
HAL Id: hal-03704665
https://hal.science/hal-03704665v1

Submitted on 16 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Grid Redundant Bounding Box Annotation for
Accurate Object Detection

Solomon Negussie Tesema, El-Bay Bourennane

To cite this version:
Solomon Negussie Tesema, El-Bay Bourennane. Multi-Grid Redundant Bounding Box Annotation for
Accurate Object Detection. 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing,
Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing,
Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Oct
2021, AB, France. pp.145-152, �10.1109/DASC-PICom-CBDCom-CyberSciTech52372.2021.00036�.
�hal-03704665�

https://hal.science/hal-03704665v1
https://hal.archives-ouvertes.fr


Multi-Grid Redundant Bounding Box Annotation
for Accurate Object Detection

Solomon Negussie Tesema
ImViA Laboratory

University of Burgundy
Dijon, France

solomon.negussie.tesema@gmail.com

El-Bay Bourennane
ImViA Laboratory

University of Burgundy
Dijon, France

ebourenn@u-bourgogne.fr

Abstract—Modern leading object detectors are either two-
stage or one-stage networks repurposed from a deep CNN-
based backbone classifier network. YOLOv3 is one such very-well
known state-of-the-art one-shot detector that takes in an input
image and divides it into an equal-sized grid matrix. The grid cell
having the center of an object is the one responsible for detecting
the particular object. This paper presents a new mathematical
approach that assigns multiple grids per object for accurately
tight-fit bounding box prediction. We also propose an effective
offline copy-paste data augmentation for object detection. Our
proposed method significantly outperforms some current state-
of-the-art object detectors with a prospect for further better
performance.

Index Terms—Object detection, Multi-grid assignment, Copy-
Paste Image augmentation

I. INTRODUCTION

An object detection network aims to locate an object on
an image using a tight-fit rectangular bounding box and label
it correctly. Nowadays, there are two distinct approaches to
achieve this purpose. The first and performance-wise, the
most dominant approach is two-stage object detection, best
represented RCNN [1] and its derivatives [2], [3]. In contrast,
the second set of object detection implementations, well ac-
knowledged for their outstanding detection speed and light-
weightiness, are referred to as one-staged networks, repre-
sentative examples being [4], [5], [6]. Two-stage networks
rely on an underlying region proposal network that generates
candidate regions of an image likely to contain an object of
interest, and a second detection head handles the classification
and bounding box regression. In one-stage object detection,
detection is a single, fully unified regression problem that
simultaneously handles classification and localization in one
complete forward pass. Due to this, usually, one-stage net-
works are lighter, faster, and simple to implement.

One-stage networks can be classified as anchor-based [4]–
[11] and anchorless [12], [13]. Anchor-based networks such
as YOLOv3 [8] or YOLOv4 [9] mainly divide an input image
into equal grid cells. Furthermore, each grid cell regresses
object bounding box coordinates and classifies them into one
of the predefined class categories while simultaneously scoring
the predicted box’s objectness confidence. Other anchor-based
variants, such as SSD [5] and RetinaNet [6] employ the
concept of feature pyramid to perform multi-scale detection

extracted from different layers of the backbone classifier
network such as VGG [14] or families of ResNet [15]. Recent
anchorless entries of one-shot detectors use key-point such
as corners of bounding box [13] or center coordinate or
combination of both [12], replacing the use of anchor boxes by
key-point pooling convolutional pipelines along their bounding
box regression and classification networks.

This paper sticks to YOLO’s approach, particularly
YOLOv3 [8], and proposes a simple hack that simultaneously
enables multiple grid cells to predict an object coordinate,
class, and objectness confidence. The basic theory behind
multi-grid cell assignment per object is to increase the like-
lihood of predicting a tight-fit bounding box by enforcing
more than one cell working on the same object. Some of
the advantages of multi-grid assignment includes: (a) gives
the object detector a multi-perspective view of the object it is
detecting rather than relying on just one grid cell to predict
the class and the coordinates of an object, (b) less random and
erratic bounding box prediction, meaning high precision and
recall, since nearby grid cells are trained to predict same object
class and coordinates,(c) reducing the imbalance between
grid cells with an object of interest against grids without an
object of interest. Moreover, since the multi-grid assignment
is mathematical utilization of an existing parameters and
does not require an extra keypoints pooling layer and post-
processing to regroup keypoints to their corresponding objects
like CenterNet [12] and CornerNet [13], we say it is a more
natural way of achieving what anchorless or keypoint-based
object detectors are trying to achieve. In addition to the multi-
grid redundant annotation, we also introduce a new offline
copy-paste-based data augmentation technique for accurate
object detection.

II. RELATED WORKS

The pioneer and most successful one stage-detector YOLO
[4] and its successive incremental improvements [7], [8], [9]
divide an input image into grid cells of equal size. The grid
that contains the center of a given object-bounding box on
an image is responsible for detecting that particular object.
Since YOLOv1, the authors of YOLO tried to improve the
performance of their object detector by incrementally incor-
porating key improvements such as more network depth, more

ar
X

iv
:2

20
1.

01
85

7v
1 

 [
cs

.C
V

] 
 5

 J
an

 2
02

2



anchor boxes, slight change on loss function, and lately since
YOLOv3 best practices such as multi-scale detection and skip-
connections are incorporated.

The other typical one-stage detector is SSD [5]. SSD uses
multi-layer feature pyramids on top of a backbone classifica-
tion network, notably a VGG network, to perform a multi-
scale detector that better handles objects of various scales.
Using a similar concept of feature pyramids as in SSD, another
famous object detector called RetinaNet [6] proposed a novel
loss function called focal-loss to solve the foreground and
background class imbalance prevalent in one-stage detectors
unlike two-stage networks.

Recently, anchorless one-stage object detection techniques
such as [13], [12], [16], [17] aim to reduce the hurdle of
determining the appropriate number and shape of anchor
boxes. Networks such as DSSD [18] and RetinaNet [6] use
default-boxes, also referred to as anchor boxes, amounting
over tens or hundreds of thousands, resulting in slow training
and brutal non-max suppression during inference. Instead,
anchorless detectors add a separate layer to pool and process
points on the bounding box of an image. CornerNet [13], for
example, adds a pipeline that processes the corner keypoints
of an object hence needing no anchor boxes. CenterNet [12],
another anchorless one-stage detector, adds a third point,
namely the center point of an object bounding box in addition
to the corner keypoints. The center keypoint in CenterNet is
to aid CornerNet to have a more global view of an object it
is detecting, which was its bottleneck at first.

This paper sticks to YOLO’s grid-based approach since
YOLO’s approach neither requires many anchor boxes like
SSD, DSSD or RetinaNet nor adds a separate pipeline to
process keypoints like CornerNet or CenterNet. However,
unlike YOLO, we propose a mathematical way to assign an
object to multiple grid cells, including the grid cell where the
center of the object-bound box falls. As we stated earlier, in
YOLO, the grid that contains an object’s bounding box center
is made responsible for detecting that particular object, hence,
one grid assignment per object. In our implementation, we will
show that mathematically it is possible to assign any number
of grid cells to annotate an object, though we will only use
the grids around the center, including the center grid. Due
to the multi-grid annotation, we dubbed our object detector
MultiGridDet short for Multi-Grid Detector. Our detector is
light and faster than YOLOv3 mainly due to two reasons; (1)
MultiGridDet has relatively less depth number of layers and
(2) we use a lighter output layer, or detection head, based on
the technique introduced by DenseYOLO [10].

III. MULTI-GRID ASSIGNMENT

Consider Figure 1 containing three objects, namely a dog,
bicycle, and car. For brevity, we will explain our muti-grid
assignment on one object, the dog. Figure 1(a) shows the
three objects bounding box with more detail on the dog’s
bounding box. Figure 1(b) shows the zoomed-out region of
Figure 1(a), focusing on the dog’s bounding box center. The
top-left coordinate of the grid cell containing the center of the

dog bounding box is labeled by number 0, while the other
eight grid cells around the grid containing the center have a
label from 1 up to 8.

In YOLO and other YOLO-based detection networks, the
grid labeled 0 is solely responsible for predicting the class
dog and its precise bounding box coordinates (x, y, bw, bh),
whereas in our case, we assign all grids labeled 0 to 8 to
predict the class and the precise bounding box of the dog
simultaneously.

The grid containing the center coordinate, the small red box
on Figure 1(a), or coordinate labeled 0 on Figure 1(b) is at the
grid location (cx, cy). We calculate the (cx, cy) coordinates
using the equation, cx =

⌈
x
gw

⌉
and cy =

⌈
y
gh

⌉
, where gw

and gh are the grid cell’s width and height, respectively. In
YOLOv1 and YOLOv2 gw and gh are both 32 pixels each,
whereas in YOLOv3, due to the multi-scale detection feature
tailored for small, medium and large scale object, the grid
cells are also in those three scales; 8×8, 16×16, and 32×32
pixels.

Starting from YOLOv2, YOLO-based object detectors pre-
dict an offset of the bounding box from pre-generated anchor
boxes instead of directly predicting the bounding box’s co-
ordinates. As a result, the ground-truth bounding box values,
(x, y) and (bw, bh) are rescaled to smaller scales (tx, ty) and
(tw, th), respectively, for training stability using Equations (1)
to (4). Note that, tx and ty are in the range [0, 1].

tx =
x

gw
−
⌈
x

gw

⌉
(1)

ty =
y

gh
−
⌈
y

gh

⌉
(2)

tw = log

(
bw
aw

)
(3)

th = log

(
bh
ah

)
(4)

, where aw, ah are the best-fit anchor box’s width and height,
respectively, generated using K-means IoU clustering.

One can easily convert the (tx, ty) and (tw, th) parameters
to the original bounding box parameters of an object, that is
(x, y) and (bw, bh) using the reverse Equations (5) to (8):

x = (cx + tx)× gw (5)

y = (cy + ty)× gh (6)

bw = aw × etw (7)

bh = ah × eth (8)

Thus far, we have explained how the grid containing the
center of an object’s bounding box annotates an object’s
ground truth. This dependence on just one grid cell per object
to do the difficult job of predicting the class and the exact tight-
fit bounding box raises many questions such as (a) massive
imbalance between the positive and negative grids, that is,
grids with and without object’s center coordinate (b) slow



Fig. 1: Multi-grid assignment

bounding box convergence to ground-truth, (c) lack of multi-
perspective (angle) view of the object to be predicted. So
one natural question to ask here is, “obviously, most objects
encompass an area of more than one grid cell, and thus
would there be a simple mathematical way to assign more
of those grid cells try to predict the class and coordinates
of the object together with the center grid cell ?”. Some
of the advantages of doing this are (a) reduce imbalance,
(b) faster training to converge to the bounding box as now
multiple grid cells target the same object at once, (c) increase
the chance of predicting tight fit bounding box (d) give grid-
based detectors such as YOLOv3 a multi-perspective view
rather than a single point view of the objects. Our multi-grid
assignment tries to answers the above question, and we explain
it as follow: consider

(
c′x, c

′
y

)
be any grid cell within the

distance of d ∈ {−1, 0, 1} from (cx, cy), or mathematically(
c′x, c

′
y

)
= (cx + dx, cy + dy) where dx and dy are distance d

in x and y directions from the (cx, cy) point respectively. Based
on the value of d, this equation refers to all the grids marked 0
to 8 in Figure 1(b). Then instead of (cx, cy) based equations of
(5-9), we can rewrite a general one using

(
c′x, c

′
y

)
that applies

for any of the grids labeled 0 to 8 as in Equations (9) to (12):

x = (c′x + t′x)× gw (9)

y =
(
c′y + t′y

)
× gh (10)

bw = aw × etw (11)

bh = ah × eth (12)

Where t′x = ∓d + tx and t′y = ∓d + ty . Note that now the
bounding box parameter (t′x, t

′
y), will have a range of [−1, 2],

unlike the [0, 1] range of (tx, ty). Figure 2 shows the ground-
truth annotation of the expected output of our object detector.

IV. TRAINING

A. The Detection Network: MultiGridDet

MultiGridDet is an object detection network we repurposed
by removing six darknet convolutional blocks from YOLOv3
to make it lighter and faster. A convolutional block has
one Conv2D layer followed by a Batch Normalization layer

followed by a LeakyRelu layer. The removed blocks are not
from the classification backbone, that is, Darknet53. Instead,
we removed them from the three multi-scale detection output
networks or heads, two from each output network. Though
usually deep networks perform well, too deep networks also
tend to overfit quickly or drastically reduce the network’s
speed.

In addition to stripping the six convolutional blocks, we also
adopt DenseYOLO’s output head. In YOLOv3, each output
layer has a tensor shape gw×gh×k× (5 + n), where gw×gh
is the total grid cells, k is the number of anchors, and n
is the total number of object classes. In DenseYOLO, the
output layer tensor has a shape gw × gh × (5 + k + n) which
means approximately k times fewer parameters on the output
layer. Moreover, DenseYOLO introduces a novel approach by
making an anchor box a predictable parameter similar to an
object’s class and bounding box prediction. Thus in Multi-
GridDet, we opt for DenseYOLO’s lighter approach on the
output layer. In general, MultiGridDet has less convolutional
block and a lighter output head compared to YOLOv3, thus
relatively faster.

B. The Loss function

Like DenseYOLO, our loss function has four parts: class
prediction loss, location or coordinate prediction loss, anchor
prediction loss, and objectness confidence loss.

1) Class prediction loss (error): Our class prediction loss
is a simple binary cross-entropy loss calculated over all grid
cells labeled to have contained an object of interest.

2) Anchor prediction loss (error): :- Our anchor prediction
loss is also a binary cross-entropy loss in which we train our
network to pick an appropriate anchor out of a given set of
anchors. We generated nine anchor boxes, 3 for each scale,
using IoU (Intersection over Union) based K-means using the
same approach as YOLOv3. For example, an anchor with
the highest IoU against the ground truth bounding box is
assigned to an object during ground truth annotation. And
during training, we train the network to learn to pick the
anchor that gives the highest IoU to a given object, a concept
introduced by DenseYOLO.



Fig. 2: Ground-truth encoding

3) Coordinate prediction loss (error): As shown in Fig-
ure 2, every object bounding box has four parameters
(t′x, t′y, tw, th) related to the actual bounding box coor-
dinates using Equations (9) to (12). Accordingly, the net-
work will predict the corresponding bounding box parameters
(t̂x, t̂y, t̂w, t̂h). As explained in an earlier section, the (t′x, t

′
y)

corresponds to an object’s center coordinate and has a value
in the range [−1, 2]. Thus the corresponding network output
must pass through an activation function whose output value
must also be in the same range. However, the common
activation functions such as tanh have a range [−1, 1], sigmoid
[0, 1], and Relu or LeakyRelu have a range either [0,∞]
or [−∞,+∞], respectively. We experimented with various
custom activations, or simple mapping functions, but finally
figured out using tanh and sigmoid activation functions in
combination works very well since the output of the sum of
the two functions is bounded in the range [−1, 2].

Let the direct output of the detection network corresponding
to (t′x, t

′
y) before passing through an activation be (ẑx, ẑy).

Using Equations (13) to (14), we convert (ẑx, ẑy) into (t̂x, t̂y).

t̂x = tanh(β × ẑx) + σ(β × ẑx) (13)

t̂y = tanh(β × ẑy) + σ(β × ẑy) (14)

As shown in Figure 3, equation 13 and 14 smoothly trans-
forms the network output (ẑx, ẑy) to the desired output range.
The β in equations is to horizontally expand the tanh and
sigmoid function to prevent quick saturation of these functions.
β should be picked from range [0, 1] since values above 1 make
bounding box prediction unstable during training. In our case
we set β = 0.25 and during inference also we use the same
value for β.

Finally, we calculate coordinate prediction loss using mean
square error as given in eq. (15).

lcrdij = λcoord1
obj
ij

[(√
xij −

√
x̂ij

)2
+
(√

yij −
√
ŷij

)2]
+

λcoord1
obj
ij

[(√
bwij − b̂wij

)2
+
(√

bhij −
√
b̂hij

)2]
(15)

λcoord = −λ log(IoUscoreij ) (16)

losscoord =
1

m

gw∑
i=0

gh∑
j=0

lcrdij (17)

gw and gh are the total number of grid cells horizontally and
vertically, respectively, whereas 1objij = 1 if the grid cell has
an object and otherwise equals zero. m refers to the batch size.
IoUscoreij has a value of 0 to 1 depending on how much the
predicted bounding box overlaps with the ground truth. The
logarithmic coefficient we introduced in the coordinate loss
plays a significant role. It penalizes incorrect bounding box
prediction and rewards the more accurate ones logarithmically,
similar to what focal-loss of RetinaNet intends to achieve,
except ours is for localization rather than classification.

4) Objectness confidence loss: Fourth part of our loss func-
tion evaluates objectness confidence of the predicted bounding
box. Our objectness confidence loss has two parts, as seen in
equation 6, one for grids labeled to have contained an object,
that is t0 = 1, and those that are not, meaning t0 = 0.

lossconf =
1

m

gw∑
i=0

gh∑
j=0

1
obj
ij ×BCEobjij+

1

m

gw∑
i=0

gh∑
j=0

1
noobj
ij ×BCEnoobj

(18)

BCEobjij = − log
(
t̂0
)

(19)

BCEnoobjij = − log
(
1− ŷ[··· ,4:]

)
(20)



Fig. 3: Coordinate activation function plot with different β values

The objectness confidence is similar to YOLOv3 because we
both use binary cross-entropy loss, except in our case, the no
object loss part tries to make classification, anchor prediction,
and objectness confidence to have probability zero.

C. Data Augmentation
The other significant contribution of our work is our of-

fline copy-paste-based data augmentation. As much as careful
design of artificial intelligence model is essential, a neat
and tremendous amount of training and validation data are
also mandatory for a better performing network, especially
for an object detection network. Recently copy-paste-based
augmentation techniques such as simple alpha blending of two
or more images MixUp, CutMix and Mosaic augmentations
are reported to increase object detectors’ performances. In
this work, we implement our own unique and more robust
offline copy-paste data augmentation to increase training data
significantly.

In general, our offline copy-paste artificial training image
synthesis works as follows: First, we download thousands
of background objectless images, meaning images without
our object of interest, from google images using a simple
image search script using keywords such as landmarks, rain,
forest, amusement parks, deserts, cities, wallpapers. We then
iteratively pick p number of objects and their bounding boxes
from random q images of the entire training dataset. We
then generate all possible combinations of the p bounding
boxes selected using their index as ID. From the set of the
combinations, we pick a subset of bounding boxes that satisfies
the following two conditions:
• if arranged in some random order side by side, they must

fit within a given target background image area
• and should efficiently utilize the background image space

in its entirety or at least most part of it without the objects
overlap.

Following the above approach, we generate hundreds of
thousands of artificial images. Moreover, before copy-pasting

Detection Frameworks mAP
Fast R-CNN [2] 70

YOLO [4] 63.4
SSD300 [5] 74.3

SSD500 citessd 76.8
YOLOv2 416 [7] 76.8
YOLOv2 544 [7] 78.6

MultiGridDet 416x416 (ours) 83.5

TABLE I: Performance Comparison on Pascal VOC 2007
test set

an object from one image onto the background, we randomly
do various common augmentations on the individual object.
During training, we randomly implement simple and common
augmentations to the training minibatch. Fig. 4 shows three
sample artificially synthesized images using our offline copy
paste augmentation. The figure shows that the artificial images
comprise objects that often will not appear together, reassuring
the training dataset’s robustness. To prevent the network from
learning the copy-paste edges, we add an offset of 10 to 15
pixels in all four sides of the object when copying from the
source image, thus assuring the bounding box will not rest
on the paste borders. As explained earlier, we also passed
each object through one or more common augmentation (flip,
brightness, contrast, etc.) before pasting on the background
image to prevent early overfitting of the network on the
training dataset.

V. EXPERIMENT

To test our multi-grid redundant object annotation and
our offline copy-paste data augmentation, we repurposed the
YOLOv3 network into a lighter and faster network, dubbed
MultiGridDet, as explained in the earlier section. We perform
training on two well-known object detection datasets, namely
Pasca-VOC (VOC 2007 + 2012) and COCO datasets.



Fig. 4: Sample Offline Copy-Paste Generated Artificial Images

Model data mAPaero bike bird boat bottlebus car cat chair cow table dog horsembikepersonplant sheepsofa train tv
Faster [2] 07+12 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6
SSD300 [5] 07+12 74.3 75.5 80.2 72.3 66.3 47.6 83.0 84.2 86.1 54.7 78.3 73.9 84.5 85.3 82.6 76.2 48.6 73.6 73.9 83.4 74.0
SSD512 [5] 07+12 76.8 82.4 84.7 78.4 73.8 53.2 86.2 87.5 86.0 57.8 83.1 70.2 84.9 85.2 83.9 79.7 50.3 77.9 73.9 82.5 75.3
MultiGridDet 07+12+CP 83.5 87 93 84 70 73 96 88 93 65 83 80 90 92 92 87 55 85 78 93 84

TABLE II: Individual Pascal VOC 2007 dataset classes mAP.

We supplement both datasets with artificial images we
generated using our offline copy-paste augmentation. We
downloaded about 10,000 background images from Google
Images using simple search keywords and a script. Then using
these background images and total Pascal VOC 2007 and 2012
training and validation images, which constitute about 16K
images, we generate an additional 200K artificial images for
pascal VOC object detection. In total, we increased the initial
16K Pascal VOC 2007 + 2012 training + validation set images
to 216K images and used a validation split of 0.2 so that 80%
of the total data are used for training while the remaining 20%
are for validation.

Similarly, we used the same 10K background images and
the original 118K COCO images to generate another 200K
artificial COCO images. This increases our COCO dataset to
318K images. Similar to the strategy we used on the Pascal
VOC dataset, we used a validation split of 0.2 to train object
detection on the COCO dataset as well. It is good to note that,
though we artificially generated hundreds of thousands of new
images, our artificially generated images objects are from the
same dataset, picked randomly, individually augmented, and
pasted on a randomly picked background image.

We used the Darknet53 weight file from YOLOv3 authors to
train the detector. For the first 50 epochs, we trained only the
detection head by freezing the Darknet53 weight file and 150
more epochs by unfreezing the whole network. We start the
training with learning rate 1e−4, and after the 75th epochs,
we started using cosine decay to update the learning rate.
Throughout the training, we used Adam optimizer. We had
access only to 2 Tesla V100 32 GB Nvidia GPU, which limited
our training batch size to 64 (32 per GPU) and made the
training take longer, restricting us from testing our network
performance with other backbones such as ResNet. Next,
we will discuss our experiment’s result on the two datasets
and compare them with other well-known object detection
networks.

Pascal VOC 2007 test set:- Pascal VOC 2007 test set has
about 5k test images in 20 class categories. It is one of the
widely used generic object detection datasets for comparing
the performance of general-purpose object detectors. Accord-
ingly, we tested our MultiGridDet performance using Pascal
VOC mean average precision (mAP) metrics at IOU (inter-
section over union) 0.5. Table I shows the mAP performance
comparison of MultiGridDet against other state-of-the-art one-



stage detectors and equivalent two-stage detectors. As seen
from the table, our detector significantly outperforms all older
versions of YOLO, YOLOv1, and YOLOv2, including all
variants of SSD, RetinaNet, and Fast RCNN. Table II further
shows our detector’s per class mAP score in detail. The authors
of YOLOv3 never reported the performance of the original
YOLOv3 on the Pascal VOC dataset. However, following
their training and data augmentation approaches detailed in
paper [8], we retrained YOLOv3 on the combined Pascal VOC
2007 and 2012 training set and achieved a maximum mAP
of 77.63% at input image size 608. This score is much lower
than our MultiGridDet score of 83.5% mAP at an input image
resolution 416.

MS COCO test set:- COCO dataset is the most challenging
dataset for object detection, typically due to its massively
unfair under and over-representation of object class categories
and object scale imbalance in the dataset. Nonetheless, it is
a more generic dataset consisting of 80 class categories and
more robust performance measurement metrics; an mAP aver-
aged over 11 IoU ranges [0.5−1.0] referred to as AP(average
precision). Accordingly, we trained our MultiGridDet on the
COCO dataset and obtained an AP of 31.8%, a little less
than YOLOv3’s 33% AP at 608 × 608 input image size
as shown in Table III. However, on large images, that is
objects with a bounding box area above 962 according to
COCO metrics, MultiGridDet by far outperforms YOLOv3’s
AP 41.9% by +15.5%, scoring AP 57.4%. MultiGridDet is
poor on small and medium image detections; only 11%AP
against YOLOv3’s 18.3% AP on small objects and 24.6%
AP on medium images against YOLOv3 35.5% AP. Objects
such as bottles usually appear in smaller sizes and crowed,
whereas objects such as boats and potted plants usually
appear in widely irregular shapes and sizes. These are objects
MultiGridDet struggled to detect correctly.

Finally, to illustrate the quality of MultiGridDet bounding
box prediction, we visualize the prediction of six randomly
picked images from the Pascal VOC 2007 test dataset. Fig.
5 shows these visualization. As seen from the figure, almost
in all cases, the predicted unfiltered bounding boxes overlap
perfectly, proving tight-fit bounding box prediction.

In summary, since small objects have tiny widths or height,
some even smaller than the 8 grid size, thus they are effectively
annotated with a single grid cell, whereas larger objects will
have a maximum of 9 grid cells to annotate and predict them.
Probably, the addition of more fine-grained output layers,
typically an output layer with 2 and/or 4 grid cell sizes in
addition to the 8, 16, and 32 grid cells, might help to increase
the performance of MultiGridDet on small object detections.

We have also compared MultiGridDet inference speed with
YOLOv3 on a standard personal laptop with Nvidia GPU
Geforce 1060 and 16 GB RAM Intel Core i7-7700HQ CPU
2.80GHz processor. On average, YOLOv3 at 416× 416 input
image for 80 class COCO dataset takes 0.149 seconds to infer
an image, the overall time spent from reading input image,
preprocess, predict, and draw bounding boxes back on the
image and display it or save it in a directory. For MultiGridDet

at the same input resolution and same dataset, it takes only
0.103 seconds. On video object detection at 416 × 416 80
Class COCO dataset YOLOv3 reaches detection speed of
6FPS (frame per second) whereas MultiGridDet reaches upto
9FPS. Note that the computer we used is not the same as
the one the author used, and it has a much slower GPU. In
general, in the speed test, MultiGridDet is significantly faster
than YOLOv3.

Models AP AP50 AP75 APS APM APL
Two-stage methods
Faster R-CNN+++ [19] 34.9 55.7 37.4 15.6 38.7 50.9
Faster R-CNN w FPN [20] 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN by G-RMI [21] 34.7 55.5 36.7 13.5 38.1 52.0
Faster R-CNN w TDM [22] 36.8 57.7 39.2 16.2 39.8 52.1
One-stage methods
YOLOv2 [7] 21.6 44.0 19.2 5.0 22.4 35.5
YOLOv3 [8] 608 33.0 57.9 34.4 18.3 35.4 41.9
DSSD513 [18] 33.2 53.3 35.2 13.0 35.4 51.1
RetinaNet [6] 40.8 61.1 44.1 24.1 44.2 51.2
DDGNet [11] 28.8 51.2 30.8 12.1 39.4 50.7
DenseYOLO [10] 29.03 50.4 32.6 13.11 33.2 40.3
MultiGridDet @608x608 31.8 52.1 40.7 11.0 24.6 57.4

TABLE III: AP Performance on COCO test set

VI. CONCLUSION

In this paper, we proposed a new and alternative object
detection implementation for one-stage YOLO-like object de-
tectors that rely on a matrix of grid cells. It is a lightweight,
faster, and commendably accurate detector with a prospect
for further improvement that addresses the poor performance
on the infinitesimally tiny objects of the COCO dataset. A
straightforward technique is probably to add finer output
scales, for example, 2 × 2 or 4 × 4, so that the multi-grid
annotation could also be implemented on those tiny objects.
Another significant contribution we achieved in this work is
our unique data augmentation technique that vastly increases
object detection training sets without needing additional ex-
ternal dataset. Finally, as future work, we would like to tackle
small object detection challenges and try to use MultiGridDet
on object tracking and segmentation challenges.

REFERENCES

[1] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[3] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[4] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[5] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.



Fig. 5: Sample MultiGridDet output on randomly selected Pascal VOC 2007 test set images. As seen from the figure the
first row shows six input images, whereas the second row shows the prediction of the network before non-max-suppression
(NMS) and the last row shows the final bounding box prediction of MultiGridDet on the input image after NMS thresholding.

[6] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[7] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 7263–7271.

[8] ——, “Yolov3: An incremental improvement,” arXiv preprint
arXiv:1804.02767, 2018.

[9] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

[10] S. N. Tesema and E.-B. Bourennane, “Denseyolo: Yet faster, lighter and
more accurate yolo,” in 2020 11th IEEE Annual Information Technology,
Electronics and Mobile Communication Conference (IEMCON). IEEE,
2020, pp. 0534–0539.

[11] ——, “Towards general purpose object detection: Deep dense grid based
object detection,” in 2020 14th International Conference on Innovations
in Information Technology (IIT). IEEE, 2020, pp. 227–232.

[12] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “Centernet:
Keypoint triplets for object detection,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 6569–6578.

[13] H. Law and J. Deng, “Cornernet: Detecting objects as paired keypoints,”
in Proceedings of the European conference on computer vision (ECCV),
2018, pp. 734–750.

[14] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[16] Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully convolutional one-
stage object detection,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2019, pp. 9627–9636.

[17] L. Huang, Y. Yang, Y. Deng, and Y. Yu, “Densebox: Unifying land-
mark localization with end to end object detection,” arXiv preprint
arXiv:1509.04874, 2015.

[18] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “Dssd:
Deconvolutional single shot detector,” arXiv preprint arXiv:1701.06659,
2017.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016.

[20] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2117–2125.

[21] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama et al., “Speed/accuracy trade-offs
for modern convolutional object detectors,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 7310–
7311.

[22] A. Shrivastava, R. Sukthankar, J. Malik, and A. Gupta, “Beyond skip
connections: Top-down modulation for object detection,” arXiv preprint
arXiv:1612.06851, 2016.


	I Introduction
	II Related Works
	III Multi-Grid Assignment
	IV Training
	IV-A The Detection Network: MultiGridDet
	IV-B The Loss function
	IV-B1 Class prediction loss (error)
	IV-B2 Anchor prediction loss (error)
	IV-B3 Coordinate prediction loss (error)
	IV-B4 Objectness confidence loss

	IV-C Data Augmentation

	V Experiment
	VI Conclusion
	References

