
HAL Id: hal-03697158
https://hal.science/hal-03697158

Submitted on 16 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Long Time Behaviour of the Discrete Volume Preserving
Mean Curvature Flow in the Flat Torus

Daniele de Gennaro, Anna Kubin

To cite this version:
Daniele de Gennaro, Anna Kubin. Long Time Behaviour of the Discrete Volume Preserving Mean
Curvature Flow in the Flat Torus. Calculus of Variations and Partial Differential Equations, 2023,
pp.103. �10.1007/s00526-023-02439-0�. �hal-03697158�

https://hal.science/hal-03697158
https://hal.archives-ouvertes.fr


LONG TIME BEHAVIOUR OF THE DISCRETE VOLUME PRESERVING

MEAN CURVATURE FLOW IN THE FLAT TORUS

DANIELE DE GENNARO AND ANNA KUBIN

Abstract. We show that the discrete approximate volume preserving mean curvature flow in

the flat torus TN starting near a strictly stable critical set E of the perimeter converges in the

long time to a translate of E exponentially fast. As an intermediate result we establish a new
quantitative estimate of Alexandrov type for periodic strictly stable constant mean curvature

hypersurfaces. Finally, in the two dimensional case a complete characterization of the long time

behaviour of the discrete flow with arbitrary initial sets of finite perimeter is provided.
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1. Introduction

We consider the geometric evolution of sets called the volume preserving mean curvature flow.
The classical mean curvature flow is defined as a flow of sets (Et)0≤t≤T in RN following the motion
law

vt = −HEt on ∂Et,

where vt denotes the component of the velocity relative to the outer normal vector of ∂Et and HE

is the mean curvature of the set E. In order to include the volume constraint, one can consider
the following velocity

(1.1) vt = H̄Et
−HEt

on ∂Et

for all t ∈ [0, T ] , where H̄Et
denotes the average of HEt

over ∂Et.
The defined geometric evolution is called volume constrained mean curvature flow or volume

preserving mean curvature flow. One can observe that the volume of the evolving sets is indeed
preserved during the evolution and that the perimeters of the sets Et are non-increasing.

This geometric flow has been used to describe some types of solidification processes and coars-
ening phenomena in physical systems. For example, one can consider mixtures that, after a first
relaxation time, can be described by two subdomains of nearly pure phases far from equilibrium,
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evolving in a way to minimize the total interfacial area between the phases while keeping their
volume constant (further details on the physical background can be found in [6, 19], see also the
introduction of [21]). Moreover, some variants of the volume-preserving mean curvature flow were
also applied in the context of shape recovery in image processing in [8].

One of the main mathematical difficulties of the volume preserving mean curvature flow is the
non-local nature of the functional given by the constraint. Moreover, the generated flow may
present singularities of different kinds, even in a finite time-span and even if the initial data is
smooth. For example, we can see merging or collision of near sets, pinch-offs or shrinking of
connected components to points. There exist examples of singular solutions even in the two
dimensional case, see [16, 17]. After the onset of singularities, the classical or smooth formulation
of the flow (1.1) ceases to hold and needs to be replaced by a weaker one. Due to the lack
of a comparison principle, a natural approach is the minimizing movement approach proposed
independently by Almgren, Taylor and Wang in [2] and by Luckhaus and Sturzenhecker in [14] for
the unconstrained case and adapted to the volume-preserving setting in [20].

We briefly recall the scheme in the volume contrained setting. First of all we define a discrete-
in-time approximation of the flow that will be called the discrete (volume-preserving) flow. Given
any initial set E0 and a time-step h > 0 we define iteratively E0

h := E0 and for all n ≥ 0

En+1
h ∈ argmin

{
P (F ) +

1

h

ˆ
F△En

h

dist∂En
h

(x) dx : F ⊂ TN , |F | = |E0|

}
,

where dist∂En
h

is the distance function from the set ∂Enh . We can define for every t ≥ 0, the

approximate flow by Eh(t) := E
[t/h]
h . It can be proved (see [21, Proposition 2.2] ) that the discrete

flow is well defined. Any limit point of this flow as the time-step h converges to zero will be called a
flat flow. As for the classical mean curvature flow, this approach produces global-in-time solutions
as shown in [20]. The existence of such global solutions then permits to analyse the equilibrium
configurations reached in the long time asymptotics.

The long time behaviour of the volume preserving mean curvature flow has been previously
studied only in some particular cases, when the existence of global smooth solutions could be
ensured by choosing suitably regular initial sets. For example one can consider uniformly convex
and nearly spherical initial sets (see [9, 10]), or C∞−regular initial sets that are H3−close to
strictly stable critical sets in the three and four dimensional flat torus (see [22]). For more general
initial data, the long time behaviour in the context of flat flows of convex and star-shaped sets
(see [5, 12]) has been characterized only up to (possibly diverging in the case of [5]) translations.
In [21] the authors characterized the long-time limits of the discrete-in-time approximate flows
constructed by the Euler implicit scheme introduced in [2, 14] under the volume constraint in
arbitrary space dimension. They proved that the discrete flow starting from an arbitrary bounded
initial set converges exponentially fast to a finite union of disjoint balls with equal radii. The
same authors and collaborators were also able to send the discretization parameter h to 0 in the
preprint [11], in the case N = 2. Indeed, an explicit penalization is used in order to enforce the
volume constraint.

In this paper the long-time convergence analysis is developed in the flat torus TN for the
discrete flow. In such framework the class of possible long-time limits is much richer as it includes
not only union of balls with equal radii but also different type of critical sets for the perimeter.
The notion of strictly stable critical set is crucial to our result; for the precise definition we refer
to Section 2, but it can be summarized as a regular, critical set for the perimeter (i.e. with a
constant mean curvature boundary) with strictly positive (volume-constrained) second variation.
The main result of the paper is the theorem below. It provides a complete characterization of the
long-time behaviour of the discrete mean curvature flow in the flat torus starting near a strictly
stable critical set. Moreover, an estimate on the convergence speed is provided.
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Theorem 1.1. Let E be a strictly stable critical set in the flat torus. Then there exist δ∗ =
δ∗(E) > 0 and h∗ = h∗(E) > 0 with the following property: if h < h∗ and E0 ⊂ TN is a set of
finite perimeter satisfying

|E0| = |E|, Ē0 ⊂ (E)δ∗ ,

then every discrete volume preserving mean curvature flow (Enh )n∈N starting from E0 converges to
a translate of E in Ck for every k ∈ N and the convergence is exponentially fast.

We would like to give some details to highlight the major differences between our results and
the analysis carried out in [22]. In the aforementioned work, the author studied the flat flow, albeit
in low dimension (N ≤ 4). In the article, it was assumed the initial set to be a C∞−deformation
of a strictly stable critical set, close in the H3−sense to the latter set. Under these assumptions, it
was proved the exponential convergence of the flat flow to a translated of the strictly stable critical
set. We remark that our result addresses the long time behaviour of the discrete flow but holds in
much weaker hypotheses: we only assume the initial set to be of finite perimeter and close in the
Hausdorff sense to a strictly stable critical set. Moreover, our result holds in every dimension and
we are also able to provide the complete characterization of the long-time behaviour starting from
any initial set in dimension N = 2. In order to state the precise result in the two-dimensional case
we first introduce the following notation. We will call lamella any set

(1.2) L = (a, b) × TN−1 ⊂ TN , or any rotation of sets of this form.

Our final result in two-dimension is the following theorem.

Theorem 1.2. Fix h, m > 0 and an initial set E0 ⊂ T2 with finite perimeter and such that
|E0| = m. Let (Enh )n∈N be a discrete flow starting from E0 and let P∞ be the limit of the non-
increasing sequence P (Enh ). Then either one of the following holds:

i) (Enh )n∈N converges to a disjoint union of l discs of equal radii and total area m, where
l = π−1(4m)−1P 2

∞ ∈ N;
ii) ((Enh )c)n∈N converges to a disjoint union of l discs of equal radii and total area 1 − m,

where l = π−1(4 − 4m)−1P 2
∞ ∈ N;

iii) (Enh )n∈N converges to a disjoint union of l lamellae of total area m, where l = P∞/2 ∈ N.
In all cases the convergence is exponentially fast in Ck for every k ∈ N .

1.1. Comments about the proof of the main results. The first step towards proving our main
result Theorem 1.1 is Proposition 5.2. More precisely, we prove the convergence up to translations
of any discrete flow, starting Hausdorff-close to a strictly stable critical set E, to the latter set.
Such a convergence holds in the Ck−norm for every k ∈ N. Since at this point we can not rule
out that different subsequences of the discrete flow may converge to different translates of E, the
subsequent step consists in proving the convergence of the whole flow to a unique translate of the
set E (with exponential rate).

In order to prove Proposition 5.2 we first show (see Step 1 of the proof of the aforementioned
proposition) that every long-time limit of the flow is a critical point of the perimeter. When the
ambient space is RN , this implies that the limit points can only be balls or finite union of balls with
the same radii. However, in the periodic setting, we may end up with different critical points of the
perimeter. Indeed, already in the three dimensional torus T3 we find a wealth of different critical
points: lamellae, cylinders and gyroids (see Figure 1) in addition to balls. We then exploit the
strict stability of E (Proposition 4.6) to ensure that the flow remains L1-close up to translations
to the set E. To conclude, a regularity argument shows that the convergence in L1 of the flow to
a regular stable set implies the convergence in Ck for every k ∈ N, thus proving Proposition 5.2.

The proof of Proposition 4.6 is based on the following idea: from a stability result in [1], one
can estimate the L1−distance (up to translations) of a set F from a strictly stable critical set
E in terms of the differences of the perimeters, provided that the L1−distance between E and F
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Figure 1. The critical points in T3. From left to right: balls, cylinders, gyroids
and lamellae.

remains below a certain threshold. Moreover, a counterexample shows that the Hausdorff-closeness
assumption can not be weakened to L1−closeness, as we will discuss in details in Subsection 4.3.

In order to establish the uniqueness of the limit and, therefore, the main Theorem 1.1, Section 5.2
is devoted to proving the convergence of the barycenters of the evolving sets. A crucial intermediate
result consists in generalizing the Alexandrov-type estimate [21, Theorem 1.3] (see also [13]) to
the flat torus. This result provides a stability inequality for C1−normal deformations of strictly
stable critical sets in the periodic setting. We briefly give some definitions to present some further
details. Given a set E of class C1 and a function f : ∂E → R such that ∥f∥L∞(∂E) is sufficiently
small, the normal deformation Ef of the set E is defined as

∂Ef := {x+ f(x)νE(x) : x ∈ ∂E},

where νE is the normal outer vector of E. A normal deformation Ef is said to be of class Ck if
f ∈ Ck(∂E). The result proved in [21] is the following.

Theorem. There exist δ ∈ (0, 1/2) and C > 0 with the following property: for any f ∈ C1(∂B) ∩
H2(∂B) such that ∥f∥C1(∂B) ≤ δ, |Ef | = ωN and bar(Ef ) = 0, we have

∥f∥H1(∂B) ≤ C∥HEf
− H̄Ef

∥L2(∂B).

We are able to show that in the periodic setting the above quantitative estimate holds with B
replaced by any strictly stable critical set. More precisely, we have the following:

Theorem 1.3. Let E ⊂ TN be a strictly stable critical set. There exist δ ∈ (0, 1/2) and C > 0
with the following property: for any f ∈ C1(∂E)∩H2(∂E) such that ∥f∥C1(∂E) ≤ δ and satisfying

(1.3)

∣∣∣∣ˆ
∂E

f dHN−1

∣∣∣∣ ≤ δ∥f∥L2(∂E),

∣∣∣∣ˆ
∂E

fνE dHN−1

∣∣∣∣ ≤ δ∥f∥L2(∂E),

we have

(1.4) ∥f∥H1(∂E) ≤ C∥HEf
− H̄Ef

∥L2(∂E).

We will prove in details in Section 3 that the conditions (1.3) have a geometric explanation.
Indeed, the first one ensures that |Ef | ≈ |E| and the second one that bar(Ef ) ≈ bar(E), up to
higher-order error terms. We finally remark that the estimate (1.4) is optimal for what concerns
the power of the norms, see [21, Remark 1.5].

The last section of the paper is devoted to the two-dimensional case. This particular choice of the
dimension is purely technical and it is motivated by the availability of a complete characterization
of the critical points of the perimeter in the two-dimensional flat torus. In this setting we are
able to prove the exponential convergence of the flow starting from any initial set to either a finite
union of balls or a finite union of lamellae or the complement of these configurations.

2. Preliminaries

Let TN := RN/ZN be the N−dimensional torus, that is the quotient space RN/ ∼ where ∼
is the equivalence relation given by x ∼ y if and only if x − y ∈ ZN . We can define the distance
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between two points x, y ∈ TN simply by

dist(x, y) = min
z∈ZN

|(x+ z) − y|.

The definition of functional spaces on the torus is straightforward: for example, W k,p(TN ) can

be identified with the subspace of W k,p
loc (RN ) of functions that are one-periodic with respect to

all coordinate directions. When we need to be specific about functions on the torus, it is often
convenient to give coordinates to TN via the unit cube Q = [0, 1)N .

Firstly, we recall the definition of functions of bounded variation in the periodic setting. We
say that a function u ∈ L1(TN ) is of bounded variation if its total variation is finite, that is

|Du| = sup

{ˆ
TN

udivφdx : φ ∈ C1
c (TN ;RN ), |φ| ≤ 1

}
< +∞.

We denote the space of such functions by BV (TN ). We say that a measurable set E ⊂ TN is
of finite perimeter in TN if its characteristic function χE ∈ BV (TN ). The perimeter P (E) of E
in TN is nothing but the total variation |DχE |(TN ). We refer to Maggi’s book [15] for a more
complete reference about sets of finite perimeter and their properties.

We recall the following notation.

Definition 2.1. Let E be a set of class C1. Given a function f : ∂E → R such that ∥f∥L∞(∂E) is
sufficiently small, we set

(2.1) ∂Ef := {x+ f(x)νE(x) : x ∈ ∂E}

and we call Ef the normal deformation of E induced by f .

With a slight abuse of notation, we give the following definition.

Definition 2.2. Let E be a set of class C1. Let X(∂E) denote a functional space that can either
be Lp(∂E), W k,p(∂E), Ck,α(∂E) for some k ∈ N, p ≥ 1 and α ∈ [0, 1]. For any F = Ef with
f ∈ X(∂E), we set

distX(F,E) = ∥f∥X(∂E).

We recall the classical definition of C1,α−convergence of sets.

Definition 2.3. Given α ∈ [0, 1], a sequence (En)n∈N of C1,α−regular sets is said to converge in
C1,α to a set E if:

• for any x ∈ ∂E, up to rotations and relabelling the coordinates, we can find a cylinder
C = B′ × (−1, 1), where B′ ⊂ RN−1 is the unit ball centred at the origin, and functions
f, fn ∈ C1,β(B′; (−1, 1)) such that for n large enough, it holds

(E − x) ∩ C = {(x′, xN ) ∈ B′ × (−1, 1) : xN ≤ f(x′)}
(En − x) ∩ C = {(x′, xN ) ∈ B′ × (−1, 1) : xN ≤ fn(x′)};

• it holds

fn → f in C1,α(B′).

The following is a simple rephrasing of a classical result concerning the C1,α−convergence of
Λ−minimizers of the perimeter (see e.g. [1, Theorem 4.2]).

Theorem 2.4. Let Λ > 0 and let E be a set of class C2. Then for every ε > 0, there exists
δ = δ(ε, E) > 0 with the following property: for every Λ−minimizer F such that |E△F | ≤ δ, then
F is of class C1,1/2 and

distC1,β (E,F ) ≤ ε for β ∈ (0, 1/2).
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We now recall some preliminary results from [1] regarding the second variation of the perimeter
in the flat torus. Firstly, we fix some notation. Let E ⊂ TN be a set of class C2 and let νE
be its exterior normal. Throughout the section, when no confusion is possible, we shall omit the
subscript E and write ν instead of νE . Given a vector X, its tangential part on ∂E is defined as
Xτ = X − (X · ν)ν. In particular, we will denote by Dτ the tangential gradient operator given by
Dτφ = (Dφ)τ . We also recall that the second fundamental form BE of ∂E is given by Dτν, its
eigenvalues are called principal curvatures and its trace is called mean curvature, and we denote
it by HE .

Let X : TN → TN be a vector field of class C2. Consider the associated flow Φ : TN × (−1, 1) →
TN defined by ∂Φ

∂t = X(Φ), Φ(·, 0) = Id. We define the first and second variation of the perimeter
at E with respect to the flow Φ to be respectively the values

d

dt

∣∣∣
t=0

P (Et),
d2

dt2

∣∣∣
t=0

P (Et)

where Et = Φ(·, t)(E). It is a classical result of the theory of sets of finite perimeter (see [15]) that
the the first variation of the perimeter has the following expression

d

dt

∣∣∣
t=0

P (Et) =

ˆ
∂∗E

HEνE ·X dHN−1,

where HE is the (weak) scalar curvature of E. The following equation for the second variation of
the perimeter holds.

Theorem 2.5 (Theorem 3.1 in [1]). If E, X and ν are as above, we have

d2

dt2

∣∣∣
t=0

P (Et) =

ˆ
∂E

(
|Dτ (X · ν)|2 − |BE |2(X · ν)2

)
dHN−1 −

ˆ
∂E

HEdivτ (Xτ (X · ν)) dHN−1

+

ˆ
∂E

HE(divX)(X · ν) dHN−1.

Remark 2.6. We remark that the last two integral in the above expression vanish when E is a
critical set for the perimeter and if |Φ(·, t)(E)| = |E| for all t ∈ [0, 1]. Indeed, if E is a regular
critical set for the perimeter then its curvature is constant, therefore the second integral vanishes.
Moreover, if the flow Φ is volume-preserving then it can be shown (see equation (2.30) in [7]) that

0 =
d2|Et|

dt2
=

ˆ
∂E

(divX)(X · ν) dHN−1.

Hence, if Φ is a volume-preserving variation of a regular critical set E we have

d2

dt2

∣∣∣
t=0

P (Et) =

ˆ
∂E

(
|Dτ (X · ν)|2 − |BE |2(X · ν)2

)
dHN−1 =: δ2P (E)[X · νE ].

We remark that due to the translation invariance of the perimeter functional, the second vari-
ation degenerates along flows of the form Φ(x, t) = x + tη, where η ∈ RN . In view of this it

is convenient to introduce the subspace T (∂E) of H̃1(∂E) :=
{
φ ∈ H1(∂E) :

´
∂E

φdHN−1 = 0
}

generated by the functions νi, i = 1, . . . , N . Its orthogonal subspace, in the L2−sense, will be
denoted by T⊥(∂E) and is given by

T⊥(∂E) =

{
φ ∈ H̃1(∂E) :

ˆ
∂E

φνi dHN−1 = 0, i = 1, . . . , N

}
.

Definition 2.7. We say that a regular critical set E is a strictly stable set if it has positive second
variation of the perimeter, in the sense that

δ2P (E)[φ] > 0, ∀φ ∈ T⊥(∂E) \ {0}.

The following result ensures that the second variation of a strictly stable set E is coercive on
the subspace T⊥(∂E).
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Lemma 2.8 (Lemma 3.6 in [1]). Assume that E is a strictly stable set, then

m0 := inf{δ2P (E)[φ] : φ ∈ T⊥(∂E), ∥φ∥H1(∂E) = 1} > 0

and

δ2P (E)[φ] ≥ m0∥φ∥2H1(∂E) ∀φ ∈ T⊥(∂E).

Moreover, from the Step 1 in the proof of [1, Theorem 3.9] we obtain also the following result.

Lemma 2.9. Assume that E is a strictly stable set, then

inf

{
δ2P (E)[φ] : φ ∈ H̃1, ∥φ∥H1(∂E) = 1,

∣∣∣∣ˆ
∂E

φνE dHN−1

∣∣∣∣ ≤ δ

}
≥ m0

2
,

where the constant m0 is the one in Lemma 2.8.

In the proof of our main result we will also need the following key lemma which shows that
any set F sufficiently close to E can be translated in such a way that the resulting set F̃ satisfies
∂F̃ = {x+ φ(x)νE(x) : x ∈ ∂E}, with φ having a suitably small projection on T (∂E).

Lemma 2.10 (Lemma 3.8 in [1]). Let E ⊂ TN be of class C3 and let p > N − 1. For every δ > 0
there exist C > 0 and η0 > 0 such that if F ⊂ TN satisfies ∂F = {x + ψ(x)νE(x) : x ∈ ∂E} for
some ψ ∈ C2(∂E) with ∥ψ∥W 2,p(∂E) ≤ η0, then there exist σ ∈ TN and φ ∈ W 2,p(∂E) with the
properties that

|σ| ≤ C∥ψ∥W 2,p(∂E), ∥φ∥W 2,p(∂E) ≤ C∥ψ∥W 2,p(∂E)

and

∂F + σ = {x+ φ(x)νE(x) : x ∈ ∂E},
∣∣∣∣ˆ
∂E

φνE dHN−1

∣∣∣∣ ≤ δ∥φ∥L2(∂E).

Let E,F ⊂ TN be measurable sets. We define

α(E,F ) := min
x∈TN

|E△(F + x)|.

In one of the main results of [1] the authors proved that the distance α(·, ·) between a set and a
strictly stable set can be bounded by the square root of the difference of their perimeters.

Theorem 2.11 (Corollary 1.2 in [1]). Let E ⊂ TN be a strictly stable set. Then, there exist
σ = σ(E), C = C(E) > 0 such that

Cα2(E,F ) ≤ P (F ) − P (E)

for all F ⊂ TN with |F | = |E| and α(E,F ) < σ.

3. A quantitative generalized Alexandrov Theorem

In this section, we will prove that local minimizers of the perimeter in the flat torus satisfy a
quantitative Alexandrov-type estimate. We reproduce some arguments similar to the ones used
in the proof of Theorem 1.3 in [21]. In this section, we consider E ⊂ TN a strictly stable set.
Thanks to some classical results for sets of finite perimeter (see for example [15, Theorem 27.4]),
the previous hypothesis implies that E is connected and it is of class C∞.

First of all, we compute the (N − 1)−Jacobian of the map

Φ : ∂E → ∂Ef ⊂ RN , x 7→ x+ f(x)νE(x).

Given x ∈ ∂E, we choose an orthonormal basis

B′ := {v1(x), . . . , vN−1(x)}
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of TxE such that in this basis the second fundamental form of E, BE(x) : TxE → TxE ⊂ RN , has
the following expression

BE(x) =


κ1(x)

. . .

κN−1(x)
0 . . . 0

 ,

where κ1(x), . . . , κN−1(x) are the principal curvatures of E in x. We then complete B′ to a basis B
of the whole RN with the normal vector vN (x) := νE(x). In the following, to simplify the notation,
we will drop the dependence on x. The tangential differential of Φ with respect to the basis B is
given by

DΦ = I + νE ⊗∇f + fDνE ,

where I is the immersion TxE ↪→ RN , ∇f is the tangential gradient of f and DνE is the tangential
differential of νE . Given the regularity of ∂E, we recall that DνE is equal to BE . Moreover, by
definition of B, we have that

(νE ⊗∇f)(vi, vj) = δN,i∇f · vj , i = 1, . . . , N, j = 1, . . . , N − 1.

Thanks to the previous observations we obtain

DΦ =


1

. . .

1
0 . . . 0

+


0

. . .

0
∂v1f . . . ∂vN−1

f

+


κ1f

. . .

κN−1f
0 . . . 0

 ,

thus we find the following expression

(3.1) DΦ =


1 + κ1f

. . .

1 + κN−1f
∂v1f . . . ∂vN−1

f

 .

By Binet formula, the Jacobian JΦ can be explicitly computed as

JΦ =

N−1∏
i=1

(1 + κif)2 +

N−1∑
j=1

(∂vjf)2
∏
i ̸=j

(1 + κif)2

1/2

=

N−1∏
i=1

(1 + κif)

1 +

N−1∑
j=1

(∂vjf)2

(1 + κjf)2

1/2

.(3.2)

To show the previous formula, we characterize the minors of DΦ. If we omit the N−th row of DΦ,
we obtain the minor

MN =

1 + κ1f
. . .

1 + κN−1f

 ,
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if we omit the i−th row of DΦ for 1 ≤ i ≤ N − 1, we obtain the minor

Mi =



1 + κ1f
. . .

1 + κi−1f
1 + κi+1f

. . .

1 + κN−1f
∂v1f . . . ∂vi−1

f ∂vi+1
f . . . ∂vN−1

f


.

We then deduce (3.2) by explicitly computing

det(MN )2 =

N−1∏
i=1

(1 + κif)2, det(Mi)
2 = (∂vif)2

∏
j ̸=i

(1 + κjf)2.

The previous formula for JΦ allows us to calculate some quantities that will be useful later on.
Observe that, if ∥f∥C1 is small enough, the map Φ is a diffeomorphism from ∂E to Φ(∂E) = ∂Ef ,
and thus the tangential differential DΦ : TxE → TΦ(x)Ef is a surjective map. In particular, this
allows us to calculate the normal versor νEf

in Φ(x). We remark that a vector v orthogonal to
every column of (3.1) is a normal vector to the whole tangent space TΦ(x)Ef , therefore a possible
v is given by

v = −
N−1∑
i=1

∂vif

1 + κif
vi + νE ,

where the sign of the component along νE is taken positive so that the case f = 0 is consistent
with the orientation of νE . Since |v| ≥ 1, by normalizing v we obtain the normal versor

(3.3) νEf
=

(
νE −

N−1∑
i=1

∂vif

1 + κif
vi

)1 +

N−1∑
j=1

(∂vjf)2

(1 + κjf)2

−1/2

,

moreover, we remark that

(3.4) νE · νEf
=

1 +

N−1∑
j=1

(∂vjf)2

(1 + κjf)2

−1/2

.

We can now compute explicitly the formula for the first variation of the perimeter.

Lemma 3.1. Setting Q :=

(
1 +

∑N−1
j=1

(∂vjf)2

(1 + κjf)2

)1/2

, the following formulas hold true:

(1) If f ∈ L∞(∂E) ∩H1(∂E) with ∥f∥L∞ sufficiently small, then

P (Ef ) =

ˆ
∂E

Q

N−1∏
i=1

(1 + κif) dHN−1.

(2) If f ∈ L∞(∂E)∩H1(∂E) with ∥f∥L∞ sufficiently small, then the first variation δP (Ef )[φ]
exists for all φ ∈ C1(∂E) and is given by

δP (Ef )[φ] =

ˆ
∂E

φQ

N−1∑
i=1

κi
∏
j ̸=i

(1 + κjf) dHN−1

+

ˆ
∂E

1

Q

N−1∏
i=1

(1 + κif)

N−1∑
j=1

∂vjφ∂vjf

(1 + kjf)2
− φ

N−1∑
j=1

kj (∂vjf)2

(1 + kjf)3

 dHN−1.(3.5)
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Proof. The first formula is a straightforward consequence of the area formula

P (Ef ) =

ˆ
∂Ef

dHN−1 =

ˆ
∂E

JΦ dHN−1

and of the expression of the Jacobian JΦ in (3.2). Now, (3.5) easily follows by taking the derivatives

d

dε

∣∣∣
ε=0

P (Ef+εφ)

in the first formula. □

In the following, with C we will refer to a positive constant, possibly changing from line to line,
and we will specify its explicit dependence when needed.

Remark 3.2. We observe that, if ∥f∥L∞(∂E) is small enough and |Ef | = |E|, then there exists a
constant C > 0, only depending on E, such that

(3.6)

∣∣∣∣ˆ
∂E

f(x) dHN−1(x)

∣∣∣∣ ≤ C

ˆ
∂E

f(x)2 dHN−1(x).

Firstly, since ∂E is regular, for every ε > 0 sufficiently small there exists a tubular neighborhood N
of ∂E such that N is diffeomorphic to ∂E × (−ε, ε) via the diffeomeorphism Ψ(x, t) = x+ νE(x)t.
The Jacobian of Ψ is given by

(3.7) JΨ(x, t) =

N−1∏
i=1

(1 + κi(x)t).

Secondly, if ∥f∥L∞(∂E) is small enough, we remark that the condition |Ef | = |E| is equivalent to

0 = |Ef | − |E| =

ˆ
∂E

ˆ f(x)

0

JΨ(x, t) dtdHN−1(x).

Then, we can conclude that

0 =

ˆ
∂E

ˆ f(x)

0

JΨ(x, t) dtdHN−1(x)

=

ˆ
∂E

f(x) dHN−1(x) +

ˆ
∂E

ˆ f(x)

0

(JΨ(x, t) − 1) dtdHN−1(x)

=

ˆ
∂E

f(x) dHN−1(x) +

ˆ
∂E

ˆ f(x)

0

(HE(x) t+ o(t)) dtdHN−1(x),

that implies (3.6) for a constant depending only on N and the principal curvatures of E.

We are now able to prove the following stability result; it ensures that the second variation of
the perimeter remains strictly positive for small normal deformations of a strictly stable set E.

Lemma 3.3. Fix N ≥ 2. There exists δ = δ(E) > 0 small such that, if f ∈ L∞(∂E) ∩H1(∂E)
with ∥f∥L∞(∂E) ≤ δ,

(3.8)

∣∣∣∣ˆ
∂E

f(x) dHN−1(x)

∣∣∣∣ ≤ δ∥f∥L2(∂E) and

∣∣∣∣ˆ
∂E

f(x)νE(x) dHN−1(x)

∣∣∣∣ ≤ δ∥f∥L2(∂E),

then we have

δ2P (E)[f ] =

ˆ
∂E

(|∇f(x)|2 − |BE(x)|2f(x)2) dHN−1(x) ≥ m0

8
∥f∥2H1(∂E),

where m0 is the constant given by Lemma 2.8.
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Proof. Set g = f − f̄ , where f̄ =
ffl
∂E

f dHN−1, then g has zero average and, by the first inequality
in (3.8), we have

(3.9) f̄2 =
1

P (E)2

(ˆ
∂E

f dHN−1

)2

≤ Cδ2∥f∥2L2(∂E).

If δ is sufficiently small, from (3.9) we obtain

∥g∥2L2(∂E) = ∥f − f̄∥2L2(∂E) = ∥f∥2L2(∂E) − f̄2P (E) ≥ ∥f∥2L2(∂E)

(
1 − Cδ2

)
≥ 1

2
∥f∥2L2(∂E).

Using the previous inequality, (3.9) again and the second inequality in (3.8) we infer that the
function g satisfies∣∣∣∣ˆ

∂E

gνE dHN−1

∣∣∣∣ ≤ ∣∣∣∣ˆ
∂E

fνE dHN−1

∣∣∣∣+

∣∣∣∣ˆ
∂E

f̄νE dHN−1

∣∣∣∣ ≤ Cδ∥g∥L2(∂E).

Then, we can apply Lemma 2.9 to obtain

δ2P (E)[g] ≥ m0

2
∥g∥2H1(∂E),

provided δ small enough. We conclude

δ2P (E)[f ] = δ2P (E)[g] − δ2P (E)[g] + δ2P (E)[f ]

= δ2P (E)[g] − 2f̄

ˆ
∂E

|BE(x)|2f(x) dHN−1(x) + f̄2
ˆ
∂E

|BE(x)|2 dHN−1(x)

≥ m0

2
∥g∥2H1(∂E) − C|f̄ |∥f∥L2(∂E) ≥

m0

2
(∥g∥2L2(∂E) + ∥∇g∥2L2(∂E)) − Cδ∥f∥2L2(∂E)

≥ m0

4
(∥f∥2L2(∂E) + ∥∇f∥2L2(∂E)) − Cδ∥f∥2L2(∂E) ≥

m0

8
∥f∥2H1(∂E),

up to taking δ smaller if needed, and where the constant C > 0 only depends on E. □

Remark 3.4. Remark 3.2 ensures that the conclusion of the previous lemma also holds if we
replace the hypothesis |

´
∂E

f dHN−1| ≤ δ∥f∥L2(∂E) with ∥f∥L∞(∂E) small enough and |Ef | = |E|.

We are now able to prove the generalized version of the quantitative Alexandrov’s inequality in
the periodic setting, Theorem 1.3.

Proof of Theorem 1.3. First of all we notice that, if we take the constant C in (1.4) to be bigger

than
√
P (E)/2, then it is enough to consider only the case ∥HEf

− H̄Ef
∥L2(∂E) ≤ 1.

Set p = x+ f(x)νE(x) and let φ ∈ C1(∂E), by the definition of scalar mean curvature HEf
and

a change of coordinates we obtain

(3.10) δP (Ef )[φ] =

ˆ
∂E

(HEf
νEf

)(p) · νE φJΦ dHN−1.

Combining (3.10), (3.2) and (3.4) we obtain

δP (Ef )[φ] =

ˆ
∂E

HEf
φJΦ

1 +

N−1∑
j=1

(∂vjf)2

(1 + κjf)2

−1/2

dHN−1 =

ˆ
∂E

HEf
φ

N−1∏
i=1

(1+κif) dHN−1.

In the following, with a slight abuse of notation, with the symbol O(g) we will mean any function
h of the form h(x) = r(x)g(x), where |r(x)| ≤ C for all x ∈ ∂E and C is a constant depending
only on N and E.

By a simple Taylor expansion we have

(3.11) δP (Ef )[φ] =

ˆ
∂E

HEf
φ
(
1 +HEf +O(f2)

)
dHN−1.
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From (3.5) and again by Taylor expansion, we obtain

δP (Ef )[φ] =

ˆ
∂E

HE + f

N−1∑
i=1

κi
∑
s̸=i

κs +O(f2) +O(|∇f |2)

φdHN−1

+

ˆ
∂E

(∇f + h) · ∇φdHN−1

=

ˆ
∂E

(
HE + fH2

E − |BE |2f +O(f2) +O(|∇f |2)
)
φdHN−1

+

ˆ
∂E

(∇f + h) · ∇φdHN−1(3.12)

where ∇f,∇φ are respectively the tangent gradient of f, φ on ∂E and h is a vector field satisfying
|h| ≤ C(|f | + |∇f |2))|∇f |. Set R = O(f2) + O(|∇f |2), by comparing (3.11) and (3.12) we infer
that

ˆ
∂E

(∇f · ∇φ− |BE |2fφ) dHN−1 =

ˆ
∂E

(HEf
−HE) (1 +HEf +R)φdHN−1

−
ˆ
∂E

(h · ∇φ+ (O(f2) +O(|∇f |2))φ) dHN−1.(3.13)

Testing (3.13) with φ = 1, we get

ˆ
∂E

(HEf
−HE) (1 +HEf +R) dHN−1 =

ˆ
∂E

(O(|f |) +O(|∇f |2)) dHN−1,

then, for δ sufficiently small, using Hölder inequality we obtain

∣∣H̄Ef
−HE

∣∣ =

∣∣∣∣− 
∂E

(HEf
−HE)(HEf +R) dHN−1 +

 
∂E

(O(|f |) +O(|∇f |2)) dHN−1

∣∣∣∣
≤
∣∣∣∣ 
∂E

(HEf
− H̄Ef

)(HEf +R) dHN−1

∣∣∣∣+

∣∣∣∣ 
∂E

(H̄Ef
−HE)(HEf +R) dHN−1

∣∣∣∣
+

ˆ
∂E

(O(|f |) +O(|∇f |2)) dHN−1

≤ δ
|HE | + Cδ

P (E)
∥HEf

− H̄Ef
∥L2 + δ (|HE | + Cδ) |H̄Ef

−HE |

+

ˆ
∂E

(O(|f |) +O(|∇f |2)) dHN−1,

with C = C(N,E) since δ ≤ 1. For δ small enough, recalling that ∥HEf
− H̄Ef

∥L2 ≤ 1, the
previous inequality implies

(3.14)
1

2
|H̄Ef

−HE | ≤ Cδ∥HEf
− H̄Ef

∥L2 +

ˆ
∂E

(O(|f |) +O(|∇f |2)) dHN−1 ≤ Cδ.

Using the bound ∥f∥C1 ≤ δ and the definition of h we easily see that

h · ∇f = δ O(|∇f |2).
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Testing (3.13) with φ = f , using Hölder’s inequality and by the previous remark, we getˆ
∂E

(|∇f |2 − |BE |2f2) dHN−1 =

ˆ
∂E

(
HEf

−HE

)
(1 +HEf +R)f dHN−1

+ δ

ˆ
∂E

(O(f2) +O(|∇f |2)) dHN−1

=

ˆ
(HEf

− H̄Ef
)(1 +HEf +R)f dHN−1 +

ˆ
(H̄Ef

−HE)(1 +HEf +R)f dHN−1

+ δ

ˆ
∂E

(O(f2) +O(|∇f |2)) dHN−1

≤C∥HEf
− H̄Ef

∥L2∥f∥L2 + |H̄Ef
−HE |

ˆ
(1 +HEf +R)f dHN−1

+ δ

ˆ
∂E

(O(f2) +O(|∇f |2)) dHN−1

=C∥HEf
− H̄Ef

∥L2∥f∥L2 + |H̄Ef
−HE |

ˆ
(f +O(f2) + fO(|∇f |2)) dHN−1

+ δ

ˆ
∂E

(O(f2) +O(|∇f |2)) dHN−1.(3.15)

By (3.6), (3.14) and by Hölder inequality, we obtain

|H̄Ef
−HE |

ˆ
(f +O(f2) + fO(|∇f |2)) dHN−1 ≤ δ

ˆ
∂E

(O(f2) +O(|∇f |2)).

Finally, by the above inequality, (3.6) again and by combining (3.15) with (3.14) we deduce that,
for any η > 0, it holdsˆ

∂E

(|∇f |2 − |BE |2f2) dHN−1 ≤ C∥HEf
− H̄Ef

∥L2∥f∥H1 + δ

ˆ
∂E

(O(f2) +O(|∇f |2)) dHN−1

≤ 1

η
C2∥HEf

− H̄Ef
∥2L2 + η∥f∥2H1 + Cδ∥f∥2H1 .(3.16)

The conclusion then follows combining (3.16) with Lemma 3.3 and taking δ and η sufficiently
small. □

Remark 3.5. For some particular choices of the set E, a geometric explanation of the condition

(3.17)

∣∣∣∣ˆ
∂E

fνE dHN−1

∣∣∣∣ ≤ δ∥f∥L2

can be found. It is the case for the ball, the cylinder or the lamella. For example consider E = Br,
the case where E is a cylinder or a lamella being analogous. We show that in this case condition
(3.17) follows from enforcing

bar(Ef ) = bar(Br) = 0.

Indeed, consider the case r = 1 for simplicity, the barycenter in polar coordinates is given by

0 =
1

(N + 1)ωN

ˆ
∂B

(1 + f)N+1x dHN+1

and thus, by a simple Taylor expansion, we obtain

0 =

ˆ
∂B

(
1 + (N + 1)f +

1

2
Rf2

)
x dHN−1

= (N + 1)

ˆ
∂B

f(x)x dHN−1 +
1

2

ˆ
∂B

xRf2 dHN−1
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where |R(x)| ≤ C(N) for every x ∈ ∂B. We can then estimate∣∣∣∣ˆ
∂B

f(x)xdHN−1

∣∣∣∣ ≤ C∥f∥2L2

provided ∥f∥C1 ≤ δ and the conclusion follows recalling νB(x) = x.

4. Uniform L1−estimate on the discrete flow

In this section we give the precise definition of the discrete volume preserving flow in the flat
torus and we study some of its properties. In particular, we prove Proposition 4.6 that will play a
crucial role in the proof of our main result.

4.1. Discrete volume preserving mean-curvature flow. Let E ̸= ∅ be a measurable subset
of TN . In the following we will always assume that E coincides with its Lebesgue representative.
Fixed h > 0, m ∈ (0, 1), we consider the minimum problem

(4.1) min

{
P (F ) +

1

h

ˆ
F

sdE(x) dx : F ⊂ TN , |F | = m

}
,

where sdE(x) := distE(x) − distTN\E(x) is the signed distance from the set E. Observe that the
minimum problem (4.1) is equivalent to the problem

min

{
P (F ) +

1

h

ˆ
F△E

dist∂E(x) dx : F ⊂ TN , |F | = m

}
.

For every F ⊂ TN , we set

(4.2) JEh (F ) := P (F ) +
1

h

ˆ
F△E

dist∂E(x) dx =: P (F ) +
1

h
D(F,E),

with a little abuse of notation we will sometimes denote by JEh also the functional

F 7→ P (F ) +
1

h

ˆ
F

sdE(x) dx

and, when no ambiguity arises, we will write Jh instead of JEh .
By induction we can now define the discrete-in-time, volume preserving mean curvature flow

(Enh )n∈N and we will refer to it as the discrete flow. Let E0 ⊂ TN be a measurable set such that
|E0| = m, we define E1

h as a solution of (4.1) with E0 instead of E, i.e.

E1
h ∈ argmin

{
P (F ) +

1

h

ˆ
F

sdE0
(x) dx : F ⊂ TN , |F | = m

}
.

Assume that Ekh is defined for 1 ≤ k ≤ n− 1, we define Enh as a solution of (4.1) with E replaced

by En−1
h , i.e.

Enh ∈ argmin

{
P (F ) +

1

h

ˆ
F

sdEn−1
h

(x) dx : F ⊂ TN , |F | = m

}
.

Remark 4.1. We start by remarking that the sequence of the perimeters along the discrete flow
is non-increasing. Indeed, from the minimality of Enh and considering En−1

h as a competitor we
obtain

P (Enh ) ≤ P (Enh ) +
1

h

ˆ
En−1

h △En
h

dist∂En−1
h

(x) dx ≤ P (En−1
h ).

From this simple remark we observe that, even if the starting set of the flow E0 is not of finite
perimeter, the perimeters of the sets Enh are uniformly bounded by a constant that only depends
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on the dimension N , the fixed volume m and h. Given any set E0 of volume m, consider the cube
Qm of the same volume. From the minimality of E1

h and using Qm as a competitor we obtain

P (E1
h) ≤ P (Qm) +

1

h

ˆ
E0△Qm

dist∂E0
(x) dx− 1

h

ˆ
E0△Eh

1

dist∂E0
(x) dx

≤ P (Qm) +
1

h

ˆ
TN

√
N = C(N,m, h),

where we estimated dist∂E0
≤ diam(TN ) =

√
N .

We recall some preliminary results that can be found in [21]. If not otherwise stated, their
original proofs can be easily adapted to the periodic case, the major difference being that in our
case we work in the flat torus, which is compact, thus simplifying some arguments. First of all,
we observe that that the problem (4.1) admits solutions via the standard method of the calculus
of variations.

The regularity properties of the discrete flow are investigated in the following proposition. Some
of the results are classical, others follow from [21, Proposition 2.3].

Proposition 4.2. Let h, m, M > 0 and let E ⊂ TN be a set with |E| = m and P (E) ≤M . Then,
any solution F ⊂ TN to (4.1) satisfies the following regularity properties:

i) There exist c0 = c0(N) > 0 and a radius r0 = r0(m,h,N,M) > 0 such that for every
x ∈ ∂∗F and r ∈ (0, r0] we have

|Br(x) ∩ F | ≥ c0r
N and |Br(x) \ F | ≥ c0r

N .

In particular, F admits an open representative whose topological boundary coincides with
the closure of its reduced boundary, i.e. ∂F = ∂∗F .

ii) There exists Λ = Λ(m,h,N,M) > 0 such that F is a Λ-minimizer of the perimeter, that
is

P (F ) ≤ P (F ′) + Λ|F△F ′|
for all measurable set F ′ ⊂ TN .

iii) The following Euler-Lagrange equation holds: there exists λ ∈ R such that for all X ∈
C1
c (TN ,TN ) we have

(4.3)

ˆ
∂∗F

sdE
h
X · νF dHN−1 +

ˆ
∂∗F

divτX dHN−1 = λ

ˆ
∂∗F

X · νF dHN−1.

iv) There exists a closed set Σ, whose Hausdorff dimension is less than or equal to N−8, such
that ∂∗F = ∂F \ Σ is an (N − 1)-submanifold of class C2,α for all α ∈ (0, 1) with

|HF (x)| ≤ Λ, for all x ∈ ∂F \ Σ.

v) There exists k0 = k0(m,h,N,M) ∈ N and s0 = s0(m,h,N,M) > 0 such that F is made
up of at most k0 connected components having mutual Hausdorff distance at least s0.

The following result characterizes the stationary sets of the discrete scheme. The last assertion
of the proposition is a technical result that will be employed in the proof of Lemma 4.4.

Proposition 4.3. Every stationary set E for the discrete flow is a critical set of the perimeter.
Viceversa, if E is a critical set of the perimeter, then there exists h∗ = h∗(E) > 0 such that, for
every h < h∗, the volume preserving discrete flow starting from E is unique and given by Enh = E.
Moreover, if E is a strictly stable then it is also the unique volume-constrained minimizer of the
functional

J̃h(F ) := P (F ) +
1

h

ˆ
F

distE(x) dx.
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Proof. The first statement is an immediate consequence of (4.3). Since E is a stationary point for
the discrete flow, it satisfiesˆ

∂∗E

divτX dHN−1 = λ

ˆ
∂∗E

X · νE dHN−1

for all X ∈ C1
c (TN ,TN ), i.e. E is a critical point for the perimeter.

The second part follows using the same argument of the proof of [21, Proposition 3.1]. Indeed,
recall that the second variation has the following expression

∂2Jh(E)[φ] =

ˆ
∂E

|∇φ|2 +

(
1

h
− |BE |2

)
φ2 dHN−1,

which is positive if h is small enough. Then we procede as in the proof of [21, Proposition 3.1].

Analogously, we prove that E is the unique volume-constrained minimizer of J̃h. Firstly, observe
that, by Theorem 2.11, E is a strict local L1-minimizer of the perimeter and it is a global minimizer
of the second term in J̃h. Therefore, there exists ε > 0 such that

J̃h(E) < J̃h(F )

for all measurable set F such that |F | = |E| and |E△F | ≤ ε, i.e. E is an isolated local minimizer

for J̃h in L1 with the volume constraint, with minimality neighbourhood uniform with respect to
h. Now, given any sequence (hn)n∈N going to zero, let Fn be a volume constrained minimizer
of Jhn

; we then easily deduce that |E△Fn| → 0 as n → ∞, and therefore, for n large enough,
|E△Fn| ≤ ε. The strict minimality of E therefore implies Fn = E.

□

4.2. Uniform L1 estimate. In this subsection we prove a uniform L1−estimate on the discrete
flow starting from an initial set E0 sufficiently “close” to a strictly stable set of the perimeter. We
will devote the next subsection to a discussion upon the hypotheses of the estimate. Before we
recall the definition of Hausdorff distance and some of its properties, for a complete reference see
e.g. [3, Section 4.4], [18, Section 10.1].

Given a set C ⊂ TN , we denote by (C)δ the δ fattened of C, that is the set

{x ∈ TN : distC(x) ≤ δ}.
Let C1, C2 ⊂ TN be closed sets, we define the Hausdorff distance between C1 and C2 as

dH(C1, C2) := inf {ρ > 0 : C1 ⊂ (C2)ρ, C2 ⊂ (C1)ρ} .

Given Cn, C closed sets in TN , we say that (Cn)n∈N converges to C in the Hausdorff distance

and we write Cn
H→ C, if dH(Cn, C) → 0 as n → ∞. We recall that the space of closed subsets

of a compact set equipped with the Hausdorff metric is compact (see e.g [3, Theorem 4.4.15] or
[18, Proposition 10.1]) and also that the convergence in the Hausdorff distance is equivalent to the
uniform convergence of the respective distance functions, i.e.

Cn
H→ C ⇐⇒ distCn

→ distC uniformly.

In the following, given two open smooth sets E1, E2, we will denote by dH(E1, E2) the Hausdorff
distance between their closures.

Lemma 4.4. Let E ⊂ TN be a strictly stable set and let ε > 0. Then, there exist δ = δ(ε, E) > 0
and h∗ = h∗(E) > 0 such that, for every h < h∗ and for every set E0 satisfying

|E0| = |E|, dH(Ē0, Ē) ≤ δ,

we have

|E△F | ≤ ε,

where F is a solution of (4.1) with E0 replacing E.
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Proof. Let h∗ = h∗(E) be the constant given by Proposition 4.3 so that, for every h < h∗, E is
the unique volume-constrained global minimizer of the functional

(4.4) J̃h(G) := P (G) +
1

h

ˆ
G

distE(x) dx.

Fix h < h∗ and let (En)n∈N be a sequence of sets satisfying

(4.5) |En| = |E|, Ēn
H→ Ē.

Consider Fn a solution of (4.1) with En replacing E. We claim that

Fn
L1

→ E.

If we prove the claim, the conclusion easily follows.
First, Remark 4.1 ensures that (Fn)n∈N is a sequence of sets with uniformly bounded perimeters,

with the bound depending only on N,m, h. Therefore, there exist F a set of finite perimeter such
that |F | = m and a (unrelabelled) subsequence of (Fn)n∈N such that

Fn
L1

→ F.

Now, let K be a compact subset of TN such that, up to a subsequence, we have

Ecn
H→ K.

From the second property in (4.5) we easily deduce that (Ē)c ⊂ K, and therefore Kc ⊂ Ē. In
particular, this inclusion implies thatˆ

Kc

distK(x) dx =

ˆ
E

distK(x) dx ≥
ˆ
G

distK(x) dx

for every G ⊂ TN . Setting

J̄h(G) := P (G) +
1

h

ˆ
G

(distE(x) − distK(x)) dx,

from the previous remark and from the fact that E is the unique minimizer of (4.4), we have

J̄h(G) = J̃h(G) − 1

h

ˆ
G

distK(x) dx

> J̃h(E) − 1

h

ˆ
G

distK(x) dx

≥ J̃h(E) − 1

h

ˆ
E

distK(x) dx = J̄h(E),

for any measurable set G ⊂ TN with |G| = |E|. Finally, we obtain

J̄h(F ) = P (F ) +
1

h

ˆ
F

(distE(x) − distK(x)) dx

≤ lim inf
n→∞

P (Fn) +
1

h

ˆ
F

(distE(x) − distK(x)) dx

= lim inf
n→∞

(
P (Fn) +

1

h

ˆ
Fn

(
distEn

(x) − distEc
n
(x)
)

dx

)
≤ lim inf

n→∞

(
P (E) +

1

h

ˆ
E

(
distEn(x) − distEc

n
(x)
)

dx

)
= P (E) − 1

h

ˆ
E

distK(x) dx = J̄h(E)
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where we exploited the lower-semicontinuity of the perimeter and the minimality of Fn. Since E is
the unique volume-constrained minimizer of J̄h, the set F must coincide with E and this concludes
the proof. □

Remark 4.5. We remark that under the hypotheses of Lemma 4.4 we could have just assumed
the one-sided inclusion

Ē0 ⊂ (E)δ∗

instead of

dH(Ē0, Ē) ≤ δ

for a suitable δ∗ ≤ δ. Indeed, let δn → 0 and En ⊂ (E)δn such that |En| = |E|. We prove that
Ēn converges to Ē in the sense of Kuratowski (and thus with respect to Hausdorff). Let (xn)n∈N
be a sequence such that xn ∈ Ēn and xn → y. For every n ∈ N, there exists yn ∈ E such that
|xn − yn| ≤ δn. Therefore, for any ε > 0 there exists n0 such that, for n ≥ n0, we have

|yn − y| ≤ |yn − xn| + |xn − y| ≤ δn + ε,

that is yn → y. Since (yn)n∈N ⊂ E, we have y ∈ Ē.
Fix now y ∈ Ē. Assume by contradiction that there exists δ > 0 such that distEn

(y) > δ, i.e. it
doesn’t exist a sequence of elements in Ēn converging to y. From this (and up to subsequences) it
follows

En ⊂ (E)δn \Bδ(y) ∀n ∈ N.
Thus we have

m = lim
n→∞

|En| ≤ lim
n→∞

|(E)δn \Bδ(y)|

≤ lim
n→∞

|(E)δn \ (Bδ(y) ∩ E) |

= lim
n→∞

|(E)δn | − |Bδ(y) ∩ E| = m− |Bδ(y) ∩ E|

which is a contradiction.

We are now able to prove the main estimate that will be used in the proof of Proposition 5.2.

Proposition 4.6 (Uniform L1−estimate). Let E ⊂ TN be a strictly stable set. Then, for every
ε > 0 there exist δ∗ = δ∗(ε, E) > 0 and h∗ = h∗(E) > 0 with the following property: for every
h < h∗, if E0 is a measurable set such that

|E0| = |E|, Ē0 ⊂ (E)δ∗ ,

then the discrete flow (Enh )n∈N starting from E0 satisfies

α(E,Enh ) ≤ ε

for every n ∈ N .

Proof. Fix h < h∗, where h∗ = h∗(E) is the constant given by Lemma 4.4 and let σ = σ(E),
C = C(E) be the constants of Theorem 2.11. Moreover, let δ := δ(σ,E) be the constant given by
Lemma 4.4 with σ replacing ε. Set δ∗ ≤ δ to be chosen later and consider E0 such that

|E0| = |E|, Ē0 ⊂ (E)δ∗ .

Recall that, from Remark 4.5 and from the hypothesis Ē0 ⊂ (E)δ∗ , without loss of generality, we
can assume dH(Ē0, Ē) ≤ δ∗. Moreover, by the regularity of E, we can also suppose α(E0, E) ≤
C̃δ∗, for a suitable constant C̃ > 0 that only depends on E. From Lemma 4.4 we have that

(4.6) |E1
h△E| ≤ σ.
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Let x0 be such that α(E0, E) = |E0△(E + x0)|. By choosing E + x0 as a competitor for the

minimality of E1
h and estimating dist∂E0 ≤ diam(TN ) =

√
N , we find

P (E1
h) − P (E) ≤ 1

h

ˆ
E0△(E+x0)

dist∂E0
(x) dx ≤

√
N

h
α(E0, E) ≤

√
N

h
C̃δ∗.

By (4.6), we can apply Theorem 2.11 and the previous estimate to obtain

α(E1
h, E) ≤ 1√

C

√
P (E1

h) − P (E) ≤ 1√
C

√√
N

h
α(E,E0) ≤ 1√

C

√√
N

h
C̃δ∗ ≤ min{σ, δ, ε},

where we have chosen δ∗ such that δ∗ ≤ Ch (min{σ, δ, ε})
2
/(C̃

√
N). Since E1

h is a Λ−minimizer
and E is regular, up to taking δ∗ smaller, the classical regularity theory for Λ−minimizers (see
Theorem 2.4) implies

dH(∂E1
h, ∂E + x1) ≤ δ,

where x1 is such that α(E1
h, E) = |E1

h△(E + x1)|.
Now we iterate the procedure: by induction, suppose that

(4.7) α(En−1
h , E) ≤ min{σ, δ, ε}, dH(∂En−1

h , ∂E + xn−1) ≤ δ

where xn−1 is such that |En−1
h △(E+xn−1)| = α(En−1

h , E). Observe that the second inequality in

(4.7) implies that dH(Ēn−1
h , Ē + xn−1) ≤ δ, therefore En−1

h and E + xn−1 satisfy the hypotheses
of Lemma 4.4 and thus

|Enh△(E + xn−1)| ≤ σ.

Observe that by definition α(Enh , E + xn−1) = α(Enh , E). Now, by Theorem 2.11 and the mono-
tonicity of the perimeters along the discrete flow we obtain

α(Enh , E) ≤ 1√
C

√
P (Enh ) − P (E)

≤ 1√
C

√
P (E1

h) − P (E)

≤ 1√
C

√√
N

h
C̃δ∗ ≤ min{σ, δ, ε}.

Again, thanks to the choice of δ∗, the hypotheses of Theorem 2.4 are satisfied and thus

dH(∂Enh , ∂E + xn) ≤ δ,

where xn is such that α(Enh , E) = |Enh△(E + xn)|. This concludes the proof. □

4.3. Some remarks on the hypothesis of the L1−estimate. In this subsection we show that
Proposition 4.6 does not hold if we weaken the hypothesis of closeness in the Hausdorff distance
between the starting set E0 and the strictly stable set E. In particular, we prove that the sole
hypothesis of closeness in L1 and in perimeter is not enough. We remark that a modification of
this example yields the same result in RN .

Fix h > 0 and G ⊂ TN . Recall that, for any set F ⊂ TN such that |F | = |G|, we have set

(4.8) JGh (F ) := P (F ) +
1

h

ˆ
F△G

dist∂G(x) dx.

Proposition 4.7. There exist m > 0 and a sequence (En)n∈N ⊂ TN with the following properties:
|En| = m for every n ∈ N, P (En) is uniformly bounded and, letting Fn be any volume-constrained
minimizer of (4.8) with En instead of G, we have

En
L1

→ E, P (En) → P (E) but Fn
L1

→ F,

where E is a lamella (see (1.2)) and F is such that |E△F | > 0.
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Proof. Let m > 0 such that the ball of volume m has perimeter strictly less than the one of the
lamella of the same volume; we remark that for every smaller volume m′ ≤ m the same property
holds. Let E be a lamella of measure m, recall that E is a strictly stable set of the perimeter in
TN . From the assumption on m it follows that E is only a local minimizer of the perimeter and
not a global one.
Step 1. Firstly, we construct a sequence (En)n∈N such that En → E in L1 and ∂En → TN in the
Hausdorff distance. We define En by adding to E some balls contained in TN \ E and of overall
small volume, and by subtracting to E balls contained in E with the same overall volume.

Recall that TN = [0, 1]N/ZN . In the following, with a little abuse of notation, we will identify
TN and [0, 1)N . We define

In : =
{
k = (k1, . . . , kN ) ∈ ZN : 0 ≤ ki ≤ 2n − 1 ∀i = 1, . . . N

}
,

Pn : =

{
Qn,k :=

[
0,

1

2n

)N
+

k

2n
: k ∈ In

}
,

for every n ∈ N. Up to choosing m smaller, we can assume that m = 1/2s for some s ∈ N.
Moreover, we can suppose, up to translations, that E = [0, 1)N−1 × (0, 1/2s), thus for n ≥ s we
have

E = Int

 ⋃
k∈In, 0≤kN≤2n−s−1

Qn,k

 ,

where Int(·) denotes the interior of a set in TN . For every n ≥ s and k ∈ In, we consider the balls
Bn,k ⊂ Qn,k centered in the center of the cube Qn,k and of radius rn,k chosen in such a way that

(4.9)

∣∣∣∣∣∣
⋃

k∈In, 0≤kN≤2n−s−1

Bn,k

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃

k∈In, 2n−s≤kN≤2n−1

Bn,k

∣∣∣∣∣∣ .
Moreover, we can also take the radii rn,k sufficiently small so that

(4.10) lim
n→∞

∣∣∣∣∣∣
⋃
k∈In

Bn,k

∣∣∣∣∣∣ = 0, lim
n→∞

P

 ⋃
k∈In

Bn,k

 = 0.

Set now

An :=
⋃

k∈In, 0≤kN≤2n−s−1

Bn,k ⊂ Int

 ⋃
k∈In, 0≤kN≤2n−s−1

Qn,k

 = E,

Cn :=
⋃

k∈In, 2n−s≤kN≤2n−1

Bn,k ⊂
⋃

k∈In, 2n−s≤kN≤2n−1

Qn,k ⊂ TN \ E.

Define En = (E ∪ Cn) \ An and observe that, by (4.9), we have |En| = |E|. Now, by (4.10), we
also obtain

En
L1

→ E and P (En) → P (E).

Observe that, from the definition of An and Cn, we have that

(∂An)√N/2n ∪ (∂Cn)√N/2n = TN

and therefore the set ∂En = ∂E ∪ ∂Cn ∪ ∂An converges in the Hausdorff metric to the whole TN
as n→ +∞. Therefore we have constructed a sequence (En)n∈N that satisfies

(4.11) En
L1

→ E, P (En) → P (E), ∂En
H→ TN .
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Step 2. Let En be the sets previously defined. We consider the space X = {F ⊂ TN :
F is measurable} endowed with the L1−distance, i.e. distL1(F,G) = |F△G| for every F,G ∈ X.
We extend our functional in the following way

J̃Eh (F ) :=

{
JEh (F ) if P (F ) <∞, |F | = m,

+∞ otherwise

and we set Jn := J̃En

h . We then prove the Γ−convergence of the functionals Jn to the perimeter
functional in X, that is

(4.12) Γ(X) − lim
n→∞

Jn = P.

We can clearly restrict ourselves to consider sets of finite perimeter and volume m, otherwise
the result is trivial. For any given set F of measure m and finite perimeter we choose the sequence
constantly equal to F as a recovery sequence for F . Indeed, by (4.11) we have

Jn(F ) = P (F ) +
1

h

ˆ
F△En

dist∂En
→ P (F ).

We now prove the lim inf inequality. Given a sequence Fn that converges to F in L1, by the
L1−semicontinuity of the perimeter, we have

P (F ) ≤ lim inf
n→∞

P (Fn) ≤ lim inf
n→∞

(
P (Fn) +

1

h

ˆ
Fn△En

dist∂En

)
and thus (4.12) is proved. Therefore, thanks to the equi-coercivity of the functionals Jn, any
sequence of volume-constrained global minimizers of Jn converges in L1, up to a subsequence, to
a volume-constrained global minimizer of the perimeter in the torus. Let (Fn)n∈N be a sequence
of global minimizers of the functional Jn and let F be such that Fn → F in L1. We know that
F is a global minimizer of the perimeter and that by the choice of m the lamella is not a global
minimizer. Therefore it must hold |E△F | > 0. □

5. Convergence of the flow

In this section, we will prove the main result of the paper concerning the convergence of the
discrete flow that mainly relies on Proposition 4.6.

5.1. Convergence of the flow up to translations. We start by recalling [21, Lemma 3.5]: it
will be used in the proof of the following proposition.

Lemma 5.1. Let (Enh )n∈N be a volume preserving discrete flow starting from E0 and let Eknh
be a subsequence such that Eknh + τn → F in L1(TN ) for some set F and a suitable sequence
(τn)n∈N ⊂ TN . Then dist∂Ekn−1

h
(· + τn) → dist∂F uniformly.

In the following proposition we characterize the long-time behaviour up to translations of the
discrete mean curvature flow in the flat torus starting near a regular strictly stable set.

Proposition 5.2. Let E ⊂ TN be a strictly stable set. Then there exist δ∗ = δ∗(E) > 0 and
h∗ = h∗(E) > 0 with the following property: if h < h∗ and E0 ⊂ TN is a set of finite perimeter
satisfying

|E0| = |E|, Ē0 ⊂ (E)δ∗ ,

then, for every discrete flow (Enh )n∈N starting from E0, there exists a sequence of translations
τn ∈ TN such that

Enh + τn → E in Ck, ∀k ∈ N.
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Proof. Let ε > 0 be sufficiently small and let δ∗ = δ∗(ε, E), h∗ = h∗(E) be the constants given
by Proposition 4.6. Fix E0 an initial set satisfying |E| = |E0| and Ē0 ⊂ (E)δ∗ . It is enough to
show that any (unrelabelled) subsequence of the discrete flow starting from E0 admits a further
subsequence converging in Ck and up to translations to E. We divide the proof into three steps.
Step 1. (Existence and regularity of a limit point) From Proposition 4.2 we remark that, for
n ≥ 1, the sets Enh are uniform Λ−minimizers with uniformly bounded, non-increasing perimeters.
Therefore, by the compactness of (uniform) Λ−minimizers, we can conclude that there exists a

subsequence (Eknh )n∈N and a Λ−minimizer E∞
h such that

Eknh
L1

→ E∞
h , P (Eknh ) → P (E∞

h ), sdEkn−1
h

→ sdE∞
h

uniformly.

Let G be a set of finite perimeter such that |G| = m. By the minimality of Eknh we have

P (Eknh ) +
1

h

ˆ
Ekn

h

sdEkn−1
h

(x) dx ≤ P (G) +
1

h

ˆ
G

sdEkn−1
h

(x) dx

and, taking the limit as n→ ∞, we obtain

P (E∞
h ) +

1

h

ˆ
E∞

h

sdE∞
h

(x) dx ≤ P (G) +
1

h

ˆ
G

sdE∞
h

(x) dx.

We have thus proved that E∞
h is a fixed point for the discrete flow and thus, by Proposition 4.3,

it is a critical point for the perimeter.
Let τ∞ ∈ argminx|(E∞

h + x)△E|. By Proposition 4.6 we have α(E,Eknh ) ≤ ε for every n ∈ N.

Now, up to taking ε smaller, Theorem 2.4 and the smoothness of E, yields both the C1,β-closeness
between E∞

h +τ∞ and E, and the C1,β regularity of E∞
h +τ∞ (and thus of E∞

h ), for every β ∈ (0, 1).
From Proposition 4.2 (iv) it follows that E∞

h is of class C2,β , therefore we conclude that E∞
h has

constant classical mean curvature and thus it is of class C∞. To conclude, the smoothness of E∞
h

allow us to use Theorem 2.4 to improve the convergence of the subsequence to

(5.1) Eknh → E∞
h in C1,β

and to ensure that the sets Eknh are of class C1,β for n large enough.

Step 2. (Convergence in C2,β of the flow and C2,β−closeness to E) In this step we we will prove

that E∞
h is C2,β−close to E and that the convergence of Eknh to E∞

h is in C2,β . Without loss
of generality, we assume that α(E,E∞

h ) = |E△E∞
h | so that the translation introduced by the

previous step does not appear.
First of all we remark that, owing to the compactness of ∂E∞

h , it suffices to show that the
result holds locally. By a compactness argument and the definition of convergence of sets in
C1,β (Definition 2.3), up to rotations and relabelling the coordinates, we can find a cylinder
C = B′ × (−L,L), where B′ ⊂ RN−1 is a ball centred at the origin, and functions f∞, fn ∈
C1,β(B′; (−L,L)) describing locally ∂E∞

h ∩ C and ∂Eknh ∩ C respectively. We remark that the
convergence (5.1) now reads as

(5.2) fkn → f∞ in C1,β(B′).

We now prove that the curvatures HEkn
h

of the sequence Eknh are converging in C0,β to the

curvature of E∞
h in the following sense

(5.3) HEkn
h

(·, fkn(·)) → HE∞
h

(·, f∞(·)) in C0,β(B′).

We will follow an argument used in Step 3 of the proof of [1, Theorem 4.3].

Since we described ∂Eknh ∩C as a graph, the following formula for the curvature of ∂Eknh holds

(5.4) div

(
∇fkn(·)√

1 + |∇fkn(·)|2

)
= HEkn

h
(·, fkn(·)) on B′
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and an analogous formula holds for ∂E∞
h . From (5.4) and the Euler-Lagrange equation (4.3), by

integrating on B′, we then obtain

λknHN−1(B′) − 1

h

ˆ
B′
sdEkn−1

h
(x′, fkn(x′)) dHN−1(x′)(5.5)

=

ˆ
B′
HEkn

h
(x′, fkn(x′)) dHN−1(x′)

=

ˆ
B′

div

(
∇fkn(x′)√

1 + |∇fkn(x′)|2

)
dHN−1(x′)

=

ˆ
∂B′

∇fkn(y)√
1 + |∇fkn(y)|2

· y dHN−2(y),

where we set y = x′/|x′| and integrated by parts in the last line. We can then exploit the
convergence (5.2) and the formula (5.4) for the curvature of E∞

h to proveˆ
∂B′

∇fkn(y)√
1 + |∇fkn(y)|2

· y dHN−2(y) →
ˆ
∂B′

∇f∞(y)√
1 + |∇f∞|2(y)

· y dHN−2(y)

=

ˆ
B′

div

(
∇f∞(x′)√

1 + |∇f∞(x′)|2

)
dHN−1(x′)

= HE∞
h
HN−1(B′).

Now, Lemma 5.1 ensures that sdEkn−1
h

→ sdE∞
h

uniformly and we can use the convergence (5.2)

to obtain

sdEkn−1
h

((·, fkn(·))) → sdE∞
h

((·, f∞(·))) = 0 uniformly on B′,

since ∂E∞
h ∩ C = {(x′, f∞(x′)) : x′ ∈ B′)} by definition. Therefore we findˆ
B′
sdEkn−1

h
((x′, fkn(x′))) dHN−1(x′) →

ˆ
B′
sdE∞

h
((x′, f∞(x′))) dHN−1(x′) = 0.

We then conclude that (5.5) converges to HE∞
h
HN−1(B′) and thus it must hold

λkn → HE∞
h
.

From (4.3), the previous result and the fact that the signed distance functions are all equi-lipschitz,
we conclude that for any β ∈ (0, 1), the sequence (HEkn

h
(·, fkn(·))) is bounded in C0,β(B′) and

thus it converges uniformly to HE∞
h

(·, f∞(·)). This proves the convergence (5.3).

We remark that the previous result also hold if we describe the sets of the flow Eknh as normal

deformations of E∞
h , that is there exist functions φkn : ∂E∞

h → R such that Eknh = (E∞
h )φkn

. In
this case the convergence (5.1) reads as

φkn → 0 in C1,β(∂E∞
h ),

and this and Lemma 5.1 ensure that

sdEkn−1
h

(· + φkn(·)νE∞
h

(·)) → sdE∞
h

(·) = 0 uniformly on ∂E∞
h .

Now, the convergence of the curvatures reads as

HEkn
h

(· + φkn(·)νE∞
h

(·)) → HE∞
h

(·) in C0,β(∂E∞
h ).

We can then apply directly [1, Lemma 7.2] to obtain that the subsequence Eknh is converging to

E∞
h in C2,β .
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To prove the C2,β−closeness of the limit point we argue by contradiction. Assume that a

sequence of limit points (E∞,l
h )l∈N is converging in C1,β to E but there exists σ > 0 such that

distC2,β (E,E∞,l
h ) > σ

for every l large enough. Again, we describe locally ∂E∞,l
h and ∂E as graphs of suitable functions

f∞,l, f : B′ → (−L,L) and we can repeat the same argument previously employed to prove that

HE∞,l
h

((·, f∞,l(·))) → HE((·, f(·))) in C0,β(B′).

This time the argument is simpler, since the limit points are stationary sets for the perimeter and
thus their Euler-Lagrange equation is

HE∞,l
h

= λE∞,l
h

∈ R on ∂E∞,l
h .

Again, Lemma 7.2 in [1] yields the desired contradiction.
Step 3. (Uniqueness up to translations and Ck convergence) By the previous step we can find a
suitable function φ∞ ∈ C2,β(∂E) such that E∞

h = Eφ∞ . Up to introducing a further translation
given by Lemma 2.10, the hypotheses of Theorem 1.3 are satisfied and thus

∥φ∞∥H1(∂E) ≤ C∥HE∞
h

− H̄E∞
h
∥L2(∂E) = 0,

since the set E∞
h is a stationary set for the perimeter. Therefore E∞

h is a translated of the set E.
A standard bootstrap method based on the elliptic regularity theory combined with the Euler-

Lagrange equation (4.3) yields the convergence in Ck for every k ∈ N. □

5.2. Exponential convergence of the whole flow. In this subsection we will prove that the
translations introduced in Proposition 5.2 decay to zero exponentially fast. In order to prove this
result we will estimate the decay of the dissipations via a dissipation-dissipation inequality, which
in turn relies on the quantitative Alexandrov type estimate established in Theorem 1.3. We start
by recalling some preliminary results from [21].

The following lemma is an adaptation to our case of [21, Lemma 3.7]. Its proof can be found in
the Appendix.

Lemma 5.3 (A priori estimates). Let η > 0 and let E ⊂ TN be a strictly stable set. There exists
δ > 0 with the following property: if f1, f2 ∈ C1(∂E) with ∥fi∥C1(∂E) ≤ δ and |Efi | = |E| for
i = 1, 2 we have

C1(1 − η)∥f1 − f2∥2L2 ≤D(Ef1 , Ef2) ≤ C1(1 + η)∥f1 − f2∥2L2(5.6)

1 − η

2

ˆ
∂Ef−1

sd2
Ef2

dHN−1 ≤D(Ef1 , Ef2) ≤ 1 + η

2

ˆ
∂Ef−1

sd2
Ef2

dHN−1(5.7)

|bar(Ef1) − bar(Ef2)|2 ≤C2∥f1 − f2∥2L2 ≤ C2

C1(1 − η)
D(Ef1 , Ef2)(5.8)

for suitable constants C1, C2 > 0.

The following lemma proves the crucial dissipation-dissipation inequality (5.10) (see [21, Lemma
3.8]). This result will play a central role in the proof of Theorem 1.1. Its proof is based on the
Alexandrov-type estimate contained in Theorem 1.3.

Lemma 5.4. Let h > 0 and let E ⊂ TN be a strictly stable set. There exist constants C, δ > 0
with the following property: for any pair of normal deformations Ef1 , Ef2 with fi ∈ C2(∂E),
∥fi∥C1(∂E) ≤ δ, and such that |Ef2 | = |E|, |

´
∂E

νEf2 dHN−1| ≤ δ∥f2∥L2(∂E) and

(5.9) HEf2
+

sdEf1

h
= λ on ∂Ef2
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for some λ ∈ R, we have

(5.10) D(E,Ef2) ≤ CD(Ef2 , Ef1).

We are now able to prove our main result. The proof relies on our previous result Proposition 5.2,
however this time we have to show that the translations introduced converge to an appropriate
translation ξ. To achieve this result, we will obtain in Step 1 some estimates on the dissipations
along the flow by comparing the energy with a suitable competitor. Once the (exponential) decay
of the dissipations is proved, the convergence of the translations follows (see Step 2). The last step
is devoted to prove the exponential convergence of the sets.

Proof of Theorem 1.1. Let h∗ > 0, δ∗ > 0 and (τn)n∈N be given by Proposition 5.2. Fix h < h∗

and set En := Enh . We split the proof in three steps.
Step 1. (Exponential convergence of dissipations) Testing the minimality of En with En−1 we
obtain

P (En) +
1

h
D(En, En−1) ≤ P (En−1).

Recalling that P (En) → P (E) and summing the previous inequality from n+ 1 to +∞ we get

(5.11)

+∞∑
k=n+1

1

h
D(Ek, Ek−1) ≤ P (En) − P (E).

We will now construct a suitable competitor to estimate the dissipation at the step n− 1 with
the difference of perimeters. Since, by Proposition 5.2, we have

(5.12) En + τn → E in Ck ∀k ∈ N,

the translated sets of the flow, for n large enough, can be written as normal deformations of the
set E, that is there exists gn : ∂E → R such that

En + τn = Egn ,

where Egn was defined in (2.1). The convergence (5.12) then reads as gn → 0 in Ck as n→ ∞. Let
σn be the translations introduced by Lemma 2.10 with En+τn instead of F . From the convergence
in Ck of En + τn to E, we deduce that σn → 0 as n→ ∞. Therefore, setting

Fn := En + τn + σn,

we have that Fn → E in Ck and Fn = Efn with fn : ∂E → R satisfying∣∣∣∣ˆ
∂E

fnνE dHN−1

∣∣∣∣ ≤ δ∥fn∥L2(∂E) and ∥fn∥W 2,p(∂E) ≤ C∥gn∥W 2,p(∂E)

for p > N − 1. Consider now the competitor

En := E − τn−1 − σn−1.

From the minimality of En we easily deduce

(5.13) P (En) +
1

h
D(En, En−1) ≤ P (En) +

1

h
D(En, En−1) = P (E) +

1

h
D(E,En−1 + τn−1 + σn−1)

where we used the translational invariance of the dissipations. From Lemma 5.1 we obtain that
the sequence En−2 + τn−1 + σn−1 converges in Ck to the same limit of En−1 + τn−1 + σn−1, that
is to E. In particular, for n large enough we can write En−2 + τn−1 + σn−1 = Eψ for a suitable
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function ψ : ∂E → R (depending on n) and with ∥ψ∥C1(∂E) small. From Lemma 5.4 we can then
estimate the right hand side of (5.13) with

D(E,En−1 + τn−1 + σn−1) =D(E,Fn−1) = D(E,Efn−1
) ≤ CD(Efn−1

, Eψ)

=CD(En−1 + τn−1 + σn−1, En−2 + τn−1 + σn−1)

=CD(En−1, En−2).

From the previous inequality and (5.13) we obtain

(5.14) P (En) − P (E) = P (En) − P (En) ≤ C

h
D(En−1, En−2).

Now, (5.11) and (5.14) yield

∞∑
k=n−1

1

h
D(Ek, Ek−1) =

∞∑
k=n+1

1

h
D(Ek, Ek−1) +

1

h
D(En, En−1) +

1

h
D(En−1, En−2)

≤C + 1

h
D(En−1, En−2) +

1

h
D(En, En−1)

≤C + 1

h
(D(En−1, En−2) + D(En, En−1)) .

We then apply Lemma 5.5 below (with l = 2) to conclude

(5.15) D(En, En−1) ≤
(

1 − 1

C + 1

)n/2
(P (E0) − P (E)) .

Step 2. (Exponential convergence of barycenters) Set

(5.16) b =

(
1 − 1

C + 1

) 1
4

∈ (0, 1).

From (5.12) and Lemma 5.1 both the sequences (En + τn)n∈N and (En−1 + τn)n∈N converge in Ck

to E. Therefore, for n large enough, there exist some functions f1,n, f2,n ∈ Ck(∂E) such that

En + τn = Ef1,n , En−1 + τn = Ef2,n

and ∥fi,n∥Ck(∂E) → 0 as n → ∞ for i = 1, 2. From (5.8) and (5.15) we can estimate for n
sufficiently large

|bar(En) − bar(En−1)| = |bar(En + τn) − bar(En−1 + τn)|
= |bar(Ef1,n) − bar(Ef2,n)|

≤ C
√
D(Ef1,n , Ef2,n) =

√
D(En, En−1)

≤ C (P (E0) − P (E))
1/2

bn.

In turn, the above estimate implies that (bar(En))n∈N satisfies the Cauchy condition, thus the
whole sequence admits a limit ξ̄ ∈ TN . Moreover, the convergence is exponentially fast in the
sense that

|bar(Ef1,n) − ξ̄| ≤
∞∑

k=n+1

|bar(Ef1,n) − bar(Ef2,n)| ≤ C (P (E0) − P (E))
1/2 bn

1 − b

for n large enough. Recalling (5.12) we thus conclude that there exists a suitable translation
ξ ∈ TN such that for every k ∈ N

En → E − ξ in Ck as n→ ∞.
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Step 3. (Exponential convergence of the sets) By the previous step we can write, for n large, the
boundaries of the evolving sets as radial graphs of the limit set E−ξ. Precisely, for n large enough
there exist functions fn such that

(5.17) En + ξ = Efn and ∥fn∥Ck(∂E) → 0 as n→ ∞.

From (5.6) and for n large enough we have ∥fn−fn−1∥L2(∂E) ≤ 2
√

D(En, En−1) and thus, recalling
(5.15) and arguing as in Step 2, we get

(5.18) ∥fn∥L2(∂E) ≤
∞∑

k=n+1

∥fn − fn−1∥L2(∂E) ≤ (P (E0) − P (E))
1/2 bn

1 − b

where b is as in (5.16). The above estimate yields the exponential decay of the L2−norms of the
radial graphs. We recall the well-known Gagliardo-Nieremberg inequality: for every j ∈ N there
exists C > 0 such that, if g is smooth enough on the boundary of a smooth set E, then

(5.19) ∥Dkg∥L2(∂E) ≤ C∥D2kg∥1/2L2(∂E)∥g∥
1/2
L2(∂E)

where Dk stands for the collection of all the k−th order derivatives of g, see e.g. [4, Theorem 3.70].
Now, by (5.17) for every k there exists nk such that supn≥nk

∥D2kfn∥L2(∂E) ≤ 1, therefore we may

apply (5.19) to fn to deduce from (5.18) that also ∥Dkfn∥L2(∂E) decays exponentially fast for all

k ∈ N. The Sobolev immersion Theorem then yields the exponential decay in Ck for every k thus
completing the proof of the result. □

Lemma 5.5. Let (an)n∈N be a sequence of non-negative numbers. Assume furthermore that there

exist c > 1, l ∈ N such that
∑∞
n=k an ≤ c

∑k+l−1
j=k aj for every k ∈ N. Then

ak ≤
(

1 +
1

c

) k
l

S

for every k ∈ N, where S =
∑∞
n=1 an.

The proof of the previous lemma can be found in [21, Lemma 3.10].

6. Two-dimensional case

In this section, we completely characterize the long-time behaviour of the discrete flow in di-
mension two. This particular choice for the dimension is purely technical and can be justified as
follows. In the two-dimensional flat torus we have a complete characterization of the critical points
of the perimeter: they consist in unions of disjoint discs (having the same area) or in unions of
disjoint lamellae (possibly having different areas), or their complements. This allows us to conclude
that either the connected components of any limit point of the discrete flow or the ones of their
complements are strictly stable sets. We remark that in higher dimension this could not be true
anymore.

Fix h, m > 0 and let (Enh )n∈N be a flow with initial set E0 ⊂ T2 such that |E0| = m. We
recall that, by Proposition 4.2, there exists s0 > 0 such that the distance between the connected
components of the set Enh is at least s0. Moreover, the proposition also provides a bound from
below on the diameter of the connected components. Set

P∞ := lim
n
P (Enh )

as the limit of the monotone sequence of the perimeters along the discrete flow. Let F be any
possible limit point of the sequence (Ehn)n∈N. We observe that if F is a union of discs then its
number of connected components must be π−1P 2

∞/(4m) and therefore the form of the limit point
is uniquely determinated up to translations. Analogously, if F is the complement of a union of
discs, F c is made of π−1P 2

∞/(4− 4m) connected components and thus it is uniquely determinated



28 D. DE GENNARO AND A. KUBIN

up to translations of its complement. In the case when F is a union of lamellae the number of
connected components is given by P∞/2, however we have no information on the area of the single
components. Since we will consider h as a fixed parameter, from now on we will denote by En the
set Enh .

Remark 6.1 (Remarks on the uniform C1,α−closeness to limit points). We remark that for every
ε > 0 there exists n0 = n0(ε) ∈ N such that for every n ≥ n0 it holds

(6.1) |En△
ln⋃
i=1

Fi,n| ≤ ε or |Ecn△
Ln⋃
i=1

Fi,n| ≤ ε,

where, in the first case,
⋃ln
i=1 Fi,n is a union of disjoint lamellae or a union of disjoint discs,

with Fi,n having the same mass of the i−th connected component of En; ln is either P∞/2 if

Fi,n, i = 1, . . . , ln, are lamellae or ln = π−1P 2
∞/(4m) if they are discs; in the second case,

⋃Ln

i=1 Fi,n
is a union of disjoint discs, with Fi,n having the same mass of the i−th connected component of
Ecn and Ln = π−1P 2

∞/(4 − 4m). This can be easily proved recalling that any subsequence of the
flow admits a further subsequence converging in L1 to a set of the aforementioned form.

Moreover, the classical regularity theory of Λ−minimizers implies that the previous result can
be improved. Consider, for the sake of simplicity, that En satisfies the first inequality in (6.1)(the
other case is analogous). Then one can prove that for every ε > 0 there exists n0 = n0(ε) such
that for every n ≥ n0 it holds

(6.2) En =

ln⋃
i=1

(Fi,n)fi,n where fi,n ∈ C1,α(∂Fi,n), ∥fi,n∥C1,α(∂Fi,n) ≤ ε.

In the following lemma we characterize the geometric form of any limit point of the discrete
flow.

Lemma 6.2 (Uniqueness of the form of the limit). Fix h, m > 0 and an initial set E0 ⊂ T2 with
mass m. Let (En)n∈N be a discrete flow starting from E0. Then either one of the following holds:

i) the limit points of the flow are disjoint unions of l lamellae with total area m, where
l = P∞/2 belongs to N;

ii) the limit points of the flow are disjoint unions of l discs with total area m, where l =
π−1(4m)−1P 2

∞ belongs to N,
iii) the limit points of the flow are the complement of disjoint unions of l discs with total area

1 −m, where l = π−1(4 − 4m)−1P 2
∞ belongs to N.

Proof. We first employ a compactness argument and then use Lemma 5.1 to conclude. We start
by fixing some notation. We denote by

(6.3) EB :=

lB⋃
i=1

Bi

any disjoint union of lB = 4−1πm−1P 2
∞ discs each having radius 2m/P∞; we denote by

(6.4) EBc :=

(
lBc⋃
i=1

Bi

)c
the complement of any disjoint union of lBc = 4−1π(1−m)−1P 2

∞ discs, each of radius 2(1−m)/P∞;
we denote by

(6.5) EL :=

lL⋃
i=1

Li
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any disjoint union of lL = P∞/2 lamellae (possibly having different masses). We remark that, for
every fixed P∞ and m, the following holds

(6.6) i := inf{ dH(EB ,EL) ∧ dH(EBc ,EL) ∧ dH(EBc ,EB) : EL,EB ,EBc as above} > 0.

From Remark 6.1 the discrete flow is eventually C1−close to a limit point of the form EL,EB or
EBc . Assume now by contradiction that the flow does not converge to a fixed configuration. Then,
without loss of generality, we can assume that for every 0 < ε < i/3 there exist infinitely many
indexes such that

dH(En−1,EB) ≤ ε and dH(En,EL) ≤ ε.

Therefore we get

dH(EB ,EL) ≤ dH(EB , En−1) + dH(EL, En) + dH(En, En−1) ≤ 2ε+ dH(En, En−1).

To reach the contradiction (compare (6.6)), it is enough to show that for every ε > 0 there exists
n0 = n0(ε) such that for every n ≥ n0 it holds

(6.7) dH(En−1, En) ≤ ε.

Assume by contradiction the existence of a subsequence nk along which the flow satisfies

dH(Enk−1, Enk
) > ε.

Up to a further subsequence, Enk
→ F , with F being a set of the form EB ,EL or EBc . But then

Lemma 5.1 implies sdEnk−1 → sdF uniformly, which is clearly a contradiction. □

Thanks to the previous lemma we can then conclude the proof of Theorem 1.2, the main result
of this section. While the proofs of assertions i) and ii) of Theorem 1.2 are similar to the one of
[21, Theorem 3.3], the third one is slightly different, the main issue being that we can not fix the
mass of the connected components of the limiting configuration. We will prove nonetheless the
exponential convergence of the dissipations that, in turn, yields the convergence of the mass of the
connected components of the flow. We start by a simple remark.

Remark 6.3 (Remarks on the C1,α-closeness). Let ε > 0. Consider two lamellae L1, L2 possibly
having different area and two C1,α−deformations E1, E2, respectively, of L1 and L2. Suppose also
that

distC1,α(Ei, Li) ≤ ε, i = 1, 2.

Then the closeness in L∞ of E1 and E2 implies that E2 and L1 are close in C1,α. Indeed, we first
remark that

distC1,α(L2, L1) = distL∞(L2, L1)

since the components of the boundaries of L1 and L2 differ only by a translation. Moreover, the
hypothesis distL∞(E1, E2) ≤ ε implies distL∞(L2, L1) ≤ 2ε. Now, let f2 be a suitable function such
that E2 = (L2)f2 , then ∥f2∥C1,α(∂L2) ≤ ε and there exists a constant |c| ≤ distL∞(L1, L2) ≤ 2ε
such that E2 = (L1)f2+c. Therefore we obtain

distC1,α(E2, L1) = ∥f2 + c∥C1,α(∂L1) ≤ ∥f2∥C1,α(∂L2) + |c| ≤ ε+ 2ε = 3ε.

Proof of Theorem 1.2. By Lemma 6.2, we can assume that all the limit points of the flow are sets
either of the form EB , EBc or EL (see (6.3), (6.4), (6.5)). To conclude we need to prove that the
whole sequence converges in Ck and exponentially fast to a unique configuration.

In the case when the limit points are of the form EB , the proof follows the same spirit of [21,
Theorem 3.3], but it is easier since we work in a compact space. The case when the limit points
are of the form EBc is at all analogous: we simply remark that, if F is a minimizer of 4.2, then its
complement is a minimizer of the same problem with Ec instead of E and with 1 −m instead of
m. By studying the evolution of the complement of the discrete flow, we can conclude as before.

Now, suppose that the limit points are of the form EL. We begin by observing that any subse-
quence of the flow admits a further subsequence converging in L1 to a union of disjoint lamellae.
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We now prove the exponential decay of the dissipations. Testing the minimality of En with En−1

we obtain

P (En) +
1

h
D(En, En−1) ≤ P (En−1).

Summing for s ≥ n+ 1 we have

(6.8)

+∞∑
s=n+1

1

h
D(Es, Es−1) ≤ P (En) − P∞ = P (En) − 2l.

With the notation previously introduced, for every ε we can choose n large enough such that (6.2)
holds. Let Fi,n be the sets given by (6.2): by Lemma 6.2, we know that Fi,n, i = 1, . . . , ln, are
eventually lamellae and ln = P∞/2 =: l.

We will now construct a suitable competitor to estimate the dissipation at the step n− 1 with
the difference of perimeters. For n large enough consider the competitor

Ln =

l⋃
i=1

Fi,n−1.

We remark that, by definition and for n large enough, this competitor has perimeter P (Ln) = P∞.
By Proposition 4.2, there exists s0 = s0(m,h,N,E0) > 0 such that the connected components Ei,n
of En satisfy

dist (Ei,n, Ej,n) ≥ s0

for every i ̸= j, moreover Remark 6.1 ensures that

dist (Fi,n−1, Fj,n−1) ≥ s0
2

holds for n large enough and i ̸= j. Thus, we can localize the dissipations

D(En, En−1) =

l∑
i=1

D(Ei,n, Ei,n−1),(6.9)

D(Ln, En−1) =

l∑
i=1

D(Fi,n−1, Ei,n−1).

Testing the minimality of En with Ln and using the previous equality we have

(6.10) P (En) +
1

h
D(En, En−1) ≤ P (Ln) +

1

h

l∑
i=1

D(Fi,n−1, Ei,n−1).

Recalling Remark 6.3 and equations (6.2) and (6.7), we then obtain that the connected components
of both En−1 and En−2 are small normal C1,α−deformations of the connected components of Ln−1.
Thus we can assume that both Ei,n−1 and Ei,n−2 can be described as normal deformation of Fi,n−1

for i = 1, . . . , k. Let fi,n−1 and fi,n−2 be the functions (having small C1,α−norms) that describe
respectively these deformations. Now, recalling Lemma 5.4, we can estimate

D(Fi,n−1, Ei,n−1) =D(Fi,n−1, (Fi,n−1)fi,n−1) ≤ CD((Fi,n−1)fi,n−1 , (Fi,n−1)fi,n−2)

=CD(Ei,n−1, Ei,n−2).

Thus, from equations (6.9) and (6.10) we get

P (En) − P∞ = P (En) − P (Ln) ≤ C

h

l∑
i=1

D(Ei,n−1, Ei,n−2) =
C

h
D(En−1, En−2)
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and then (6.8) clearly yields

∞∑
s=n−1

1

h
D(Es, Es−1) =

∞∑
s=n+1

1

h
D(Es, Es−1) +

1

h
D(En−1, En−2) +

1

h
D(En, En−1)

≤ P (En) − P∞ +
1

h
D(En−1, En−2) +

1

h
D(En, En−1)

≤ C + 1

h
D(En−1, En−2) +

1

h
D(En, En−1)

≤
(
C + 1

h
D(En−1, En−2) +

1

h
D(En, En−1)

)
.

We can then conclude using the same arguments of [21, Theorem 3.3]. □

Appendix A.

We present the proof of Lemma 5.3 for the reader’s convenience. It is slightly different from the
proof of [21, Lemma 3.7].

Proof of Lemma 5.3. The proof of equations (5.6) and (5.7) are quite analogous to the correspond-
ing ones in [21]. We recall it for the sake of completeness and to highlight the minor differences
between the two versions.

We start by observing that for any η′ > 0, if δ is sufficiently small, then for every p0 ∈ ∂Ef2 the
boundary of Ef2 in a small disc must be contained in a cone

(A.1) ∂Ef2 ∩B4δ̄(p0) ⊂ G :=

{
y ∈ RN : |(y − p0) · νE(p0)|2 ≤ η′2

1 + η′2
|y − p0|2

}
.

We then divide the rest of the proof into two steps.
Step 1. If δ is small enough , for every point p = λp0 ∈ B2δ(p0) (λ > 0), we have that

1

1 + η′
|p− p0| ≤ dist(p, ∂Ef2) ≤ |p− p0|.

Indeed the second inequality is trivial by definition, since p0 ∈ ∂Ef2 . Concerning the first one, set
q ∈ ∂Ef2 such that dist(p, ∂Ef2) = |p − q|, in particular |p − q| ≤ |p − p0| ≤ 2δ. From (A.1) we
infer that q ∈ G and thus we have

dist(p, ∂Ef2) ≥ dist(p,G) =
1√

1 + η′2
|p− p0| ≥

1

1 + η′
|p− p0|

where we used the explicit formula for the projection of a point on a cone. If p0 := s+f2(s)νE(s) ∈
∂Ef2 with s ∈ ∂E, we set

pt := p0 + t
f1(s) − f2(s)

|f1(s) − f2(s)|
νE(s) for all t ∈ [0, c|f1(s) − f2(s)|]

for an appropriate constant c such that the quantities defined are regular. We deduce that

(A.2)
1

1 + η′
t ≤ dist(pt, ∂Ef2) ≤ t.
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Keeping the same notation and using the coarea formula (also recall (3.7)), we infer that

D(Ef1 , Ef2) =

ˆ
Ef1

△Ef2

dist(x, ∂Ef2) dx

=

ˆ
∂E

dHN−1(s)

ˆ c|f1(s)−f2(s)|

0

dist(pt, ∂Ef2)JΦ(s, t) dt

=

ˆ
∂E

dHN−1(s)

ˆ c|f1(s)−f2(s)|

0

dist(pt, ∂Ef2) dt

+

ˆ
∂E

dHN−1(s)

ˆ c|f1(s)−f2(s)|

0

dist(pt, ∂Ef2)(JΦ(s, t) − 1) dt.(A.3)

Recalling that for every s ∈ ∂E we have that JΦ(s, ·) − 1 is Lipschitz continuous with constant
HE , for δ small enough and using (A.2), we get

D(Ef1 , Ef2) ≤ (1 + δHE)

ˆ
∂E

dHN−1(s)

ˆ c|f1(s)−f2(s)|

0

tdt(A.4)

=
1 + δHE

2
c2
ˆ
∂E

|f1(s) − f2(s)|2 dHN−1(s),(A.5)

from which the second inequality in (5.6) follows by taking δ small enough. On the other hand,
by (A.2) we also have

D(Ef1 , Ef2) ≥ 1 − δHE

1 + η′

ˆ
∂E

dHN−1(s)

ˆ c|f1(s)−f2(s)|

0

tdt

=
1 − δHE

1 + η′
c2
ˆ
∂E

|f1(s) − f2(s)|2 dHN−1(s),(A.6)

from which the first inequality in (5.6) follows by taking η′ and δ small enough.
Step 2. The inequalities (5.7) and (5.8) are now easy consequences. Indeed, by (A.2) we have
that, for every p1 = (1 + f1(s))νE(s) ∈ ∂Ef1 , it holds

c

1 + η′
|f1(s) − f2(s)| ≤ dist(p1, Ef2) ≤ c|f1(s) − f2(s)|.

Therefore (5.7) follows from (A.5) and (A.6), by taking η′ and δ smaller if needed and using the
same change of coordinates used previously (recall that JΦ and its inverse are estimated from
above by 1 + Cδ for a suitable constant C > 0).

Finally, we prove (5.8). For δ small enough, we can bound the Jacobian by 2 and therefore we
obtain

|bar(Ef1) − bar(Ef2)| |E| =

∣∣∣∣∣
ˆ
Ef1

\Ef2

xdx−
ˆ
Ef2

\Ef1

xdx

∣∣∣∣∣
=

∣∣∣∣ ˆ
∂E∩{f1>f2}

dHN−1(s)

ˆ f1(s)

f2(s)

(s+ tνE(s))JΦ(s) dt

−
ˆ
∂E∩{f1<f2}

dHN−1(s)

ˆ f2(s)

f1(s)

(s+ tνE(s))JΦ(s) dt

∣∣∣∣
≤ 2

∣∣∣∣ˆ
∂E

(
2s+ (|f1(s)| + |f2(s)|)νE(s)

)
|f1(s) − f2(s)|dHN−1(s)

∣∣∣∣
≤ C∥f1 − f2∥L2

and the conclusion follows from (5.6). □
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