The logarithmic Bramson correction for Fisher-KPP equations on the lattice $\mathbb{Z}$ - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

The logarithmic Bramson correction for Fisher-KPP equations on the lattice $\mathbb{Z}$

Résumé

We establish in this paper the logarithmic Bramson correction for Fisher-KPP equations on the lattice $\mathbb{Z}$. The level sets of solutions with step-like initial conditions are located at position $c_*t-\frac{3}{2\lambda_*}\ln t+\mathcal{O}(1)$ as $t\rightarrow+\infty$ for some explicit positive constants $c_*$ and $\lambda_*$. This extends a well-known result of Bramson in the continuous setting to the discrete case using only PDE arguments. A by-product of our analysis also gives that the solutions approach the family of logarithmically shifted traveling front solutions with minimal wave speed $c_*$ uniformly on the positive integers, and that the solutions converge along their level sets to the minimal traveling front for large times.
Fichier principal
Vignette du fichier
latticeKPP.pdf (1.12 Mo) Télécharger le fichier

Dates et versions

hal-03690078 , version 1 (07-06-2022)
hal-03690078 , version 2 (06-03-2023)

Identifiants

Citer

Christophe Besse, Grégory Faye, Jean-Michel Roquejoffre, Mingmin Zhang. The logarithmic Bramson correction for Fisher-KPP equations on the lattice $\mathbb{Z}$. 2022. ⟨hal-03690078v1⟩
135 Consultations
208 Téléchargements

Altmetric

Partager

More