Robust Hypersphere Fitting from Noisy Data Using an EM Algorithm - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Robust Hypersphere Fitting from Noisy Data Using an EM Algorithm

Résumé

This article studies a robust expectation maximization (EM) algorithm to solve the problem of hypersphere fitting. This algorithm relies on the introduction of random latent vectors having independent von Mises-Fisher distributions defined on the hypersphere and random latent vectors indicating the presence of potential outliers. This model leads to an inference problem that can be solved with a simple EM algorithm. The performance of the resulting robust hypersphere fitting algorithm is evaluated for circle and sphere fitting with promising results in terms of both estimation performance and computation time.
Fichier principal
Vignette du fichier
EUSIPCO2021.pdf (665.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03693911 , version 1 (13-06-2022)

Identifiants

Citer

Julien Lesouple, Barbara Pilastre, Yoann Altmann, Jean-Yves Tourneret. Robust Hypersphere Fitting from Noisy Data Using an EM Algorithm. 29th European Signal Processing Conference (EUSIPCO 2021), Aug 2021, Dublin, France. pp.841-845, ⟨10.23919/EUSIPCO54536.2021.9616362⟩. ⟨hal-03693911⟩
49 Consultations
76 Téléchargements

Altmetric

Partager

More