Multi-Grid Redundant Bounding Box Annotation for Accurate Object Detection - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Multi-Grid Redundant Bounding Box Annotation for Accurate Object Detection

Résumé

Modern leading object detectors are either two-stage or one-stage networks repurposed from a deep CNN-based backbone classifier network. YOLOv3 is one such very-well known state-of-the-art one-shot detector that takes in an input image and divides it into an equal-sized grid matrix. The grid cell having the center of an object is the one responsible for detecting the particular object. This paper presents a new mathematical approach that assigns multiple grids per object for accurately tight-fit bounding box prediction. We also propose an effective offline copy-paste data augmentation for object detection. Our proposed method significantly outperforms some current state-of-the-art object detectors with a prospect for further better performance.
Fichier principal
Vignette du fichier
2201.01857.pdf (6.69 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03704665 , version 1 (16-03-2024)

Identifiants

Citer

Solomon Negussie Tesema, El-Bay Bourennane. Multi-Grid Redundant Bounding Box Annotation for Accurate Object Detection. 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Oct 2021, AB, France. pp.145-152, ⟨10.1109/DASC-PICom-CBDCom-CyberSciTech52372.2021.00036⟩. ⟨hal-03704665⟩
28 Consultations
18 Téléchargements

Altmetric

Partager

More