Long Time Behaviour of the Discrete Volume Preserving Mean Curvature Flow in the Flat Torus - Archive ouverte HAL
Article Dans Une Revue Calculus of Variations and Partial Differential Equations Année : 2023

Long Time Behaviour of the Discrete Volume Preserving Mean Curvature Flow in the Flat Torus

Résumé

We show that the discrete approximate volume preserving mean curvature flow in the flat torus T N starting near a strictly stable critical set E of the perimeter converges in the long time to a translate of E exponentially fast. As an intermediate result we establish a new quantitative estimate of Alexandrov type for periodic strictly stable constant mean curvature hypersurfaces. Finally, in the two dimensional case a complete characterization of the long time behaviour of the discrete flow with arbitrary initial sets of finite perimeter is provided.
Fichier principal
Vignette du fichier
File_condiviso_pulito_4 (1).pdf (897.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03697158 , version 1 (16-06-2022)

Identifiants

Citer

Daniele de Gennaro, Anna Kubin. Long Time Behaviour of the Discrete Volume Preserving Mean Curvature Flow in the Flat Torus. Calculus of Variations and Partial Differential Equations, 2023, pp.103. ⟨10.1007/s00526-023-02439-0⟩. ⟨hal-03697158⟩
34 Consultations
45 Téléchargements

Altmetric

Partager

More