in (y,®) with integration in time leads to no
loss of regularity. This phenomenon was introduced by [UkaOl], and can also be found in
[Mét09, Mor20].

Lemma 3.21. There exists C > 0 such that for p € (0,1), for b,c in E%, the following estimates
hold

t
(3.332) e [Cbrao]| < comliblle,
0 E2
t t
(3.33D) mma@ ([ bio)do, [ elo)do)|| <0 bl il
0 0 E2 . .
t t
) [les (00 [ boydnde [ eorao)|| <t ulibllglelle,
L t t ’
(3.33) 'Hm Ko / b(o) do / c(0)do)|| < C 0?0 Ibllgs el
0 0 E2
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Proof. First note that since b, c are in E%, functions which we wish to estimate are in (EVI;]*)Q.
In all this proof, we denote

b = (bwabiﬁ) = (bnvbn)n>1v ¢ = (CWCW) = (62,63)791-

For v > 1 and s € (0,1), we define s, := s + z/+1 (1 — s) which is such that s, > s and satisfy,
forv > 1,

1-— 1-— 1
(3.34) *—v+1  and G

S, — S 1—s, v

We proceed with the proof of estimate (3.33a) dealing with function V := L fo o) do, and
we denote V := (V,, V) := (V" Vi )n>1 According to Definition 3.12, the aim is to estlmate,
for s € (0,1), v 2 0, ( = ¢,¢ and n > 1, the Yy-norm of 9y V*(0). Fix s € (0,1), ¢ = ¢, and

n > 1, and recall that
LO n
VC (t) = P.v / b

Therefore we have V*(0) = 0 and, for v > 1,
vy/mn Lo v—11n
AV 0) = v -V, 87 R (0),

so, for s € (0,1), using (3.7) with 0 < s < s, < 1, estimate (3.26a) and definition (3.24) of
E,-norm,

o), <

C Yo 1 U! Q:y_l
s —s(1-s)” (4!
Therefore, using relations (3.34),

V20|, < oy~ (0)

Ya,

E,

1 v+ 1)vle, ( 1)”
oy v <C 14+ =
‘ &0 ) 70 (I—s)pPtT (4p)r1 + v
(r+1'e,
<C ) B :
PAo%lls, s T (4p)”
. <Cpv ) bg 5 Since this estimate is independent of n, {, multiplying it by
P P

2™ (n)**" and summing over n > 1 leads to the analogous one for EIQJ, which reads as (3.33a).

For V := 0g DLOp(ftb )do, fo da) which we decompose in (EVEI*)Q as V. =:
(V,,Vy) = (Vg,VJ}) with, for n > 1 and { = ¢, v,

n>1’
t t
Vit = 0o D?Op ; bé(a) do -/0 ct (o) do,

for n > 1 and ¢ = ¢, 1, we compute V*(0) = 9;V;"(0) = 0, and for v > 2,

Y VI(0) = D de Z( ) b (0) oy T+ e (0).

Therefore, for s € (0,1), using (3.7) with 0 < s < s, < 1 and estimates (3.26a) and (3.24), we

have
C — v p—1;1
prrzo], < 25 () o), |

oy e (0)

A

Sv

Bl Ml A e e,
e X () e




TRANSVERSE INSTABILITY OF WEAKLY STABLE QUASILINEAR BOUNDARY VALUE PROBLEMS 51

Again with relations (3.34) we get

C’Yo v+1) H’ CHE HE = ( 1>”
oy V0 < L L ¢, 1¢,_ 1
‘tg() Y 1—s (4p)v— (l—s 2“1 wot +1/
+1)!
<CpPype|ot v o
Cp Ye Ep(1—8V+1 4p ZQ:N 1(’: p—1-
We can conclude using (3.22):
— v—2
Z Q:,ufl Q:yf,ufl = Z Q:,u Q:quf,u =¢,1<¢,.
n=0

Last inequality follows from relation (3.22) and €y = 1.

The proof of estimate (3.33c) for V := FP* (6@ fot (o) do, e fo do) follows the same

argument as the previous one, but it is simpler since, according to (3.26d), per(

as a semilinear term in a. It is therefore omitted.
Finally, we take interest into V := KL°p< Io "b(0) do, fg c(o) da) which we decompose in

(EN)? as V =2 (Vo V) =: (V2, V), . with, for n > 1 and ¢ = @, 4,

=1’

n—1
e = K S a0t
k=1

For n > 1 and ¢ = ¢,9, we compute V/*(0) = 9;V/*(0) = 0, and for v > 2,

V(0 L°pzaez< )a“ "l (0) 0y M e R 0),

so, for s € (0,1), using (3.26b) and (3.7) with 0 < s < s, < 1 and then (3.24),
ez, < S5 (1) ol |
< sfizumiz’,jzj:i»ubsu\@\ o]

2 ()i =

<o st S,

using (3.22) as before. Therefore we get

H

2pn <n>2d

Jo a,0g a) acts

v—p—1 n—
oy " Cy k(o)

Ys,

E,

)

Ep

)

N
E

and summing over n > 1, we obtain

so that, multiplying by e

Z Z 2pn 2d*
(=p,ypn=1 1
e D Zezf’"<n>2d* (Z!Hbi
(=ppn>1 k=1

>2

|
Ep
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<02 phad Z nil <n>2d*
0 R)*T (=R

n>1 \k=1
n—1
Z erk <k>2d*
k=1

using Cauchy-Schwarz inequality. Therefore, since 22;11

2

)

Ep

2 e2p(nfk) <n _ k>2d* ’ c
Ep

n—k
b

|

2d*
MW is bounded uniformly
with respect to n > 1, we get

2
2 2d* 2 2
IVIG: = > S eem o |[ve | < ¢t 8 Ibligs el
(=ppn=1 g
which is the sought inequality (3.33d). O

We are now in place to prove existence for (3.32) (which is equivalent to (3.31)) in the space
E%, of analytic functions with respect to (¢,y,©). We follow here the method of [Uka01, Mor20)].

Proposition 3.22. For every My > 0, there exists p € (0,1) such that for every H in E%
satisfying ||H||g2 < Mo, equation (3.32) admits a unique solution b in E2.
P

Proof. In all this proof, for R > 0, B,(0, R) denotes the closed ball of Ef, centered at 0 and of
radius R. For b and H in E?,, we denote

F(H,b) := L/Ot b(o)do — Je DL°p</0t b(o) do, /Ot b(o) da)
— (96 /0 "b(o) dor 06 /0 b(or)do) + K0 /0 "b(o) do, /0 "b(or)do) + H.

so that solving (3.32) amounts to find a fixed point of F/(H,.) : b — F(H,b). Therefore, we will
prove that there exist R > 0 and p € (0,1) such that for every H in E2 satisfying ||H||g. < Mo,
P

the map F(H7 ) is a contraction from the complete space B,(0, R) to itself.
Consider My > 0 and H in EJ such that ||H||lg. < Mo. First we need to show that there
]

exist p € (0,1) and R > 0 such that F(H,.) maps B,(0, R) to itself. Lemma 3.21 asserts that
F(H,.) is well defined from Ef, to itself and that it satisfies, for b in E/%,

|7 (H.b) [l g2 < C 0Bl + € o 20 bl + Mo,

for a new positive constant C' > 0 independent on p, H, My and b. Therefore, setting R := 2M),
for 0 < p < C(v0, Mp), with

C(v0, M) := min ([40%]_1, [8C o Mo]_1/2> ;

the application F(H, ) maps the ball B,(0, R) to itself.
Now we need to show that this map is a contraction, for p < C'(Mjy, 7o) small enough. We
compute, for 0 < p < C(My, o) and for b, c in B,(0, R),

F(H,b) — F(H,c) =
L/Dt (b —c)(0)do — 0o D™P (/Otb(a)da,/ot (b— c)(a)da>
— 0g DoP (/Ot (b —c)(0)do, /Ot c(o) da) — [Fper (a@ /Ot b(o) do, de /Ot (b—c¢)(o) da>
_ prer (a@ /D (b ¢)(0) do 06 /0 (o) da> + Ko ( /0 "b(o) do, /0 "(b—c)(0) da)
+K'or (/Ot (b —c)(0)do, /Ot c(o) da> :
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Therefore using estimates of Lemma 3.21 and the fact that b, c are in B,(0, R), we get,
1 (B, b) — (€)1, < € p20(1 + o (Ibllgs + llelles) )b — el
<Cpry (1+pR)|b— CH|E§7
up to changing the constant C' > 0 in every line. Thus, for p < C (70, Mp), with
_1/2, [2070 (1 i 2MO)]—1>7

C(v0, Mp) := min ([470 Mo]_l, (8 ~o M|

the map F(H,.) is a contraction from B, (0, R) to itself.
Since B, (0, R) is a closed subspace of the Banach space Ef,, the Banach fixed-point theorem
gives a unique solution to (3.32). O

3.6.2. A Cauchy-Kovalevskaya theorem for incoming interior equations. The aim is now to prove
existence of solution to (3.17)-(3.19) with the Cauchy-Kovalevskaya type Theorem 3.1 using the
chain of Banach spaces (XT)TE(OJ)'

We start by writing system (3.17)-(3.19) in a form suited to apply Theorem 3.1. Up to
multiplying (3.17) by a nonzero constant (which is the x4-component of —v¢ ;), system (3.17)-

(3.19) can be written as

O 0 = La—8@D(a,a) —8@J(0’,a) +89K(0',0')
(3.35) N

Olzy=0 — A + 8,
where o := (0'%1,0'%3,0'1/,71,0'77[,,3,0'%1,0'%3) = (0371,033,03 170337031’033)71»’ function a
is the solution to (3.20)-(3.21), function a is defined from a by a := ((ep1 - Tp1) Ay, (€43 -

T,3) Ap, (€1 - Top 1) Ay, (€93 - T 3) Ay, 0, O), boundary term g is defined as g := (g%l, e gyvg),

and, if T := (Tg,l, TS s
Lo .= (V%1 Viyop1, -, V3 Vigy 0',,73),
- n 1 n 1
D(O'7 T) = (Dw’l 0'(’071 7@717 ceey DV73 UI/,S Ty73)n>1,
L C2,92 7 -1 n
J(U’T) T Z Z JC1,j1 [O-Clvjl’TC27j2] o ’
QLGe{pwr} j1j26{1,3}) Pasicl
n=>1
n—1
- X k n—k
K(o,7)i=| K¢j D . D 0% o’
GGE{pabw) 1i2e{1,3) k=1 Padic
n=1

giﬁ, satisfying the same assumptions as the old ones (3.26a)

and (3.26¢c). Note that there exists a constant C' > 0 such that for any a in X2, we have
lallxs < Clllallx:-
For Ny > 0, denote by F the function of [~ Ny, No] x X¢ defined by, for |z4| < Ny and o € X8,

F(xq,0) ::La—é?@D(a',a) —3@J(0’,0’) —i—@gK(O’,U),

with new® vegs Dej, Kej and J

and set 0 := a + g. Now system (3.35) is equivalent to the following one, with 7 := o — a”,
(3.36) ™(@q) = F (e, 7(2a) + o)
7(0) =0,

which is, with F (24, 7(24)) = F(md,r(xd) + o) for |zq] < No, in the right form to apply
Theorem 3.1. Note that the operator F' actually does not depend on x4, so all suprema in x4

8Due to the fact that we multiplied equation (3.17) by a nonzero coefficient to obtain a propagation equation in
the normal variable.
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in assumptions of Theorem 3.1 may be removed below when verifying the assumptions of this
theorem on our particular problem (3.36). We will therefore omit to indicate the dependency in
xq of F' and simply write F'(7). It remains to check the assumption of Theorem 3.1 to obtain
existence of solutions to (3.36). The key estimates to do so are the following ones.

Lemma 3.23. There erists C > 0 such that for 0 < ' < r < 1, for o,7 in X8, the following
estimates hold

(3.37a) £ llxs, < TC_VS,, llolll xe

(3.37D) [P (e, 7)[llxs < Crollellxellrllixe
(3.37¢) 13(e, 7)[llxs < CrollellxellTllxe
(3.37d) K (o, 7)[l|xs < CrollellixellTllxe-

Proof. Estimate (3.37a) follows directly from Lemma 3.17 and assumption (3.26a) on v ;, for
¢ =v,,v,and j = 1,3. As for them, estimates (3.37b) and (3.37c¢) rely on the algebra property
of X, and assumptions (3.26a) and (3.26¢) on D¢ ; and Jgf;f Finally, estimate (3.37d) is proven
using assumption (3.26a) on K¢ ; for ( = ¢, 4, v, and j = 1,3, and the same arguments used to
prove algebra property of X,.. O

The main result of this part is the following one, which, along with Proposition 3.22, will
prove Theorem 3.20.

Proposition 3.24. Consider 0 < ry < 1, and a a solution to system (3.20)-(3.21) given in X2 .

Then, for every My > 0, the following existence and uniqueness result holds: there exists § > 0

such that for every g in X8 satisfying ||g|lxe < M, system (3.36) admits a unique solution
7'1

in CH((—=6(ry —1),8(r1 —7)),X8) for each r € (0,71).

Proof. The aim is to apply Theorem 3.1 with the scale of Banach spaces (X?)O r<rm” Fix now

a constant M7 > 0 as well as” R > 0, and consider g in X¢ such that ||g[[xs < M. We will
1

6
T1?

F(T) =LT+Lo°— 8@D(T,T) — 0o D(O’O,T) —8@D(T,0’0) — 8@D(0’0,0'0)
- 3@J(T,T) —5@J(T,00) - 8@J(00,7') —8@J(00,00)
+ Og K(T,T) + Og K(T,O‘O) + g K(UO,T) + Odg K(O'O,O'O).

now verify assumptions (3.5) and (3.6). We compute that for 7 in X , we have

Therefore,
F(0)=Lo®-06D(0° 0°) —00J(c°,0°) + 00 K(c°,0°),
so, using Lemmas 3.17 and 3.23, we get that there exists a constant C' > 0 such that for all

0<r <r<mr,
C C
IEO) s, < 2 (|[lo°] %) <= (lle”l %)

r—r!

xg + [l

xg + [l

and then, using the fact that [|af|xs < C||al|x2 and [|gllxs < M,
i T Tl

Co

IFOllxs, < -2

2
(lallxz + lallkz + M1 + M3),

so assumption (3.6) is satisfied with M := C'~o(||al|xz + llall3z + My + M3).
On the other hand, we have, for 7,w in X5,

F(T) —F(w) :L(T—w) —a@D(T—w,T) —8@D(w,r—w) —8@D(0’0,T—w)
—a@D(T—w,O'O) —8@J(T—w,7') —8@J(w,7'—w) —8@.,]](0'0,7'—w)
—96d(T —w,0°) + 00 K(T —w,7) + 0o K(w, T —w) + 0o K(0°, 7 — w)

9Constant R takes part only in the proof, and can be chosen arbitrarily large.
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+ 0o K(T —w,o-o).

Therefore, using Lemmas 3.17 and 3.23, we get that there exists C > 0 such that for all 0 <

r’ < r <ry, for each 7,w in {a’ € X9|lo|llxs < R},

7 = wl|
1£(7) = Fw)lxs, < Coyo(1+ I7llxs + Mwllcs + ol e ) ———

_ C(L+ Bt [lalle + M1)

< — Il — wllxe.

r—r

This estimate asserts that both the continuity property of F' and assumption (3.5) with C' :=
CH (1+ R+ ||al|x2 + M) are satisfied. We can therefore apply Theorem 3.1 which gives the
sought result. O

Proof of Theorem 3.20 is now straightforward. Fix two positive constants My and M;. Propo-
sition 3.22 asserts the existence of p; € (0,1) such that for all H in E? satisfying |HH|HE% < My,

there exists a solution a in E%l to system (3.20)-(3.21). Then, Lemma 3.16 ensures that there

exists 1 (depending only on pj), such that the solution a to (3.20)-(3.21) is in X,,. Proposition

3.24 gives the existence of § > 0 such that for every g in X8 satisfying ||g[|xs < Mji, there
1

exists a solution o in C'((—=6(r1 —r),8(r1 — 7)), X8), for each r € (0,71), to system (3.17)-(3.19).
This is precisely the statement of Theorem 3.20.

To make the simplified model (3.17), (3.19), (3.20) and (3.21) more complicated and closer to
the general system (2.47), (2.48), (2.49), (2.50) and (2.51), several aspects could be incorporated
in the former one. Outgoing equations associated with boundary frequencies ¢, 1 and v could
be integrated in interior equations (3.17). It raises mainly an issue of functional framework, as
we solved incoming equations (3.17) as propagation equations in the normal variable, which is
not a framework suited for outgoing equations. Then it would be possible to incorporate traces
of outgoing profiles in boundary conditions (3.19) and boundary evolution equations (3.20). For
that we would need trace estimates for the chosen functional framework. In a more distant
perspective, we could integrate profiles associated with boundary frequencies different from o,
¥ and v in interior equations (3.17) and boundary equations (3.20), which would require a total
change of the functional framework, since we would have to work with almost-periodic functions.

We could also consider derivatives of order higher than one in source terms of theses equations
(3.17) and (3.20)

4. INSTABILITY

This section is devoted to the proof of instability. More precisely, the aim is to show that the
perturbation H in (1.1) interferes at a leading order in the asymptotic expansion (2.1). This
is not the case in general, where the perturbation £ h® only interferes at order €2 and higher,
see [MAS8S]. As the perturbation €2 h® of €2 ¢° in (1.1) is small, we will work with the linearized
system of system (2.47), (2.48), (2.49), (2.50) and (2.51), around the particular solution when
the perturbation is zero. To simplify even more the computations we will prove instability on
simplified models of the linearized system. The first part of the section focuses on deriving the
linearized system for the profiles.

4.1. Linearization around a particular solution. If the perturbation H is uniformly zero
n (1.1), then we are brought back to the case of [CW17], and the solution obtained in the
mentioned work is thus a solution to our cascade of equations (2.47), (2.48), (2.49), (2.50) and
(2.51) in this particular case. Therefore, according to [CW17], we have the following result.

Proposition 4.1 ([CW17, Theorem 1.10]). Let Ty > 0, and consider G in C*((—oo,Ty],
H>®(RT x ']T)), zero for negative times t, and H = 0. Then there exists T € (0,Tp] and
unique sequences of functions (UZ)nm, and (52]’)\)7»0 for ¢ = o, ,v and 7 = 1,2,3 in



56 CORENTIN KILQUE

C*®((—o00, To), H*(R?*! x Ry x T)) and sequences (EZ)\)n>1 for ¢ = @, in C>((—o0,Tp),
H>(R¥1 x T)), solution of the cascade of equations (2.47), (2.48), (2.49), (2.50) and (2.51).

Note that Theorem 3.20 constitute a version of Proposition 4.1 in the case where H is possibly
nonzero, but only on a simplified model of system (2.47), (2.48), (2.49), (2.50) and (2.51), and
with a different functional framework. Note also that since H is zero, we have, forn > 1, A € Z*,
for the solution of Proposition 4.1,

(4.1) aija=0 for(#pandjeC((), and aj,=0.

The aim of this part is to derive the linearization of system (2.47), (2.48), (2.49), (2.50)
and (2.51) around the particular solution of Proposition 4.1. Schematically, in order to study
the general problem of the form F(u) = (G, H,O0,...), we linearize this problem around the
particular solution @ of F(u) = (G,0,0,...) to obtain the linearized problem dF(w) - u =
(0,H,0,...). We will also simplify the linearized system during its derivation, since for some
profiles it is easy to show that they are zero.

We only detail the linearized equations for the order we are interested in, which are first
and second orders, and only for profiles of interest, that is, T Thars Tuan and g 2o for
A € Z* and n = 1,2. Here, opposite to the formulation of (2.49), we write down each equation
separately, as they are now different since EZ ja 1s zero for ¢ # . We also adopt a new color
code for these equations.

For the leading profile, starting from equations (2.9), we get, for the phases ¥1, ¥ and s,
and for A € Z*,

1 o1 7. —1 1 _
(4.2a) Xy Tpix T ]1A=k/\w JV,Q ik Op1,—kXy, Ov,2,—k = 0,
(4.2b) Xpoob oy +1 j23 ik o) L =0
: Aah,2 Oy 2 N A=kAy Y2 l '(T\;,ij.fk)\;, 01/,2.7# - Y

1 Pl -y =1 1 ®3 -y =1 1 _
(4.2c) Xu20,0 2+ 31 IAT L1 o, Tg1an, T 52 AT, 3 A, Tp2 -, =0

In equations (4.2a) and (4.2b), if A ¢ AyZ, no resonance happens, but if A\ = k), for some
k € Z*, then, for example for the phase v, the resonance kA, p1 + kAy Y1 + ko = 0 occurs.
This explains the presence of factors 1=y, in equations (4.2a) and (4.2b). We also have, for
j=1,3 and )\ € Z*, the transport equation

1 =1 1 _
(4.3) XojTpintDoj D, Xl 0p 0, =0
A1 +HAo=A\
As for them, the linearized equations for boundary terms a}o and a%,) read
Lop 1 Sy 1 1 —1 1 1 1 _
(4.4) X°Pag \+v, Z A2y, A n, TA Z Yo (A1; A2) (@ n, g, g, Tpn,) =0,
ArtA2=A A1+A2=A
and
Lop 1 P U s, 1 —1 s 72
(45) Xz; Ay, \ T ﬂ)\:/{‘/\lv ik (Jz/.Q.k')‘I{,:() ay, Aok — iAby - B (Ct:,z./\>‘1¢m¥(,:()'

There is no term in G in equation (4.4) since we linearized around the solution given by Propo-
sition 4.1 corresponding to the source term H = 0 and we study the influence of a small source
term H on the leading amplitudes o'.

Equations for the boundary phase ¢ are decoupled from the others, they can therefore be
solved, using for example [CW17, Theorem 1.10]. From (4.4), along with the initial condition
(a;)\)'f/go = 0, we obtain a}p)\ = 0 for A € Z*. Using boundary condition (2.16) as well as initial

condition ( =0, we also get Uglaj y=0for j=1,3 and A € Z*. Summing up, we have

1
%,j,/\)uso
(4.6) oby; =0, a,y=0, VA€Z"Vj=13.

The other frequencies 11, 19 and vy are totally coupled through equations (4.2) and (4.5), and
we need to determine the function azlp on the boundary and thus the outgoing amplitude ai 9\
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In the same way as for the leading profile, for the first corrector, starting from (2.31), we get,
for the phases 1, Y9 and vo,

2 1
(4.7a) Xy Uz[) 1 T Ia=ra, Jyg ik (o Tp1,—kA, Ov2, -k T O O—Lp,l kA, T Ty k)
= terms in (Uy, (I — P) Us),

2 5,3 .7, 2 |
(47b) X'L‘Q U(,:,Q.A —+ ]U—kk,m]zjfz ik ( ©,3,—kAy O-I/ 2,—k + O—Q 3,—kXy Uz/,Q.fk,‘)

= terms in (U1, (I — P)Us),
(470) XI/201/2A+]Y1ZA<Y91_)\ 0'1/1_)\ +O’Y1_/\)\ 0'1/)1_/\)\)

3 .
JPQI)\( S*A)\\po—’lﬁQ A)\ +O’¢5 )\)\ﬁo-lLQ )\)\ ):t(i’r’m,s Zn(Ul,(I_P)U2>,

where terms in (Ul, (I —P) Ug) refer to quadratic terms in Uy or the nonpolarized parts of Us,
both of them for frequencies (;, with ¢ = ¢, 9, v and j = 1, 3, terms which therefore will be zero
if the corresponding profiles are zero. Equations on other profiles 0'3 I5% for ¢ € 7 \ {¢, v} and
(¢,7) = (¥,3),(v,1),(v,3), are not of interest so we do not write them.

For the boundary term afp, we have, according to (2.43),
(48) leop 2 /\+X|“p< 1 2)\)

Y |z4=0

+ Do, T 0k { (00,20) 15, m0 To-ak T (T026) gm0 Tpr-agk ]
= iAby - B (U5 10y xamo — PADy - Hy

+ 0,9 terms in (Ul, (I = P)Us, (PU3)¢tp .04 Ué‘) T

Again, here, equations for ¢, 1 and vy are coupled. As the coupling is difficult to handle,
especially with the term i\ by - B (Ui:g?f\)lmd,xd:()’ we will simplify equations (4.7) and (4.8) to
reduce the coupling, in order to study instability.

We have obtained the system (4.2), (4.5), (4.7) and (4.8), which is the linearization of system
of equations (2.49) and (2.51), around the particular solution of (2.47), (2.48), (2.49), (2.50)
and (2.51) of Proposition 4.1 for which the boundary term H is zero.

4.2. Instability on simplified models. The aim of this section is to show that the system
(1.1) considered in this article is unstable, namely that a small perturbation H in the boundary
term may interfere up to the leading order. More precisely we prove that there exists a boundary
term H such that, for simplified models of the linearized system (4.2), (4.5), (4.7) and (4.8),
the leading perturbations O'&) i and 0'1 ja are not all zero. For this purpose we argue by
contradiction and assume that for every boundary term H, all amplitudes Uw 2 and UV EY for
j =1,3 and A € Z* are zero. Then we seek for a contradiction. In partlcular according to
(2.18), it implies that a;, , = 0 for all X € Z*.

Recall that we have shown above that for the linearized system, profiles ago for j = 1,3 and
A € Z* are zero. Therefore, all leading profiles of frequencies (;, ¢ = ¢, 9, v and j =1, 3 are zero.
Furthermore, according to formula (2.21) giving the nonpolarized parts of the ﬁrst corrector,
the nonpolarized parts of Us for frequencies (;, ( = ¢,9,v and j = 1,3 are consequently also
zero. We can also show in a similar manner, that the mean value U5 and the polarized parts of
frequencies different from (;, ( = ¢, %, v and j = 1, 3, are also zero.

Therefore, equation (4.5) now reads

(4.9) (0%.2) (gm0 = 0

since Uz/%,l ) is polarized, aqlpy y is zero for A € Z* and the scalar by, - Bry o is nonzero. Equation
(4.9) is the condition which we wish to contradict.

The general linearized equations (4.2), (4.5), (4.7) and (4.8) being too difficult to handle at
this stage of comprehension, two simplified models are investigated.
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4.2.1. First simplified model. We focus first on a very simple simplified model, for which com-
putations can be easily followed through the end, and reflect the general idea of the instability
mechanism. In equations (4.7), most of the resonant terms, which couple the equations, are
removed. We also use that both leading profiles and nonpolarized parts of Us of frequencies
Gj for ¢ = ¢,9¥,v and j = 1,3 are zero. We retain at the end, for phases 11, ¥2 and vy, the
incoming evolution equation

(4.10a) Xyp10510 =0,
and the two outgoing evolution equations with resonance terms

(4.10b) X2 U%.z,A + L=k, ]172; ik Elyﬂ.:sfm; 0o =0,
(4.10c) Xuo0pon+ ]:911 INTL1 o, T, = 0.

As for the boundary amplitudes afp y for A € Z*, we remove all traces of first or second pro-
file, and, as usual, iAby - B (Ufzgsi)
P) Uy, (P U2)¢zp0.0, Us)

(4.11) X% a2\ = —i\by - Hy.

Y

T and we use that terms of 0, g terms in (Ul7 (I —

g xa—0 A€ ZeT0 to retain the simple forced transport equation

According to above remarks, boundary condition (2.33) for the incoming amplitude 012/)71’ \ ow
reads

(412) (0;2’-1-)\> |zq=0 Typ1 = (1‘(2:7/\ Cep,1-

Although system (4.10), (4.11) and (4.12) is coupled, it is in an upper triangular form, so it can
be solved using explicit formulas, since we are in presence of transport equations with constant
coefficients. This is made precise now, with the proof of the following result.

Theorem 4.2. There exists a boundary term H in LQ((foo, T]; x Rg_l X '1['92) such that, if the
sequence (ai’l)\,05727)\,012,’2)\))\62* of tuples of C(R?d,Lz((—oo,T]t X Rgfl)) and the sequence
(ai,,\)AeZ* of L*((—o0, Ty x RI™Y) are solutions to the system (4.10), (4.11) and (4.12), then
the trace (05)72’/\1&)'“:0 18 monzero.

Proof. We consider any boundary term H in LQ((—oo,T]t X Rgfl X TQQ), and we look for an
expression of the trace (O‘i 9 A)de=0 of the associated solution of (4.10), (4.11) and (4.12).

First of all, the transport equation (4.11) on the boundary {z4 = 0} can be solved to find

t
: Lo
dalt) = [ =ixby - Hy(sy = Vi (1= 5)) ds.

recalling the notation'’

Xy =0 +v "V,

According to boundary condition (4.12), it follows, with notation'

Xw’l =0 — Vi1 Vie=:0; — Vi/),l . Vy + 8:Cd,

1

using the incoming transport equation (4.10a),

oot Y, xq) = —lpy<t /Otxd iApy.1 by - Hy (s, y+ x4 (v{fp +Vy1) — ViOp (t— s)) ds,
with a coefficient py 1 € R such that ey 1 = py.17y,1. To simplify notation, the coefficient py, 1
will be omitted in the following. Thus, with notation'?
Xvo=0—Vvy2 V=10 — V:,,Q -Vy — Oy,
10Without lost of generality, we have set 8, = 1 in Lemma 1.11, to simplify the equations.

\We assumed here that, with notation of Definition 1.3, —1/0¢7k(n, &) is equal to 1.
12g¢e footnote 11.
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according to the outgoing transport equation (4.10c), we have
t
1 .y —
T orltea) == [ IELNTLL (0 + Vit = 5) Layene
0

2s—xq—t
X / iAAy by - H_xy, (T, Y+ V;/,Q (t—s)
0

In the same way, with similar notation, the outgoing transport equation (4.10b) leads to
t
3.
ohon(ty,za) = /0 Taminy, T ik T 5 g, (8@ + vpa(t — s))

s
X / J@f:ll ik 64,10,1,16)\9 (T, T+ Vy o (t—s)+ Vl,72(8 — T)) 1.,<0r—¢
0

2T1—xq—t
X/O Z'k')\l/,bw~Hk,\w<0,y+vi,72(8—7')+V£p’2(t—8)
+ (g +t—T1) (ViOp + Vi) — Vi'ap (1 — 0)) do dr ds.

The trace of ai 5y on the boundary {z4 = 0} is therefore given by

(4.13) 07 5(t,y,0) = —z/ / /27_ Ly—kr, J, J;f;ll KA Tha o, (5,5 + vipalt — 9))
X 0%17,{/\@ (T, y + vyt —s) + via(s — 7))
X by - Hy, <J, Y+ Vo (s—7)+ vyt —s)
+(t—1) (VTIZOp + Viﬁ,l) — ViOp (T — O')) do dr ds.

We justify now why there is a choice of a boundary term H such that this trace is nonzero.
We take interest into the trace (05)727)%) 2g=0’ which is given by formula (4.13) with A = Ay, and

therefore k = 1, namely,

(4.14) o3, 2 (89, 0) = —z/ / /QT t Jf;:ll Ay 63073,,% (5,9 + vt —s))
X 0%1 Ao (T,y + vyt —s)+vya(s — T))
X bqp-H)\w(a,y—kv’V’Q (5 =7) +Vyolt—s)
+(t—1) (viOp + V1) — vi(’p (1 — a)) do dr ds.

We start by constructmg a LA, and O'go 3\, suited for our purpose. It is proven in [CW17,

section 2.2] that a_ Y solutlon to equation (2. 51a) in the particular case where H is zero, is the
solution to the followmg equation, for A € Z*

(4.15) XEPal, + DL > ida@hy Aha, TN D (A1, Aa) Ty, Gy, = —iAby - Gl
A1t+A2=A A1+Az=A

We set Gy =0 for A € Z\ {\,, —A\,} and G\, G, real, non-negative, and equal to one on

the set [1/2,2]; X [-(h+2)V, (h+2)V]{~!, where we have denoted V := |vf5°pi and with h > 1

Solving the transport equation (4.15), we get E;,/\ =0for A€ Z\ {\,,—A,} and a(p)\ , 307_/\%

real, non-negative, and greater than 1/2 on the set [1,2]; X [-(h+ 1)V, (h+ 1)V ]y . Now we

know that, according to the condition (4.1) on profiles Eéj ) for ¢ = 1/1, v,j=1,2,3and A € Z*,

there are no resonance terms in the evolution equation (2.9a) for & 0 y for j=1,3and X\ € Z*,
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so theses profiles @ JSO for j = 1,3 and A € Z* satisfy the following incoming transport equation

1 1 _
(4.16a) XpjOpiatDeg D ATy 5 00,0, =0,
Al+A2=A

with the following boundary condition (2.16)

—1 1
(4.16Db) (Tp5\) [sgm0 "0 = T\ o
Solving system (4.16) seen as a transport propagation equation in the normal direction, with
notation'?

j:'&g— , V —|—8xd,
we get 0’ ja=0forj=13and )€ Z\{)\@, Ay}, and that o B 0@3 _», are real, non-
negative, and larger than A/2 on the set [14+V/(2w), 2+V/(2W)]t X [ hV,hV], x[0,V/W],,,
where A := min (]e%l Toil,]eps 7’%3‘) W = min (‘VSO 1l ]ch 3\) and W := max (IV:MI, ]pr73\).

Now that E;L A and E}p,&f A have been constructed appropriately, we make precise a suitable

choice of boundary term H. We denote t := 14V /(2w) and T := 2+ V /(2W), and we set the
integer h such that
8(T —t) L
h 2 ——=;— max (\Vzpz’ Vials [Vl v Op’)

We also take the boundary term H such that by - Hy, is pure imaginary, and such that its
imaginary part is of the sign of Jf 5 Jy 2 1 Ay and of modulus one on [t, T]; x [-hV, hV],, namely,

by - Hy, =i sign (J,‘f’2 J% Ag) on [t,T]; x [-hV,hV],.

Then we note that, according to (4.14), the trace (05’2 /\w)m
€ [-hV/2,hV /2],

27— t
1
U¢2>\wty, —z/// J“O )\¢0¢3 X (5,9 + vyt —s))

T, (T U+ Vyo(t —s) + via(s — 7))

,—o satisfies, for ¢ € [t, T] and

X by - Hy, (U,y + Vo (8 —T)+ vyt —s)
+(t—1) (VIIZ}Op + Vg/)71) — leZ}Op (1 — O')) do dt ds
A2
3 ,1
Y N

since, for t < o < 21 —t, t <7< s<t< Tandy € [-hV/2,hV/2], according to the
assumption on h, we have o, 7,s € [t, T] and

Y+ vya(t—s) € [-hV,hV], x [0,V/W],,,
y+vya(t—s)+vya(s—17) € [-hV,hV], x [0,V/W],,,
Yy+v,o(s— )+Vw2(t—3)

+(t—17) (fop + V;N) P (r—0) €[-hV,hV],,

because T —t < V/2W, up to shrinkmg w.
It concludes the proof of Theorem 4.2 since we proved that there exists a choice of H such

that the trace (Ui 9 /\w)lw 0 is nonzero. O

Theorem 4.2, stating that the trace (Uw 9 /\w) o 1s nonzero, contradicts the condition (4.9),

Tdq
so instability is proven. Indeed, we have assume|d that for all boundary terms H, the associated
amplitudes Ullb,j,/\ and Ji’j)\ for j = 1,3 and A € Z* are zero, and, for the simplified model
equations (4.10), (4.11) and (4.12), we found a contradiction. Therefore for this simplified
model, there exists a boundary term H such that the leading profiles a¢ A and O'V B forj=1,3

133ee footnote 11.
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and A € Z* are not all zero. It proves that the boundary term H may interfere at the leading
order, which constitutes an instability.

4.2.2. Second simplified model. The second simplified model that we shall consider features
additional resonance coupling terms which add difficulties. This time we keep the formulation
of simplified models of section 3 and multiply equations (4.7) and (4.8) by ¢**®, to obtain, for
the phases 1, ¥ and vs, the incoming evolution equation with a resonance term

(4.17a) X¢1%1+3®Jy2( b1:002) =0,
and the two outgoing evolution equations with resonance terms

(4.17b) X005+ 00105 (5L 3,005) =0,
(417C) XZ/ZU 2+8OJU1< 9917 P 1) +80Jw2<0- ,30 ) 2) 0

where operators J]Cl ’] ! have been defined in (3.18), and equations on the boundary are kept as
in the first snnphﬁed model (4.11) and (4.12), namely,

(4.18) X a2, = —by - 0 H.

(] (2

(4.19) (0%1) gm0 Tl = @3 €1

Note that this time, the simplified model features all resonance terms of the general equations.
The obtained system is no longer triangular since additional resonance terms in (4.17) rel-
atively to (4.10) couple each equation with the others, so we cannot solve it as a sequence of
transport equations as before. We use a perturbation method and solve equations (4.17) with
a fixed point theorem. We start by solving (4.18) as a transport equation, and then we deduce,
using the incoming transport equations (4.17a) and boundary condition (4.19), an expression of
ai’l depending on 012,72. We use this expression in (4.17c) to obtain an equation in 0372 with a
source term depending only on O'iVQ. This equation is solved with a fixed point method, using
that the source term depending on 0372 is “small”, in a convenient topology, comparing to the
transport term, and we get an expression of 0372 depending on 05,2. This expression is finally
used in (4.17b) which is solved with the same fixed point method. The result is the following.

Theorem 4.3. There ezists a boundary term H in C([0, Ty, H* (RS x Ty,)) such that, if
0371,0372,03’2 in Cl([O,T]t,lHTC’O(]R?‘j_1 x R} x Te)) and afp in Cl([OjT]t,HOO(RZ_l x Te)) are

solutions to the system (4.17), (4.18) and (4.19), then the trace (J?p 5) is nonzero.

|xqg=0

Proof. Similarly as for the first simplified model, from equation (4.18), reusing previous notation,
we get

afp(t,y) /b¢ Do Hy (s, yfvw P(t—s))ds.

Then system (4.17a), (4.19) seen as a transport equation with a source term depending on 0572,
leads to

t—xq
L L
051ty xa) = _1Id<t/0 by - 9o H(S, y+aa (v +vy) v (- s)) ds

t
—l—/ 8@J (ipl, 32)(s,x+vw71 (t—s)) ds.
max(0,t—x4)
Therefore, equation (4.17c) now reads
(4.20a) Xy2000+ 00155 (L 5, 07,0)
t*!L’d
(420b) - éb JU 1 {up ) 1 xq<t / b’(f) . 8@ (é Y+ xq ( P + V1/; ) EOP (t — 5)) di}
0

-t
(4.20c) +0@J¢1 [0;1 / 0@JV2( 0150 52)(57304—%‘.,] (t—s)) ds] = 0.

nax(0,t—xq)
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This is a transport equation but with a perturbation term (4.20c) depending on the unknowns
32 y- It is solved using the following result. For s € [0, +00), we denote by H?® the Sobolev

space HS(Rd ! xR} x Tg) of regularity s, and H> := = Nszo H*.
Lemma 4.4. There exists T > 0 such that, for any function f in C([0,T], H*), the transport
equation

2
XV72 01/,2
t

(4.21a) +3@.,]] { sol’/ ( )3@.,]] (ipl, 52)(5,x+v¢,1 (t—s))ds} = f(t,x),
max(0,t—xq

(421b) (0-3,2)”:0 = 07

admits a unique solution a7, in C*([0,T], H>).
If, for f in C([0,T], H*®) we denote by U f the solution 0372 of (4.21) in C*([0,T), H*®), then,
for any s > 0, there exists Cs > 0 such that for f in C([0,T], H®), we have

(4.22) 1Y flle oz, ey < Cs Tl flleqo,r,me) -

Before proving Lemma 4.4, we prove the following preliminary result, asserting that the
operators u + 8@J< [ T ] for (4,¢(, k) € {(1,4,1),(1,1,2),(3,1,2),(3,1,2)} are bounded
from C([0,T], H®) to itself, for s € [0, +00).

Lemma 4.5. For s € [0,+00) and 631071 € C([0,T],H>), there exists Cs > 0 such that for u in
C([0,T7, H?), functions g J‘m[ Ty o ] for (j,¢, k) € {(1,¢,1),(1,v,2),(3,1,2),(3,1,2)} belong
to C([0,T], H®) and satisfy

(4.23) H@@ J‘p’] g4,71, ]H C(O.TLH?) < Cs ulle oy, a9y -

Proof. We make the proof for the operator u > 8@J [7@ U ], namely, (7,(, k) = (1,9,1).

According to the expression (3.18) of the operator Q]]w 1» we want to estimate, for ¢ € [0,T], the
following quantity:

Ha@J 7L 1, u ](t)HHS = [|(@,©) = J22 3" AGL (. 2) un(t, x) MO
ANEZ* Hs

Using the same proof as the one of estimate (3.29), we get

o3z,

< |[(@,0) = JEE AT (¢ @) e (2,0) = Y up(t,z)e®
AEZ* Hs AEL* Hs

< C T O foss Tl s -

which, taking the supremum in ¢ € [0,7], leads to the sought estimate (4.23), since 53071 is in
C([0,T], H**') according to Proposition 4.1. This is sufficient since we do not seek here for a
tame estimate. O

Proof (Lemma 4.4). From now on we fix an integer s > 0, and the aim is to use the Banach
fixed point theorem in the Banach space C([0,T], H®). For v in C(]0,T], H®), we denote by ®v
the solution in C([0,T], H®) of

{X,,,g u+v=0,
ujp=o = 0,

which is therefore given by

t
(IDU(t,:E,@):—/ v(s,z+ vy (t—s),0)ds.
0
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Note that ® is continuous from C([0, 7], H®) to itself, and satisfies

(4.24) 1@ vlleqo.,msy < T 1vlleqom,ms) -

Now, if 03?2 is a solution to (4.21), it is in this notation a fixed point of the map F, where, for
w in C([0,T], H®), F(w) is defined by

t
F(w) : (tx@)Hq)(?@J {@1,/ o )3@J (7g017 )(s,ﬂ:—{—vqm(t—s),@)ds}(t,x,@)
—® f(t,x,0).

We derive now an estimate on the difference F(w) —F(w’) for w,w’ in C([0,T], H®). By linearity
of the operators, we have

t
F(w) - F(w') = @a@J [@1,/ do I} (7@1,w—w’)(5,az+vw71(t—s),@)ds].
max(0,t—xq)

Therefore, according to estimates (4.24) and (4.23), we have

| F (w) — (w/)HC([O,T],HS)
t
<CsT / 8@J (7@1,w—w/)(s,x+v¢71(t—s),@)ds
max(0,t—z4) C([0,T],H#)

<C.T? Haej (L1, w —w)

‘C([O,T],HS)

<O2T? |w—w HC([O,T],HS) :

Therefore, for T' > 0 small enough, F is a contraction of C([0,T], H*), and the Banach fixed point
theorem therefore gives a unique solution ¥ f in C([0, 7], H®). By linearity of system (4.21), the
solution ¥ f may be extended to any time interval, so the time of existence 1" does not depend
on the regularity s € [0, +o00). Finally, using equation (4.21a), we obtain

(4.25) 0V f(t,z,0) = f(t,x,0)+v,2- -V, Vf(t,z,0O)
t
— 0o J [7g0 1,/ Oo Jf}’; (Ei,’l? \I’f) (5, x4+ vy (t—s), @) ds] (t,z,0)
max(0,t—z4)
so ;W f belongs to C([0, T], H*) and therefore W f is actually in C'([0, T], H*). We have proven

the first part of Lemma 4.4.
The interest is now made on the boundedness of W. We have, since U f = F(¥ f),

t
Uf(t,2,0) = o I [W,/ 00 I3 (@b W) (5,0 + vy (= 5),0) ds| (1,2, ©)
max(0,t—zq)

- f<t7 x, @)7
and therefore, using estimates (4.24) and (4.23), we have, for s € [0, +00),
¢
19 flleom sy < Cs T / 0055 (F41, U f) (5,2 + vy (t—5),0) ds
max(O,t—xd) C([07T]7Hs)

+ T flleqo,r),m0)
S XTI flleqorry,mey + T I lleqory,me) -
Thus, for T small enough (depending on s € [0, +00)), we have

(4.26) ||‘I’f||C([o,T],HS) <CT HfHC([&TLHS) )

Once again, by linearity of system (4.21), the estimate (4.26) is propagated to the whole interval
[0, T, which concludes the proof. O



64 CORENTIN KILQUE

Returning to (4.20) and using Lemma 4.4, by linearity, the solution 03,2 of equation (4.20)
reads

(4.27)

t—xq
W@@J < (pl,]].xdgt/ bw-f)@H(s,y—i—xd( A +v¢1)—v¢ (t—ys), @)ds)
0
— U 0g Ji’; (Eclpﬁ, 012%2)'

We proceed now with equation (4.17b) which now reads, according to the expression (4.27)
of 02,

L

(4.28) Xyp 02— 00 15 |7h 3 ¥ 00 173 (75,03 1) |
=00 I3 {i; Y de J, <* 1

~f,f.’r(/
1, ra<t / .- 0o 1[(5 Y+ 1(1( Loervl ]) l;op (ff s)> (]S)} '
0

This equation is solved using the same method as the one of Lemma 4.4. For v in C([0, T, H*),
we still denote by ® v the solution in C([0, 7], H*>) of

{X¢72 u—+v =0,
uji=0 = 0,

and we recall that it satisfies, for s € [0, +00),

(4.29) H(I)UHC([O,T],HS) T Hv”c([o,T},Hs) .

Now, 03}2 is a solution to (4.28) if and only if it is a fixed point of the map F of C(]0, 7], H>)
given by

F:iwe 00090 [ oL 5,006 155 (3 5, w )]+q>a@J {@3,\118@le< L1,

t—xq
]lzdgt/ by, - 6@H(s,y+xd p+vw1)—v5p(t—s),@>ds>}.
0
For w,w’ in C([0, T}, H*), the difference F(w) — F(w’) is given by
F(w) — F(w) = ®do J75 [ 5Ly U 0 I75 (5L 50’ — w)}.
Therefore, for s € [0,400), according to estimates (4.23) and (4.22), we have

||F(’w) (w,)HC([O,T],Hs) Cs TH\I“?@JM( T3 W w)HC([O,T},HS)
<O T? Hw ch ([0,7],Hs) *

so, for T' > 0 small enough, F is a contraction of C([0, 7], H®). The Banach fixed point theorem
therefore gives a unique solution ai 5 to (4.28) in C([0, T, H?) for s € [0,400), that reads,

3
ol alt.2) = @373 7L, 06 I35 (Fh0.0%,0)|
— 0%} {wg,\ya@qﬂwl( 7L,
t—l‘d
]lxdgt/ by - Jo H(S,y+:cd (vb}Op + V1) — vior’ (t— s),@> ds)} :
0

Therefore, according to the expression of ® and taking the trace in x4 = 0, we have

(4.30) (03.2) 1o (t:9) = @I 0L 5, W 00 IS5 (= ¢3,0¢2)]|xd:0(t,y)
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t t
:/0 8@,,]]?2’2 [ @3,\P6@JW< g017/0 bd,-a@H(S,y—vi‘)p( ))dS)}
(5,y + vy (t—s))ds.

Using similar arguments as the one of Theorem 4.2, we can construct profiles O‘cp ; and O'(p 3
and choose a boundary term H such that the right-hand side of equation (4.30) is nonzero.
Therefore, we obtain

(012#,2)|md=0 - <I>Jf”§’ {ip 3 Vo Iy 25, 0121172)]

Now note that, using the exact same arguments as the one used to prove estimates (4.22), (4.23)
and (4.29), we can prove that theses estimates (4.22), (4.23) and (4.29) still hold for the traces,
in C([0,T], L>(R%! x T)). Therefore, we get

73 —
+H(I)°Uf,2[ ¢3,\P8@Jw2( 903’01/12)}

> 0.

(4.31) C:= ‘
C([0,T],L2(R4—1xT))

|zq=0

C< (0—3&2) |xqg=0

c([0,7],L2) lza=0llc([0,77,L2)

2 ©,3 (=1 2
<(94.2) lza=0ll¢([0,77,22) T H\I} 00 175 (7p 052 ‘xd:OHC([O,TLP)

S (0i72)|xd=0 c([o,T],LQ)+CT2H(0572)|%=0H

— (1+CT?) H (0572)|xd:0HC([0’T])L2) .

C([0,17,L2)

In conclusion, we obtain that the norm H(O’i 2) is positive, so, for T

|xd:0HC([O,T],LQ(RCI*UXT))

sufficiently small, the trace (a?p 2) is nonzero, which is the sought result, concluding the

|zq=0

proof. O

In the same manner as for the first simplified model, Theorem 4.3 proves that an instability
is created for the simplified model (4.17), (4.18) and (4.19).

Once again, as in section 3, it is conceivable to consider a more complex simplified model than
(4.17), (4.18) and (4.19), by integrating, in the equations (4.17), coupling terms with profiles o
with ¢ # ¢,1,v. What seems to be a further step is to add, in equation (4.18), terms involving
the traces of interior profiles. Among these terms, the one that seems to raise the most difficult
issue is i by - B (Uzzgi)lwd,xd=0’ since it couples equation (4.18) on the first corrector with the

second corrector U3.

5. THE EXAMPLE OF GAS DYNAMICS

We study here the example of three dimensional compressible isentropic Euler equations. The
aim is to determine whether or not the configuration of frequencies considered in this work can
happen for this system. For C' solutions, away from vacuum, the equations read

o Ve + Al(Vs) Ve + AQ(VE) 0 VE + A3(VE) 3VE=0 in Qp,
(5.1) BVi _=¢cg +eVh on wr,
i=0 =0,

with Ve = (v°,u°) € R% x R?, where v° € R* represents the fluid volume, and u® € R? its
velocity, and where the functions A;, j = 1,2, 3 are defined on R x R3 as

. _pte.
u; v7€;

52) 45(V) = e My(R),
—c(v)?/ve; u;l;
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where e; is the j-th vector of the canonical basis, with ¢(v) > 0 representing the sound velocity
in the fluid, depending on its volume v. We study here a perturbation of this system around the
equilibrium Vp := (vo, 0,0, up) with v9 > 0 a fixed volume and (0,0, ug) an incoming subsonic
velocity, that is, such that 0 < up < ¢(vp). We denote by cg := ¢(vp) the sound velocity in a
fluid of the fixed volume vyg.

In order to study the possibility of existence of a configuration of frequencies satisfying As-
sumption 5, we need to determine a matrix B satisfying Assumption 3. For which we need to
know the dimension of the stable subspace F_((), and construct a basis of it.

Although it will not be used in this part, we derive the expression of various quantities related
to hyperbolicity of the Euler system. For (n,£) € R? x R, the matrix A(n, &) := 1 A1 (Vo) +
n2 A2 (Vo) + € A3(Vp) associated with the system (5.1) is given by

wé  —wo'n —woé

An,§) = —c3/von uély 0 )

—c3 /v € 0 up
so the polynomial p defined as p(7,n, &) := det (7' Iy + A(n, 5)) reads

p(1,1,€) = (7 + Euo)*((7 + Euo)® — i (Inl* + €7)).

Thus the matrix A(n, ) admits a double eigenvalue —72(n, £) and two simple eigenvalues —7 (7, §)
and —73(n, &) given by

m1(n,§) = —€uo — co/In> + &%, Ta(n, &) = —Euo, T3(n,§) = —Euo + con/|n|* + &2

Note that since —712(n, ) is a double eigenvalue, the Euler system is not strictly hyperbolic, but
hyperbolic with constant multiplicity. Despite this difference with Assumption 2, we study this
system since Assumption 2 seems to be a technical assumption.

Now to determine the expression of the stable subspace E_((), we need to study the eigen-
values of the matrix

A(rym) i= =i Ag(Vo) ! (71 + my Av(Vo) + 2 Ao(Vh) ).
We determine that in this case, the hyperbolic region'* is given by
H = {(T,’I’]) ) 7] > /3 — ud \77|}

Then, for (7,7) in H, the eigenvalues of A(7,7n) are given by

TU() — sign(7) ¢o 7'2 N2 (3 — ud)
(5.3a) i&(r,n) = ¢ =,
. T ug + sign(7) co /72 — n|? (¢ )
(5.3b) i&a(T,m) =1 \/ ,
Co - Uo
(5.3¢) i&(mm) =i—,
o

where sign(z) := z/|z| for x # 0. The eigenvalue i {3 is double, when the two others are simple.
We determine that, if we denote «;(7,n) = (T,n,fj(T,n)), the frequency as(7,7n) is outgoing
when frequencies a;(7,n) and ag(7,7n) are incoming. Since i &3(7,7n) is a double eigenvalue, the
dimension p of the stable subspace F_(() is therefore equal to 3. This could also have been
determined by the number of positive eigenvalues of Az(Vjp).

MUThat is, the region where A(7,7) has only pure imaginary eigenvalues and is diagonalizable.
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The interest is now made on a basis for E_((), which, according to (1.6), can be constructed
with eigenvectors of A(() associated with incoming frequencies. We determine that the eigen-
vectors associated with eigenvalues i &;(¢) and i &3(() are respectively given by

|(77’ 52(Ta 77))| Vo
A comn ) )
Co 62(7—’ 77)

with A € R and where a is any vector satisfying a - (77,53(7‘,17)) = 0. For a we can choose for
example the two linearly independent vectors (77, |n|?>ug) and (con2, —con1,0) to obtain the
following basis of the stable subspace E_(():

0
|(n, &(T,m))] vo 0 .
r(¢) = o C Q= | Bo=] ",
—com
co&2(7, 1) n|? uo 0

We look now for a matrix B, of size 3 x 4, satisfying the weak Kreiss-Lopatinskii condition 3.
More precisely, we want a matrix B such that ker BN E_(() is nonzero on the specific frequency
T = ¢o|n|. Note that here we make a restrictive choice, about the locus where ker B N E_(()
should be nontrivial. This choice is made since it makes the following computations easier.
Since every quantity is homogeneous of degree 1, we can make the computations for || = 1. For
T = ¢ |n| we have &(7,n) = 0, so, denoting 1 = (cos §,sin6), basis {r1(¢),r3(¢),r3(¢)} reads

Vo 0 0
co cos B co cosf cp sin
r1(¢) = , 30 = , 30 =
co sin 6 co sin 6 —cp cos 0
0 Uuo 0

The condition that ker B N E_(¢) is trivial is equivalent to the three vectors Bri(¢), Bri((),
B 7‘%({ ) being linearly dependent. To study this condition, we write B in column as

B:<bl by b3 54);

and, since B has to be of rank 3, we can assume that column b4 is a linear combination of the
three linearly independent vectors by, by, bg which we chose to be the canonical basis of R3. We
write by = p1 b1 + pa by + pg bs, with py, po, u3 € R. In this notation, the linear dependence of
Bri(¢), Bri(¢), Br3(¢) is equivalent to

Vo cg = [41 UQ c% and o vy co cosl = puzvgcg sinf, VO €T,

so p1 = vo/ug and pe = pusz = 0. Multiplying B by a nonzero constant we obtain

UuQ 0 0 Vo
B = 0 Uuo 0 0 )
0 0 w O

which gives an example of a matrix B for which ker B N E_(({) is nonzero, and actually of
dimension 1, on 7 = ¢g |n].

We investigate now if ker B N E_(() is nontrivial only on 7 = ¢y |n|. At this purpose we
introduce a practical tool, the Lopatinskii determinant (see [BGS07, section 4.2.2]), denoted by
A(o,n) for (o,nm) € Z. It is a scalar function such that its zeros are exactly the frequencies for
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which ker BN E_(() is nontrivial. Its construction can be found in [BGS07, section 4.6.1]. If we
write E_(o,n) as'®

E_(o,n) = €(0,n)",
the Lopatinskii determinant is given by the following block determinant:

B
o,m)|

Calculations made in [BGS07, section 14.3.1] show that, for (o,n) € Z, we can choose

A(Uv 77) =

Lo,n) = (a, —vg ug 'n, Vo O’)
with
a:=ugo — & (i —ud),
&_ being the root of negative real part of the following dispersion relation
(0 +ug€)* — 5 (€% +[n*) = 0.
Thus the Lopatinskii determinant is given by

(%) 0 0 Vo
0 V0 0 0 )
A(o,n) = :vg[uoa—a] :vg’g_(cg —ug).
0 0 0 0
a —VoUpTh —VoUupt2 Voo

It is zero if and only if {_ is zero, and this is the case only when o is real (i.e. for (o,n) =
(1,m) € Zp) and 7 = ¢o|n|. Therefore ker BN E_(({) is nontrivial only on 7 = ¢ |n|, and thus
matrix B satisfies Assumption 3, with

T:={(rn)|7=colnl}

Now that we have determined a boundary condition B suited for our problem, we take interest
into oscillations. Thus we consider two hyperbolic frequencies ¢ and 3 on the boundary which
will satisfy our assumptions. First, according to Assumption 5, frequencies ¢ and 1 must be
zeros of the Lopatinskii determinant, thus satisfy 7 = ¢g|n|. If we still take |n| = 1, it leads to
consider

¢ = (cp,cos0y,sin6,) and 1 := (co,cosby,sinby),
with 0,60, € [0,27). An immediate computation then gives

b(0) =) =0, &(9) =6W) = 1m, &le) =& = -1
with M := ug/cp € (0,1) being the Mach number. Therefore, in order to have no resonances
between frequencies lifted from ¢ and no resonances between frequencies lifted from 1, it is
sufficient to assume M? irrational.

We now look for a boundary frequency v := —A, ¢ — Ay ¥ with A , Ay, € Z*, which satisfies
Assumption 5. Frequency v reads

v=—co(Ap + Ayp), —Ap €080, — Ay cos Oy, —Apsin b, — Ay sinby).
First we determine in which case v is not in Y. If we denote v = (7,7), we have
2= B+ M) and G = AL+ A%) + 263A A, cos(6, — 0,),
so, according to the description of T, frequency v is not in Y if and only if 6, # 0. Generalizing

this to any frequency ¢ = A\ o+ a9 € Fp\ {0} asserts that F,NT = {p, —p, ¥, —1} as required

Notation * refers to the orthogonal complement relatively to the complex scalar product.
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by Assumption 5. This assumption also demands v to be in the hyperbolic region. We have, if
we still denote v = (7,7),

2 ]17]2(03 — uz) = u%()w + )\¢)2 + 2)\@)%(0% — u%) [1 — cos(f, — ‘9111))]7
so the hyperbolicity condition 72 — |n|?(c2 — u3) > 0 reads
(5.4) M2 (N + M) + 2005 (1 — M?)[1 — cos(0, — 0))] > 0,

which is satisfied for example when A, and )\, are positive.
We take interest now in resonance assumptions (1.12a) and (1.12b). We compute

—M (A + Ap)
51(1/) = 1 _(pMQ
N sign(Ap + Ay) /2000 [1 — cos(B, — 6)] + M2[AZ + A2 42X Ay, cos(6 — 0y)]
1— M2
—M(Ap + Ay)
sign(Ap + Ay) /200 [1 = cos(0, — 6)] + M2[AZ + A2 4+ 2X Ay cos(6 — 0y)]
B 1— M2
. )‘SD + /\1/,

Recalling Remark 1.8 about the numbering of frequencies, we need to check the four possibilities
for the couple of resonance, namely,

(5.5a) App1 +Ap 1 +12=0 and A, p3+ Ay + 12 =0,
(5.5b) App1 +Ap 3 +12=0 and A, 3+ Ay + 12 =0,
(5.5¢) Aoz +Apth1+12=0 and A,p1+ Ay + 12 =0,
(5.5d) Aoz +Apth1+12=0 and A,p1+ Ay + 12 =0.

e Since {1(p) = &1(1) = 0, relation A, 1 + Ay 1 + 12 = 0 implies that {&(v) = 0, and therefore
Ay + Ay = 0 which is impossible, since it contradicts condition (5.4).
e We determine that A, ¢1 + Ay Y3 + 12 = 0 is equivalent to

2MP XA [2 — cos(0yp — 0y)] + MA[NZ + 20\ cos(y — )] — A% =0
and
(5.6) (A + Ap) (Ao M? = X\y) > 0.
The corresponding second resonance is A, 3 + Ay 2 + v2 = 0, which is equivalent to
2MPApAy [2 — cos(By — Oy)] + MY + 20,A cos(8, — Oy)] — A2 =0
and
(5.7) (A + Ap) (A M2 — A,) > 0.

Now conditions (5.6) and (5.7) are incompatible, so the configuration of resonances (5.5a) is
impossible.

e The case of (5.5¢) is analogous, and is not detailed here.

e Finally, if for the first resonance we have A, p3 + Ay 93 + v2 = 0, then the second one must
be A\, p1 + Ay Y2 + v = 0, which is equivalent to

[1—cos(fy — 0p)] + M?*[L+cos(B, — 0y)] =0 and (A + Ap)(Ap — Ap) = 0.
First equation rewrites
14+ M?
C1-M7
which cannot be satisfied by M2 € (0, 1). Thus the fourth possibility (5.5d) is also impossible.

cos(f, — Oy)
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Therefore, in this case, a situation like the one described in Assumption 5 cannot happen.

To conclude as for the Euler system, we need to have a discussion about where we have made
a choice which puts us in a particular case. The above analysis about frequencies ¢, 1 and v
does not depend on B, but only on the location of cancellation of the Lopatinskii determinant.
Thus the only restrictive choice we made is to choose this location as 7 = ¢q |n|. Therefore, for
the compressible isentropic Euler equations in space dimension 3, in this particular case, the
configuration of frequencies considered in this work which leads to an instability cannot happen.

We have considered here the Euler system in space dimension 3, since, in space dimension 2,
the condition 7 = ¢|n| leads to T = +cn, preventing to obtain a transverse oscillation. We could
also consider the shock problem for the Euler equations, which is the original problem of Majda
and Rosales in [MR83, MR84].

REFERENCES

[AM87]  Miguel Artola and Andrew J. Majda. Nonlinear development of instabilities in supersonic vortex sheets.
I. The basic kink modes. Phys. D, 28(3):253-281, 1987.

[BG78]  Mohamed S. Baouendi and Charles Goulaouic. Le théoréme de Nishida pour le probléme de Cauchy
abstrait par une méthode de point fixe. In Equatz’ons aux dérivées partielles (Proc. Conf., Saint-Jean-
de-Monts, 1977), volume 660 of Lecture Notes in Math., pages 1-8. Springer, Berlin, 1978.

[BGS07] Sylvie Benzoni-Gavage and Denis Serre. Multidimensional hyperbolic partial differential equations. Ox-
ford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007. First-
order systems and applications.

[CG10]  Jean-Frangois Coulombel and Olivier Gues. Geometric optics expansions with amplification for hy-
perbolic boundary value problems: linear problems. Ann. Inst. Fourier (Grenoble), 60(6):2183-2233,
2010.

[CGW11] Jean-Frangois Coulombel, Olivier Gues, and Mark Williams. Resonant leading order geometric optics
expansions for quasilinear hyperbolic fixed and free boundary problems. Comm. Partial Differential
Equations, 36(10):1797-1859, 2011.

[CGW14] Jean-Francois Coulombel, Olivier Gués, and Mark Williams. Semilinear geometric optics with boundary
amplification. Anal. PDE, 7(3):551-625, 2014.

[Com74] Louis Comtet. Advanced combinatorics. D. Reidel Publishing Co., Dordrecht, enlarged edition, 1974.
The art of finite and infinite expansions.

[Cou05]  Jean-Frangois Coulombel. Well-posedness of hyperbolic initial boundary value problems. J. Math. Pures
Appl. (9), 84(6):786-818, 2005.

[CP82] Jacques Chazarain and Alain Piriou. Introduction to the theory of linear partial differential equations,
volume 14 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-
New York, 1982. Translated from the French.

[CS08] Jean-Francois Coulombel and Paolo Secchi. Nonlinear compressible vortex sheets in two space dimen-
sions. Ann. Sci. Ec. Norm. Supér. (4), 41(1):85-139, 2008.

[CW14] Jean-Frangois Coulombel and Mark Williams. Amplification of pulses in nonlinear geometric optics. J.
Hyperbolic Differ. Equ., 11(4):749-793, 2014.

[CW17]  Jean-Francois Coulombel and Mark Williams. The Mach stem equation and amplification in strongly
nonlinear geometric optics. Amer. J. Math., 139(4):967-1046, 2017.

[Her63] Reuben Hersh. Mixed problems in several variables. J. Math. Mech., 12:317-334, 1963.

[HMRS86] John K. Hunter, Andrew Majda, and Rodolpho Rosales. Resonantly interacting, weakly nonlinear
hyperbolic waves. II. Several space variables. Stud. Appl. Math., 75(3):187-226, 1986.

[JMR95] Jean-Luc Joly, Guy Métivier, and Jeffrey Rauch. Coherent and focusing multidimensional nonlinear
geometric optics. Ann. Sci. Ecole Norm. Sup. (4), 28(1):51-113, 1995.

[Joh91]  Fritz John. Partial differential equations, volume 1 of Applied Mathematical Sciences. Springer-Verlag,
New York, fourth edition, 1991.

[Kil22] Corentin Kilque. Weakly Nonlinear Multiphase Geometric Optics for Hyperbolic Quasilinear Boundary
Value Problems: Construction of a Leading Profile. STAM J. Math. Anal., 54(2):2413-2507, 2022.

[Kre70]  Heinz-Otto Kreiss. Initial boundary value problems for hyperbolic systems. Comm. Pure Appl. Math.,
23:277-298, 1970.

[Lax57]  Peter D. Lax. Asymptotic solutions of oscillatory initial value problems. Duke Math. J., 24:627-646,
1957.

[Les07]  Vincent Lescarret. Wave transmission in dispersive media. Math. Models Methods Appl. Sci., 17(4):485—
535, 2007.

[MAS88] Andrew J. Majda and Miguel Artola. Nonlinear geometric optics for hyperbolic mixed problems. In
Analyse mathématique et applications, pages 319-356. Gauthier-Villars, Montrouge, 1988.

[Mét09] Guy Métivier. The mathematics of nonlinear optics. In Handbook of differential equations: evolutionary
equations. Vol. V, Handb. Differ. Equ., pages 169-313. Elsevier/North-Holland, Amsterdam, 2009.



TRANSVERSE INSTABILITY OF WEAKLY STABLE QUASILINEAR BOUNDARY VALUE PROBLEMS 71

[Mor20] Baptiste Morisse. On hyperbolicity and Gevrey well-posedness. Part one: the elliptic case. Ann. H.
Lebesgue, 3:1195-1239, 2020.

[MR83] Andrew Majda and Rodolfo Rosales. A theory for spontaneous Mach stem formation in reacting shock
fronts. I. The basic perturbation analysis. STAM J. Appl. Math., 43(6):1310-1334, 1983.

[MR84] Andrew Majda and Rodolfo Rosales. A theory for spontaneous Mach-stem formation in reacting shock
fronts. II. Steady-wave bifurcations and the evidence for breakdown. Stud. Appl. Math., 71(2):117-148,
1984.

[Nir72] L. Nirenberg. An abstract form of the nonlinear Cauchy-Kowalewski theorem. J. Differential Geometry,
6:561-576, 1972.

[Nis77]  Takaaki Nishida. A note on a theorem of Nirenberg. J. Differential Geometry, 12(4):629-633 (1978),
1977.

[Raul2] Jeffrey Rauch. Hyperbolic partial differential equations and geometric optics, volume 133 of Graduate
Studies in Mathematics. American Mathematical Society, Providence, RI, 2012.

[RR82]  Jeffrey Rauch and Michael Reed. Nonlinear microlocal analysis of semilinear hyperbolic systems in one
space dimension. Duke Math. J., 49(2):397-475, 1982.

[UkaO1]  Seiji Ukai. The Boltzmann-Grad limit and Cauchy-Kovalevskaya theorem. volume 18, pages 383-392.
2001. Recent topics in mathematics moving toward science and engineering.

[Wil96]  Mark Williams. Nonlinear geometric optics for hyperbolic boundary problems. Comm. Partial Differ-
ential Equations, 21(11-12):1829-1895, 1996.

INSTITUT DE MATHEMATIQUES DE TOULOUSE ; UMRS5219, UNIVERSITE DE TOULOUSE ; CNRS, UPS, F-
31062 ToUuLOUSE CEDEX 9, FRANCE
Email address: corentin.kilque@math.univ-toulouse.fr



	1. Notation and assumptions
	1.1. Position of the problem
	1.2. Weak Kreiss-Lopatinskii condition
	1.3. Oscillations

	2. Derivation of the system
	2.1. Ansatz and WKB cascade
	2.2. Rewriting the equations: leading profile and first corrector
	2.3. General system

	3. Existence of an analytic solution
	3.1. First simplified model
	3.2. Functional framework
	3.3. A Cauchy-Kovalevskaya theorem for boundary equations
	3.4. Second simplified model
	3.5. Additional functional framework
	3.6. Time analyticity on the boundary and Cauchy-Kovalevskaya theorem for incoming equations

	4. Instability
	4.1. Linearization around a particular solution
	4.2. Instability on simplified models

	5. The example of gas dynamics
	References

