Autoencoder-based Attribute Noise Handling Method for Medical Data - Archive ouverte HAL
Proceedings/Recueil Des Communications Année : 2023

Autoencoder-based Attribute Noise Handling Method for Medical Data

Résumé

Medical datasets are particularly subject to attribute noise, that is, missing and erroneous values. Attribute noise is known to be largely detrimental to learning performances. To maximize future learning performances it is primordial to deal with attribute noise before any inference. We propose a simple autoencoder-based preprocessing method that can correct mixed-type tabular data corrupted by attribute noise. No other method currently exists to handle attribute noise in tabular data. We experimentally demonstrate that our method outperforms both state-of-the-art imputation methods and noise correction methods on several real-world medical datasets.
Fichier principal
Vignette du fichier
main.pdf (188.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03696250 , version 1 (15-06-2022)

Identifiants

Citer

Thomas Ranvier, Haytham Elgazel, Emmanuel Coquery, Khalid Benabdeslem. Autoencoder-based Attribute Noise Handling Method for Medical Data. 1793, Springer Nature Singapore, pp.212-223, 2023, Communications in Computer and Information Science, ⟨10.1007/978-981-99-1645-0_18⟩. ⟨hal-03696250⟩
90 Consultations
159 Téléchargements

Altmetric

Partager

More