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Abstract—This article studies a robust expectation maximiza-
tion (EM) algorithm to solve the problem of hypersphere fitting.
This algorithm relies on the introduction of random latent vectors
having independent von Mises-Fisher distributions defined on the
hypersphere and random latent vectors indicating the presence
of potential outliers. This model leads to an inference problem
that can be solved with a simple EM algorithm. The performance
of the resulting robust hypersphere fitting algorithm is evaluated
for circle and sphere fitting with promising results in terms of
both estimation performance and computation time.

Index Terms—Robust estimation, hypersphere fitting,
expectation-maximization algorithm.

I. INTRODUCTION

Fitting a circle, a sphere or more generally a hypersphere to
a noisy point cloud is a recurrent problem in many applications
including object tracking [1]–[3], robotics [4]–[6] or image
processing and pattern recognition [7]–[9]. This problem was
recently investigated in [10] by introducing latent variables
defined as affine transformations of random vectors distributed
according to von Mises-Fisher distributions. The von Mises-
Fisher distribution is a probability distribution defined on the
hypersphere and parameterized by a mean vector and a con-
centration. This distribution reduces to the uniform distribution
on the hypersphere when the concentration is zero, or to more
informative distributions for other values of the concentration
parameter. An expectation-maximization (EM) algorithm [11]
was investigated in [10] using latent variables with von Mises-
Fisher prior distributions, allowing the hypersphere parameters
(radius and center), and possibly the von Mises-Fisher distri-
bution hyperparameters to be estimated.

This paper studies a robust EM algorithm for hypersphere
fitting allowing the hypersphere parameters to be estimated
while being robust to the presence of potential outliers. The
main contribution with respect to [10] is to introduce a mixture
model for this estimation problem with one component corre-
sponding to the inliers (located close to the hypersphere) and
a second component allowing the presence of outliers. The
proposed method robustifies the strategy introduced in [10],
while allowing the model hyperparameters to be estimated.
The paper is organized as follows. Section II recalls the
maximum likelihood (ML) formulation of the hypersphere
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fitting problem and extends this formulation to the presence
of outliers. A specific attention is devoted to the estimation of
the model hyperparameters that can be estimated jointly with
the hypersphere center and radius and the noise variance. Sec-
tion III evaluates the performance of the resulting robust EM
algorithm for hypersphere fitting through various experiments.
Conclusions and future works are reported in Section IV.

II. A ROBUST EM ALGORITHM FOR HYPERSPHERE
FITTING

A. Problem Formulation

Consider n noisy measurements yi ∈ Rd, i = 1, ..., n
located around a hypersphere with radius r and center c ∈ Rd.
We assume that the noise realizations corrupting the obser-
vations are mutually independent and distributed according
to the same isotropic multivariate Gaussian distribution. The
hypersphere fitting problem can then be formulated as an
ML estimation problem by introducing latent vectors xi ∈
Sd−1, i = 1, ..., n, where Sd−1 is the centered unit hyper-
sphere in Rd [10]. These latent vectors are the unknown unit
vectors located on the hypersphere such that

yi = c+ rxi + ei, (1)

where ei ∼ N (0d, σ
2Id) is the ith model error, 0d is

the zero vector of Rd, σ2 is the unknown noise variance
and Id is the d × d identity matrix. The vectors xi are
assigned independent von Mises-Fisher distributions denoted
as xi ∼ vMFd(xi;µ, κ) with density

fd(xi;µ, κ) = Cd(κ) exp
(
κµTxi

)
1Sd−1(xi), (2)

where µ ∈ Rd is the mean direction with ‖µ‖2 = 1, κ ≥ 0 is
the concentration parameter, 1Sd−1(.) is the indicator function
of Sd−1, and Cd(κ) is a normalization constant (recalled
in [10]). Note that this distribution reduces to the uniform
distribution on the hypersphere for κ = 0. It is well-suited for
LIDAR applications whose calibration can be achieved using
sphere imaging [12]. Indeed, in this case, the LIDAR beam
only hits a part of a sphere, resulting in points located in
this area, concentrated around a mean direction with a certain
deviation around this direction, which corresponds to a von
Mises-Fisher distribution.

The hypersphere fitting problem consists of estimating the
radius r and center c of the hypersphere (and possibly the



noise variance σ2) from the measurements Y = {y1, ...,yn},
given that the latent vectors X = {x1, ...,xn} are also
unknown. To allow the presence of outliers in the observations,
we borrow the idea of the so-called Maximum Likelihood Es-
timation SAmple Consensus (MLESAC) [13], which is a gen-
eralization of the RANdom SAmple Consensus (RANSAC),
by introducing an outlier uniform distribution defined on a
volume A ⊂ Rd. This uniform distribution is defined as

p(yi) =
1

a
1A(yi), (3)

where a is the volume of A, and 1A is the indicator function
on the set A. When there is no prior information about
the location of the outliers, A can be chosen as the whole
observation domain, i.e., the smallest hypercube containing all
the observations, whose volume is a. In this case, the indicator
can be omitted without loss of generality.

B. Likelihood and complete likelihood

The conditional distribution of yi given xi is a mixture
between the uniform distribution (3) and the Gaussian distri-
bution (1), i.e.,

p(yi|xi,θ) =
γ

a
+

1− γ
(2πσ2)d/2

exp

{
−‖yi − c− rxi‖

2
2

2σ2

}
,

(4)

where γ is the unknown proportion of outliers in the ob-
servations, and θ = (r, cT , σ2, γ)T contains the unknown
parameters of the proposed statistical model. We propose to
include binary latent variables zi, i = 1, . . . , n such that zi = 1
if yi is an outlier and zi = 0 otherwise. The likelihood (4)
can then be rewritten as

p(yi|xi, zi,θ) =
1

azi

[
1

(2πσ2)d/2
e−
‖yi−c−rxi‖

2
2

2σ2

]1−zi
. (5)

The latent variable zi is naturally assigned a Bernoulli distri-
bution with parameter γ, i.e.,

p(zi|θ) = γzi(1− γ)1−zi . (6)

We also introduce the following notation

p(xi|zi,θ) = p1(xi)
zi
[
Cd(κ) exp

(
κµTxi

)]1−zi
, (7)

where p1(xi) = p(xi|zi = 1,θ) is the distribution assigned to
the latent variable xi when it corresponds to an outlier, and
p(xi|zi = 0,θ) is a von Mises-Fisher distribution with param-
eters κ and µ, which corresponds to the inlier distribution. We
assume that p1(xi) does not depend on θ, which makes sense
as outliers do not provide information about the hypersphere.
In this case p1(xi) does not appear in the derivation of the
algorithm.

The (marginal) likelihood of this model, which does not
involve the latent vectors (xi, zi), is

L (θ;Y ) =

n∏
i=1

p(yi|θ) =
n∏
i=1

∫
Sd−1

∑
zi∈{0,1}

p(yi,xi, zi|θ)dxi.

(8)

As explained in [10] for hypersphere fitting, a closed-form
expression for the ML estimator (MLE) of θ cannot be derived.
Instead, we propose to use the EM algorithm [11] to estimate
the unknown vector θ. The so-called complete likelihood is

Lc (θ;Y ,X, z) =

n∏
i=1

p(yi,xi, zi|θ), (9)

where z = {z1, ..., zn}. Moreover, using (5), (6) and (7), the
following result is obtained

p(yi,xi, zi|θ) = p(yi|xi, zi,θ)p(xi|zi,θ)p(zi|θ),

=
[γ
a
p1(xi)

]zi [ 1− γ
(2πσ2)d/2

Cd(κ)

]1−zi
×
[
exp

(
−‖yi − c− rxi‖

2
2

2σ2
+ κµTxi

)]1−zi
.

(10)

C. Proposed EM Algorithm

The EM algorithm alternates between two steps referred to
as expectation (E) and maximization (M) steps that are recalled
below for iteration (t+ 1) [11]:
1- The E-step consists of computing Q(θ|θ(t)), the expected

value of the complete data log-likelihood given the observed
data and the current parameter estimate θ(t), defined as

Q(θ|θ(t)) = EX,z|Y ,θ(t) [logLc (θ;Y ,X, z)] . (11)

2- The M-step consists of estimating θ(t+1) by solving

θ(t+1) = argmax
θ

Q(θ|θ(t)). (12)

The complete log-likelihood can be computed using (9) and
(10). Straightforward computations lead to

logLc (θ;Y ,X, z) = K + log (γ)

n∑
i=1

zi

+

[
log (1− γ)− d

2
log
(
σ2
)
+ logCd(κ)

] n∑
i=1

(1− zi)

− 1

2σ2

n∑
i=1

(
‖yi − c‖22 + r2

)
(1− zi)

+

n∑
i=1

κiµ
T
i xi(1− zi), (13)

where K is a term independent of θ and

κi =
‖r(yi − c) + σ2κµ‖2

σ2
, (14)

µi =
r(yi − c) + σ2κµ

‖r(yi − c) + σ2κµ‖2
. (15)

The distribution of X, z|Y ,θ(t) can be determined as

p(X, z|Y ,θ(t)) =
n∏
i=1

p(xi, zi|yi,θ(t)), (16)



with

p(xi, zi|yi,θ) ∝ p(yi|xi, zi,θ)p(xi, zi|θ), (17)

∝ [π̃i,1p1(xi)]
zi [π̃i,2fd(xi;µi, κi)]

1-zi , (18)

where ∝ means “proportional to” and

π̃i,1 =
γ

a
, (19)

π̃i,2 =
1− γ

(2πσ2)d/2
Cd(κ)

Cd(κi)
exp

(
−‖yi − c‖

2
2 + r2

2σ2

)
. (20)

Defining

πi,1 =
π̃i,1

π̃i,1 + π̃i,2
, πi,2 = 1− πi,1, (21)

the following results are obtained:

EX,z|Y ,θ(t) [zi] = π
(t)
i,1 , (22)

EX,z|Y ,θ(t) [1− zi] = π
(t)
i,2 , (23)

EX,z|Y ,θ(t) [xi(1− zi)] = π
(t)
i,2Ad(κ

(t)
i )µ

(t)
i , (24)

where κ(t)i ,µ
(t)
i , π

(t)
i,1 and π

(t)
i,2 are computed from (14), (15),

(19), (20), and (21) using the current values of r, c, σ2, γ, κ
and µ. Note that (24) has been obtained using the mean of a
von Mises-Fisher distribution, where

Ad(κ) =
Id/2(κ)

Id/2−1(κ)
, (25)

where Iν(.) denotes the modified Bessel function of first kind
of parameter ν [14, Chap. 10.25].

After substituting these expectations into (13), the maxi-
mization of the function Q(θ|θ(t)) with respect to θ leads to
the following updates for r, c, σ2, and γ

r(t+1) =
1

1− uTt ut
(uTyt − uTt yt), (26)

c(t+1) = zt − r(t+1)ut, (27)

dσ2(t+1)
= ‖y‖22t + ‖c

(t+1)‖22 + r(t+1)2

−2
{
c(t+1)Tyt + r(t+1)

[
uTyt − uTt c(t+1)

]}
, (28)

γ(t+1) =1− π
(t)
2

n
, (29)

with

π
(t)
2 =

n∑
i=1

π
(t)
i,2 , ut =

1

π
(t)
2

n∑
i=1

π
(t)
i,2α

(t)
i , (30)

α
(t)
i = Ad(κ

(t)
i )µ

(t)
i , yt =

1

π
(t)
2

n∑
i=1

π
(t)
i,2yi, (31)

uTyt =
1

π
(t)
2

n∑
i=1

π
(t)
i,2y

T
i α

(t)
i , ‖y‖22t =

1

π
(t)
2

n∑
i=1

π
(t)
i,2‖yi‖

2
2.

(32)

Note that the quantities with bars and subscript t are the
weighted sum of these quantities over the weights correspond-
ing to the inlier class at iteration t, and that α(t)

i are means of
von Mises-Fisher distributions with parameters κ(t)i and µ(t)

i .

Finally, π
(t)
i,2 is the a posteriori probability that vector

#i belongs to the inlier class, which is a useful piece of
information. Indeed, it can be used to define an outlier detector,
e.g., declaring that yi is an outlier if π(t)

i,2 < 0.5 (maximum a
posteriori detector).

D. Hyperparameter Estimation

The method presented before assumes that the hyperparame-
ters κ and µ of the hidden variables xi are known. When these
parameters are unknown, they can be estimated using different
methods presented in [11], such as empirical or hierarchical
Bayesian inference. In this paper, we propose to include these
parameters in the vector θ (which explains why some terms
depend on κ and µ in (13)). This strategy results in additional
updates for their estimates in the M-step using their MLE
given the current estimation of the hidden variables, i.e.,

κ(t+1) = A−1d (‖ut‖2), µ(t+1) =
ut
‖ut‖2

. (33)

Note that these equations have been obtained by using the
expressions of the ML estimators for the von Mises-Fisher
distribution parameters [15, Chap. 10.3.1]. Note also that the
inverse function A−1d has no closed-form expression but can
be computed using a two-steps iterative method [16].

III. EXPERIMENTS

Several experiments have been performed to illustrate the
robustness of the proposed approach to outliers. Before pre-
senting the results, note that the proposed algorithm only
requires two parameters to be set: the stopping criterion of
the algorithm (we chose to set a fixed number of iterations in
our experiments) and the volume occupied by the outliers a,
which can be fixed as the volume of the observation window.
It is the volume of the smallest hypercube englobing all the
observations, obtained by multiplying the differences between
the maximum and minimum observed values of the different
features. Note that the curse of dimensionality might occur as
d increases. However, the experiments presented in this paper
are restricted to 2D and 3D datasets.

In all the experiments, the center has been initialized by
the mean of the noisy measurements denoted as c0, the
initial radius has been fixed to its MLE given c0, i.e., r0 =
1
n

∑n
i=1 ‖zi − c0‖, and the noise variance by its MLE given

(c0, r0), i.e., σ2
0 = 1

nd

∑n
i=1 ‖zi − c0‖2 −

1
dr

2
0 . Moreover,

the concentration parameter was initialized to κ0 = 1, the
mean direction to c0/‖c0‖2 and the ratio of outliers to
γ0 = 0.1. Note that in all scenarios considered in this paper,
the hyperparameters κ,µ are unknown and therefore estimated
jointly with the parameters r, c, σ2 and γ.

A. Illustrations on a synthetic 2D Dataset

The proposed method referred to as REM (for robust EM), is
compared to the original EM proposed in [10]. The estimation
performance is first evaluated using a simple scenario with
n = 200, d = 2, r = 6, c = (−5, 5)T , σ2 = 0.25 and µ =
(1, 1)T /

√
2. The estimation results obtained for representative
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Fig. 1: Comparison of EM and robust EM. The first and second
columns correspond to κ = 0 and κ = 6. The first and second
rows correspond to γ = 0.1 and γ = 0.4. The blue points
are the normal vectors (inliers) whereas the red points are
the outliers. The yellow circle is the theoretical one used to
generate the different observations, the dotted purple circle is
obtained with the EM algorithm and the dotted green circle
is obtained using the proposed robust EM algorithm. Finally,
data circled in green are the data detected as outliers by REM.

values of γ and κ are depicted in Fig. 11. The outliers were
generated using a uniform distribution on [−10, 10]×[−10, 10]
and the number of iterations of any EM algorithm was fixed to
100. As one can see, the EM algorithm is strongly affected by
the presence of outliers, whereas REM provides better results,
even with a proportion γ = 40% of outliers and a high value
of the concentration parameter.

B. Monte-Carlo simulations

This section first analyzes the robustness of REM to the
level of outliers γ. All the results presented here have been
averaged using 500 Monte-Carlo runs. For d = 2, the config-
uration is the same as in Section III-A, whereas for d = 3, the
parameters were fixed to c = (−5, 5, 3)T , µ = (1, 1, 1)T /

√
3,

and the outliers are sampled uniformly in the cube [−10, 10]3.
Once again, the algorithms are challenged in two configura-
tions κ = 0 (uniform distribution) and κ = 6 (informative
distribution), with the outlier ratio varying between 0 and 1.
Figs. 2a and 2b show the averaged mean square errors (MSEs)
of the vector containing the parameters of interest, namely
(r, cT , σ2)T , and the vector of hyperparameters (κ,µT )T . The
proposed REM method was also compared to a robust version
of the EM algorithm using the RANSAC [17] paradigm.
Note that the RANSAC algorithm is also an iterative method.
Therefore the combination of RANSAC and EM has a higher
execution time compared to the proposed REM. RANSAC
samples k0 sets of size n0 from the observations. From the k-th
subset, it computes the corresponding solution c(k), r(k) using
this subset and evaluates the data that are in good agreement

1All the codes are available on the first author webpage http://perso.tesa.
prd.fr/jlesouple/codes.html

TABLE I: Comparison of computation times (in seconds) of
EM, REM and EM+RANSAC for γ = 0.2.

Algorithm κ = 0 κ = 6 κ = 0 κ = 6
d = 2 d = 2 d = 3 d = 3

EM 0.014 0.014 0.015 0.017
REM 0.010 0.013 0.009 0.018

RANSAC+EM 0.530 0.529 2.171 3.537

with these parameters. The parameters are finally estimated
using all the conform data obtained with the subsets that
lead to the maximum number of conform data. The RANSAC
parameters were set as advised in [17] : n0 = 2d + 3 for
the minimum subset size, k0 = log (1− p)/ log (1− wn0)
for the number of subset to sample, where p = 0.9 is the
desired probability of having at least one subset containing
only inliers, and w = 0.5 is the a priori proportion of outliers.
Finally, a data xi is declared as conform with the model when
|‖xi − c(k)‖22 − r(k)

2| ≤ S with S = 8 fixed by cross-
validation. As one can see, the EM solution is not robust to
the presence of outliers, contrary to REM (until a breakpoint
close to 60%) and RANSAC. The advantage of the proposed
REM is its reduced execution time with respect to RANSAC.

The next experiments study the convergence speed of the
algorithm (versus the number of iterations) and its robustness
with respect to the noise variance. For those experiments, all
the parameters have been set as explained before, and the
outlier ratio is γ = 0.1. The influence of the number of
iterations is depicted in Fig. 3a whereas that of σ2 can be
observed in Fig. 3b. As one can see, the REM algorithm takes
more time to converge when κ > 0, i.e., when the distribution
of the latent variables is not uniform. Regarding the noise
variance, there seems to be a breakdown around σ2 = −10dB
beyond which the algorithm performance collapses. Note that
in the extreme cases where γ > 60% and/or the noise
variance is large, it becomes extremely difficult to discriminate
the noisy observations from the outliers, especially if their
proportion is unknown. This could be addressed by assigning
informative hyperpriors to γ and σ2. Finally, Table I provides
quantitative values of the algorithm execution times confirming
the interest of the proposed approach.

IV. CONCLUSION

This paper proposed a robust EM algorithm for hypersphere
fitting. The algorithm was derived assuming a uniform distri-
bution for the outliers and von Mises-Fisher distributions for
latent variables associated with the observations. The resulting
algorithm only requires two parameters to be adjusted: the
stopping criterion for the EM iterations and the volume of the
outlier distribution. Note that the hyperparameters of the von
Mises-fisher distributions assigned to the latent variables can
be also estimated by the algorithm.

The proposed algorithm was evaluated for circle and sphere
fitting in various scenarios. The results obtained on simulated
data are encouraging and show the competitiveness of the
proposed approach with respect to the classical RANSAC
algorithm, requiring less hyperparameters to adjust and a

http://perso.tesa.prd.fr/jlesouple/codes.html
http://perso.tesa.prd.fr/jlesouple/codes.html
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Fig. 2: Comparison of MSEs (in dB) of EM, REM and EM+RANSAC for the parameters and hyperparameters versus the
percentage of outliers. First row: d = 2, second row: d = 3, First column: κ = 0, second column: κ = 6. Note that when
κ = 0, the estimation error of µ is not taken into account since the von-Mises distribution does not depend on µ.
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Fig. 3: Comparison of MSEs (in dB) of EM and REM for the parameters of interest (r, cT , σ2)T . First row: d = 2, second
row: d = 3, first column: κ = 0, second column: κ = 6.

significantly reduced execution time. Future work includes the
generalization of the proposed work to the robust estimation
of several hyperspheres with application to LIDAR calibration
for real data. It would be also interesting to study the optimal
performance of estimators for hypersphere fitting, e.g., through
the derivation of Cramér-Rao bounds.
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