Fast convergence of inertial dynamics with Hessian-driven damping under geometry assumptions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Fast convergence of inertial dynamics with Hessian-driven damping under geometry assumptions

Résumé

First-order optimization algorithms can be considered as a discretization of ordinary differential equations (ODEs). In this perspective, studying the properties of the corresponding trajectories may lead to convergence results which can be transfered to the numerical scheme. In this paper we analyse the following ODE introduced by Attouch et al.: ∀t ⩾ t0, ẍ(t) + α t ẋ(t) + βHF (x(t)) ẋ(t) + ∇F (x(t)) = 0, where α > 0, β > 0 and HF denotes the Hessian of F. This ODE can be derived to build numerical schemes which do not require F to be twice differentiable as shown by Attouch et al. We provide strong convergence results on the error F (x(t)) − F * and integrability properties on ∥∇F (x(t))∥ under some geometry assumptions on F such as quadratic growth around the set of minimizers. In particular, we show that the decay rate of the error for a strongly convex function is O(t −α−ε) for any ε > 0. These results are briefly illustrated at the end of the paper.
Fichier principal
Vignette du fichier
main.pdf (574.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03693218 , version 1 (10-06-2022)
hal-03693218 , version 2 (15-06-2022)

Identifiants

Citer

Jean-François Aujol, Charles Dossal, Văn Hào Hoàng, Hippolyte Labarrière, Aude Rondepierre. Fast convergence of inertial dynamics with Hessian-driven damping under geometry assumptions. 2022. ⟨hal-03693218v2⟩
311 Consultations
147 Téléchargements

Altmetric

Partager

More