Intersectional Study of the Gender Gap in STEM through the Identification of Missing Datasets about Women: A Multisided Problem - Archive ouverte HAL
Article Dans Une Revue Applied Sciences Année : 2022

Intersectional Study of the Gender Gap in STEM through the Identification of Missing Datasets about Women: A Multisided Problem

Genoveva Vargas-Solar

Résumé

This paper discusses the problem of missing datasets for analysing and exhibiting the role of women in STEM with a particular focus on computer science (CS), artificial intelligence (AI) and data science (DS). It discusses the problem in a concrete case of a global south country (i.e., Mexico). Our study aims to point out missing datasets to identify invisible information regarding women and the implications when studying the gender gap in different STEM disciplines. Missing datasets about women in STEM show that the first step to understanding gender imbalance in STEM is building women’s history by “completing” existing datasets.
Fichier principal
Vignette du fichier
applsci-12-05813.pdf (1.76 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03691088 , version 1 (08-06-2022)

Identifiants

Citer

Genoveva Vargas-Solar. Intersectional Study of the Gender Gap in STEM through the Identification of Missing Datasets about Women: A Multisided Problem. Applied Sciences, 2022, 12 (12), ⟨10.3390/app12125813⟩. ⟨hal-03691088⟩
105 Consultations
249 Téléchargements

Altmetric

Partager

More