Asymptotic of the Discrete Volume-Preserving Fractional Mean Curvature Flow via a Nonlocal Quantitative Alexandrov Theorem - Archive ouverte HAL
Article Dans Une Revue Nonlinear Analysis Année : 2023

Asymptotic of the Discrete Volume-Preserving Fractional Mean Curvature Flow via a Nonlocal Quantitative Alexandrov Theorem

Résumé

We characterize the long time behaviour of a discrete-in-time approximation of the volume preserving fractional mean curvature flow. In particular, we prove that the discrete flow starting from any bounded set of finite fractional perimeter converges exponentially fast to a single ball. As an intermediate result we establish a quantitative Alexandrov type estimate for normal deformations of a ball. Finally, we provide existence for flat flows as limit points of the discrete flow when the time discretization parameter tends to zero.
Fichier principal
Vignette du fichier
DeGKuKu22.pdf (507.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03697168 , version 1 (16-06-2022)

Identifiants

Citer

Daniele de Gennaro, Andrea Kubin, Anna Kubin. Asymptotic of the Discrete Volume-Preserving Fractional Mean Curvature Flow via a Nonlocal Quantitative Alexandrov Theorem. Nonlinear Analysis, 2023, 228, pp.113200. ⟨10.1016/j.na.2022.113200⟩. ⟨hal-03697168⟩
42 Consultations
56 Téléchargements

Altmetric

Partager

More