The State of the Art in Integer Factoring and Breaking Public-Key Cryptography - Archive ouverte HAL
Article Dans Une Revue IEEE Security and Privacy Magazine Année : 2022

The State of the Art in Integer Factoring and Breaking Public-Key Cryptography

Résumé

The security of essentially all public-key cryptography currently in common use today is based on the presumed computational hardness of three number-theoretic problems: integer factoring (required for the security of RSA encryption and digital signatures), discrete logarithms in finite fields (required for Diffie-Hellman key exchange and the DSA digital signature algorithm), and discrete logarithms over elliptic curves (required for elliptic curve Diffie-Hellman and ECDSA, Ed25519, and other elliptic curve digital signature algorithms). In this column, we will review the current state of the art of cryptanalysis for these problems using classical (non-quantum) computers, including in particular our most recent computational records for integer factoring and prime field discrete logarithms.
Fichier principal
Vignette du fichier
cryptography.pdf (307.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03691141 , version 1 (08-06-2022)

Licence

Identifiants

Citer

Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel Thomé, et al.. The State of the Art in Integer Factoring and Breaking Public-Key Cryptography. IEEE Security and Privacy Magazine, 2022, 20 (2), pp.80-86. ⟨10.1109/MSEC.2022.3141918⟩. ⟨hal-03691141⟩
325 Consultations
2552 Téléchargements

Altmetric

Partager

More