A Closed-form Alternative Estimator for GLM with Categorical Explanatory Variables - Archive ouverte HAL
Article Dans Une Revue Communications in Statistics - Simulation and Computation Année : 2022

A Closed-form Alternative Estimator for GLM with Categorical Explanatory Variables

Résumé

The parameters of generalized linear models (GLMs) are usually estimated by the maximum likelihood estimator (MLE) which is known to be asymptotically efficient. But the MLE is computed using a Newton-Raphson-type algorithm which is time-consuming for a large number of variables or modalities, or a large sample size. An alternative closed-form estimator is proposed in this paper in the case of categorical explanatory variables. Asymptotic properties of the alternative estimator is studied. The performances in terms of both computation time and asymptotic variance of the proposed estimator are compared with the MLE for a Gamma distributed GLM.
Fichier principal
Vignette du fichier
article_univariateGLM_depot_Hal.pdf (539.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03689206 , version 1 (07-06-2022)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Alexandre Brouste, Christophe Dutang, Tom Rohmer. A Closed-form Alternative Estimator for GLM with Categorical Explanatory Variables. Communications in Statistics - Simulation and Computation, In press, pp.1-17. ⟨10.1080/03610918.2022.2076870⟩. ⟨hal-03689206⟩
223 Consultations
205 Téléchargements

Altmetric

Partager

More