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Abstract

The parameters of generalized linear models (GLMs) are usually estimated by
the maximum likelihood estimator (MLE) which is known to be asymptotically effi-
cient. But the MLE is computed using a Newton-Raphson-type algorithm which is
time-consuming for a large number of variables or modalities, or a large sample size.
An alternative closed-form estimator is proposed in this paper in the case of cat-
egorical explanatory variables. Asymptotic properties of the alternative estimator
is studied. The performances in terms of both computation time and asymptotic
variance of the proposed estimator are compared with the MLE for a Gamma dis-
tributed GLM.

Keywords: Regression models; explicit estimators; categorical explanatory vari-
ables; GLM ; asymptotic distribution

1 Introduction

Generalized linear models (GLMs) deal with regression models such that the distribution
of the response variable belongs to the exponential family whose natural parameter is,
up to a link function, a linear combination of explanatory variables. It is worth recalling
that the distributions of exponential type include most of the classical discrete distribu-
tions (binomial, Poisson, etc.) and continuous distributions (Gaussian, gamma, inverse
Gaussian, etc.), see, e.g., McCullagh & Nelder (1989).

The unknown parameters of GLMs are generally estimated by the maximum likelihood
estimator (MLE). The asymptotic normality and efficiency of the MLE for the GLMs
were studied in Fahrmeir & Kaufmann (1985). In a general framework, the MLE has no
closed-form and is numerically computed by a gradient descent-type method known as
the Fisher scoring which can be equivalently written as an iteratively re-weighted least
square method (IWLS), see for example McCullagh & Nelder (1989, Chapter 2). This
computation method is time-consuming for large datasets or for high dimensions.
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The case of categorical explanatory variables is singular due to the non-identifiability
of the model. Then, aforementioned results do not apply directly. Generally, linear
identifiability conditions are imposed via a contrast matrix. In this setting, closed-form
MLE have been exhibited in Brouste et al. (2020) for any distribution of exponential
type under a supplementary assumption on the contrast matrix. Due to the closed-form
formula, the parameters are quickly estimated and the methodology can handle large
datasets and/or large number of modalities.

The alternative estimator proposed in this paper is motivated by theoretical arguments
as well as practical motivations. Indeed, the MLE does not have an explicit solution in
the case of two or more explanatory variables only used as single effects. Our proposed
closed-form estimator makes possible to deal with large datasets or a large number of
explanatory variables avoiding using the time-consuming IWLS algorithm.

Dealing with only categorical explanatory variables is of particular interest. For in-
stance, in the insurance industry, policy pricing uses a finite number of risk group relying
on categorical explanatory variables. Typically, motor insurance ratings rely on vehicle
classification with a large number of modalities, e.g., the dataset pg17trainpol in CAS-
datasets by Dutang & Charpentier (2020), exhibits this feature with 1023 vehicle models
for 101 vehicle brands. Another appealing example is Kadarmideen et al. (2000) where
authors study disease, fertility and milk production in dairy cattle and consider 7530
levels for Herd-year-seasons effect. In both situation, having a fast efficient estimator is
at stake.

In most situations, explanatory variables are used as single effect. Indeed, McCullagh
& Nelder (1989) use single-effect models with the binomial distribution (Chapter 4) and
with the Poisson distribution (Chapter 6); Lindsey (1997) also uses single-effect models
for the Bernoulli distribution in Chapter 2. This is also particularly true in the actuarial
field, where Denuit et al. (2020, Chap. 4) model claim count distributions, and Wuethrich
& Merz (2021, Chap. 5) model claim size distributions with single-effect models.

Whatever the domain of application, finding closed-form solutions is at stake. In the
literature of choice modeling, Lipovetsky & Conklin (2014) provide analytical formulae for
multinomial logit model which permits the inference of the characteristics of the model’s
quality (standard errors of the utilities, choice probabilities, the residual deviance and
pseudo-R-square), see also Lipovetsky (2015) for the special case of logit regression. Mar-
ley et al. (2016) show that Lipovetsky & Conklin (2014)’s analytical closed-form solutions
and Frischknecht et al. (2014)’s normalized best-worst scores provides better fits to the
aggregate choices in several best-worst choice data sets.

Furthermore, Lipovetsky et al. (2015) use Lipovetsky & Conklin (2014) to derive
analytical formulas for determining the needed sample size for Best-Worst Scaling studies,
which allows to test the formula assumption and demonstrate the soundness of the formula
to be used and proposed rough empirical rule for determining the sample size for Best-
Worst Scaling.

When building decision trees, having a closed-form estimator is also of particular
interest. In that respect, Dutang & Guibert (2021) propose a fast estimation procedure
based on Brouste et al. (2020) to fit GLM trees, which also makes possible to fit GLM
forests on practical applications.

The paper is structured as follows. Notations are introduced in Section 2. In Sec-
tion 3.1, the general setting and the asymptotic properties of the alternative estimator
are presented. In Section 3.2, the case of two categorical explanatory variables (and also
one explanatory variable) is described with several examples. We also focus on the partic-
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ular case of single effect only. A simulation analysis is performed in Section 4 in order to
benchmark the proposed estimator against the IWLS algorithm in terms of computation
time and to compare the asymptotic variances on a Gamma distributed GLM with single
effect only.

2 Notation

In the following, vectors of Rp or Rn are bolded, while the index i is reserved for the
observations, while the indexes j, k, l are used for the explanatory variables.

In the GLM setting, the sample Y = (Y1, . . . , Yn) is composed of independent random
variables valued in Y ⊂ R. Each response Yi belongs to a family of probability measures
of one-parameter exponential type with respective parameters λ1, . . . , λn valued in Λ ⊂ R.

That is, the log-likelihood L associated to the statistical experiment is

logL(ϑ |Y ) =
n∑
i=1

λi(ϑ)Yi − b (λi(ϑ))

a(φ)
+

n∑
i=1

c(Yi, φ), (1)

where a : R → R, b : Λ → R and c : Y × R → R are known real-valued measurable
functions and φ is the dispersion parameter, e.g., McCullagh & Nelder (1989, Section
2.2).

In the GLM setting, the parameters λ1, . . . , λn of Equation (1) depend on a finite-
dimensional parameter ϑ ∈ Θ ⊂ Rm. A direct computation of theoretical moments leads
to

b′(λi(ϑ)) = EϑYi and b′′(λi(ϑ))a(φ) = VarϑYi.

for i = 1, . . . , n.
In the following, we consider deterministic exogenous variables x1, . . . ,xn, with xi =

(xi,1, . . . , xi,p) ∈ Rp for i = 1, . . . , n, representing for categorical variable encoding. That
is, xi,j is binary, typically indicating a label for a categorical variable (see Section 3 for
the proper encoding for categorical explanatory variables).

Let g be a twice continuously differentiable and bijective function g from b′(Λ) to R.
GLMs are defined by assuming the following relation between the expectation EϑYi and
the predictor

g(b′(λi(ϑ))) = xTi ϑ = ηxi
, for all ϑ ∈ Θ, (2)

where ηxi
are the linear predictors. The parameter ϑ ∈ Θ ⊂ Rp is unknown and has to

be estimated and g is the so-called link function. Consequently, the (bijective) function
` = (b′)−1 ◦ g−1 maps linear predictors to parameters as λi(ϑ) = `(ηxi

) which can be
summarized as

X ×Θ
〈.,.〉−→ D

`−1

�
`

Λ,

where D is the space of linear predictor and X the possible set of value of xi for i ∈
{1, . . . , n}. In the special case `(t) = t, we talk of a canonical link function.

Consecutively, the log-likelihood (1) can be rewritten as

logL(ϑ |Y ,x1, . . . ,xn) =
n∑
i=1

Yi`(ηxi
)− b (`(ηxi

))

a(φ)
+

n∑
i=1

c(Yi, φ). (3)
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Since the covariates are supposed to be categorical in this paper, the linear predictors ηxi

takes d distinct values namely ε1, . . . , εd. We consider the unique d × p matrix Q such
that

η = Qϑ, η = (εj)j=1,...,d.

In the case of categorical explanatory variables, the model is not identifiable and linear
identifiability conditions are imposed. Precisely, the MLE solves the optimization problem

ϑ̂n = arg max
ϑ∈Θ|Rϑ=0

L(ϑ |Y ), (4)

where R is a contrast matrix that ensures the model to be identifiable. The identifiability
condition is equivalent to the positive definiteness of the matrix QTQ+RTR (see Appendix
A.1). As mentioned in the introduction, the computation of the MLE is time consuming
when it is not explicit.

3 General setting

Consider the case where all m explanatory variables are categorical, that is for j =
1, . . . ,m every observations (x

(j+1)
i )i take values in a finite set {vj,1, . . . , vj,dj} and x

(1)
i = 1

is the intercept. Assuming values are unordered, x
(j+1)
i needs to encoded using binary

dummies as follows
x

(j+1),k
i = 1{x(j+1)

i =vj,k}
, k ∈ {1, . . . , dj}.

These binary dummies can be used both in single-effect models or with cross-effect models.
To take all possible GLM settings into account, we consider a GLM with predictor defined
as

g (EϑYi) =ϑ(1) +
m+1∑
j=2

dj∑
k=1

x
(j),k
i ϑ

(j)
k Intercept and single effect

+
∑
j2<j3

∑
k2,k3

x
(j2),k2
i x

(j3),k3
i ϑ

(j2,j3)
k2,k3

Double effect

+
∑

j2<j3<j4

∑
k2,k3,k4

x
(j2),k2
i x

(j3),k3
i x

(j4),k4
i ϑ

(j2,j3,j4)
k2,k3,k4

Triple effect

+ . . .

+
∑

k2,...,km+1

x
(2),k2
i . . . x

(m+1),km+1

i ϑ
(2,...,m+1)
k2,...,km+1

, All crossed effect

(5)

where g is the link function and indexes ji ∈ {2, . . . ,m + 1} and kj ∈ {1, . . . , dj} for
j = 2, . . . ,m+ 1.

In the m-variables case, the unknown parameter vector is

ϑ =
(
ϑ(1), (ϑ

(j)
k )k,j, (ϑ

(j2,j3)
k2,k3

)k2,k3,j2<j3 , (ϑ
(j2,j3,j4)
k2,k3,k4

)k2,k3,k4,j2<j3<j4 , . . . , (ϑ
(2,...,m+1)
k2,...,km+1

)k2,...,km+1

)T
.

(6)
We introduce a specific notation based on Kronecker products ⊗ of ones vectors 1 and
identity matrices I to denote cross effects of j1 < · · · < jk variables

M (j1,...,jk)
m = 1dm+1...djk+1

⊗ Idjk ⊗ 1djk−1...djk−1
⊗ Idjk−1

⊗ · · · ⊗ Idj1 ⊗ 1dj1−1...d2 , (7)
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where ji ∈ {2, . . . ,m + 1} with the convention that 10 = I0 = 1. When ji, ji+1 are
consecutive integers, i.e., ji+1 = ji + 1, ones vectors disappear and simplifications occur

Idji ⊗ Idji+1
= Idjidji+1

. There are two special cases: M
()
m = 1dm+1...d2 is the ones vector

and M
(2,...,m+1)
m = Idm+1d3d2 is the identity matrix.

Using (7), we define the Q matrix as

Q =
(
M ()

m, Intercept

M (2)
m , . . . ,M (d+1)

m , Single effect

M (2,3)
m , . . . ,M (d,d+1)

m , Double effect

M (2,3,4)
m , . . . ,M (d−1,d,d+1)

m , Triple effect

. . .

M (2,...,m+1)
m

)
. All crossed effect

(8)

In other words, Q contains combinations of Kronecker products of ones-vector and identity
matrix through matrices M

(.)
m (7), see also Sunwoo (1996) which use Kronecker products

for linear models. The total number of parameter is

p = 1 +
m+1∑
j=2

dj +
∑
j2<j3

dj2dj3 + · · ·+ d2 . . . dm+1.

Table 1 gives examples of such Q matrix for 1, 2 and 3 explanatory variables, whereas
Table 8 in Appendix A.3 gives examples of M

()
m and Q for 2, 3 and 4 explanatory variables.

Table 1: Examples of Q matrix for 1, 2 or 3 variables

dimension Q = terms p =

m = 3

(1d4d3d2 , Intercept 1
1d4d3 ⊗ Id2 ,1d4 ⊗ Id3 ⊗ 1d2 , Id4 ⊗ 1d3d2 , Single effect +d2 + d3 + d4

1d4 ⊗ Id3d2 , Id4 ⊗ 1d3 ⊗ Id2 , Id4d3 ⊗ 1d2 , Double effect +d2d3 + d2d4 + d3d4

Id4d3d2), Triple effect +d2d3d4

m = 2
(1d3d2 , Intercept 1
1d3 ⊗ Id2 , Id3 ⊗ 1d2 , Single effect +d2 + d3

Id3d2) Double effect +d2d3

m = 1
(1d2 , Intercept 1
Id2) Single effect d2

Using the binary structures of dummies x
(j),kj
i , i.e., for all i = 1, . . . , n,∑

k2,...,km+1

x
(2),k2
i = · · · =

∑
k2,...,km+1

x
(m+1),km+1

i = 1,

we identify the (unique) m-uple (k2, . . . , km+1) for the ith observation. Hence, the linear
predictor ηxi of Equation (5) simplifies in the following way

g (EϑYi) = ηxi = ϑ1 +
∑
j

ϑ
(j)
kj

+
∑
j2<j3

ϑ
(j2,j3)
k2,k3

+ · · ·+ ϑ
(2,...,m+1)
k2,...,km+1

:= ηk2,...,km+1 , (9)

such that the ith observation belongs to the kjth modality of the jth variable for j =
2, . . . ,m+ 1.
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Naturally, there are redundancies in the linear predictors and we must impose a con-
trast matrix R ∈ Rq×p, in order to identify the unknown parameters, namely Rϑ = 0. We
assume, in the following, that the matrix R is such that QTQ + RTR is definite-positive
and rank(R) = q. This contrast matrix also allows to built every sub-models of a GLM.
In particular, the single effect case (no interaction) can be considered. In the R statistical
software (R Core Team 2021), glm removes the first modality of each variable and the
associated interaction terms (that corresponds to the second example of Table 3 below
for two categorical explanatory variables).

To present our alternative estimator, using Equation (9), we introduce the absolute
frequencies over the m explanatory variables by

mk2,...,km+1 =
n∑
i=1

x
(2),k2
i × · · · × x(m+1),km+1

i = #{i ∈ {1, . . . , n}; ηxi
= ηk2,...,km+1}, (10)

and the cross-effect average responses by

Y =


Y

1,...,1

n
...

Y
k2,...,km+1

n
...

Y
d2,...,dm+1

n

 , Y
k2,...,km+1

n =

n∑
i=1

Yix
(2),k2
i . . . x

(m+1),km+1

i

mk2,...,km+1

=

n∑
i=1;ηxi=ηk2,...,km+1

Yi

mk2,...,km+1

. (11)

For the sake of clarity, we consider mk2,...,km+1 > 0. Nevertheless the results can be adapted
to the case where mk2,...,km+1 ≥ 0 in the same way of Brouste et al. (2020). In this paper,
we propose the closed-form estimator defined by

ϑ̃n = (QTQ+RTR)−1QTg(Y ), (12)

where Q is defined in (8), g(Y ) ∈ Rp is the vector of g-transformation of average responses

(11). Below, we exhibit the asymptotic properties of the alternative estimator ϑ̃n. It can
be quickly computed by solving a linear system and can therefore be used to handle large
datasets (see Section 4). We also investigate situations for which the alternative estimator

is the MLE, i.e., ϑ̃n = ϑ̂n.

3.1 Main results

Before stating theorems, using Equation (9), we introduce the vector of theoretical ex-
pectations

µ =


µ1,...,1

...
µk2,...,km+1

...
µd2,...,dm+1

 , µk2,...,km+1 = g−1(ηk2,...,km+1). (13)

We also define the theoretical probabilities pk2,...,km+1 as

mk2,...,km+1

n
−→
n→+∞

pk2,...,km+1 ∈ (0, 1). (14)

Theorem 1 gives the asymptotic distribution of ϑ̃n, whereas Theorem 2 gives sufficient
conditions where the alternative estimator is MLE, i.e., ϑ̃n = ϑ̂n.
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Theorem 1. Regardless of q, the proposed estimator ϑ̃n is strongly consistent. Further-
more, ϑ̃n is asymptotically normal, namely,

√
n
(
ϑ̃n − ϑ

)
D−→

n→+∞
Np
(
0p, QRΣQT

R

)
, (15)

with QR = (QTQ+RTR)−1QT and Σ is the diagonal matrix whose diagonal elements are

σ2
k2,...,km+1

=
a(φ)

pk2,...,km+1

b′′((b′)−1(µk2,...,km+1))(g
′(µk2,...,km+1))

2),

where µk2,...,km+1 is defined in (13) and pk2,...,km+1 in (14).

Proof. The proof is postponed in Appendix A.2.

Remark 1. It is worth emphasizing that, due to the non-identifiability and the imposed
linear constraints, the matrix QRΣQT

R in (15) is singular.

Let us define the matrix R∆ = R−m−R(2,...,m+1)Q−m, with R−m and Q−m the matrices
respectively without the d2 . . . dm+1 last columns of R and Q, and R(2,...,m+1) the matrix
with only the d2 . . . dm+1 last columns of R. Let qmin the minimal number of conditions
to get identifiability for GLM (5), that is qmin = p−

∏m+1
j=2 dj, i.e. q = rank(R) ≥ qmin.

Theorem 2. For q = qmin, the identifiability condition is equivalent to

det(R∆) 6= 0. (16)

In that case, ϑ̂n = ϑ̃n.

Proof. The proof is postponed in Appendix A.3.

Remark 2. For q = qmin, if Condition (16) is satisfied, ϑ̃n = ϑ̂n =

(
Q
R

)−1(
g(Y )
0qmin

)
.

For m = 1, p = 1 + d2 so qmin = 1. Hence the condition det(R∆) 6= 0 is
∑d2

j=1 rj − r0 6= 0
where R = (r0, . . . , rd2). This is the condition proposed by Brouste et al. (2020).

3.2 Two and one categorical explanatory variable(s)

We now focus on the case of two categorical explanatory variables for which the alternative
estimator is generally not the MLE. Equation (5) simplifies to

g (EϑYi) = ϑ(1) +

d2∑
k=1

x
(2),k
i ϑ

(2)
k +

d3∑
l=1

x
(3),l
i ϑ

(3)
l +

d2∑
k=1

d3∑
l=1

x
(2),k
i x

(3),l
i ϑ

(2,3)
k,l . (17)

Using Table 1, the Q matrix is

Q = (Q−2, Q
(2,3)), Q−2 = (1d2d3 ,1d3 ⊗ Id2 , Id3 ⊗ 1d2), Q(2,3) = Id2d3 . (18)

The contrast matrix R = (R−2, R
(2,3)) is given by

R−2 =

r0,1 r
(2)
1,1 . . . r

(2)
d2,1

r
(3)
1,1 . . . r

(3)
d3,1

...
... . . .

...
... . . .

...

r0,q r
(2)
1,q . . . r

(2)
d2,q

r
(3)
1,q . . . r

(3)
d3,q

 , R(2,3) =

r11,1 . . . rd2d3,1
... . . .

...
r11,q . . . rd2d3,q

 .

Here a general row number q ≥ 1 + d2 + d3 is considered and rank(R) = q. The lower
bound qmin = 1 + d2 + d3 is the minimal number of conditions to get identifiability for
GLM (17). Let R∆ = R−2 −Q−2R

(2,3).
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Corollary 1. For q = qmin, the identifiability condition is given in Table 2. In that case,
ϑ̂n = ϑ̃n.

Regardless of q, the proposed estimator ϑ̃n is asymptotically normal with Σ is the
diagonal matrix whose diagonal elements are given in Table 2.

Table 2: Parameters and identifiability

m p qmin identifiability theo. expectation theo. covariance

m = 2
1 + d2 + d3 1 + d2 + d3 detR∆ 6= 0 µk,l = g−1(ϑ(1) + ϑ

(2)
k σ2

k,l = a(φ)
pk,l

b′′((b′)−1(µk,l))

+d2d3 +ϑ
(3)
l + ϑ

(2,3)
k,l ) ×(g′(µk,l))

2

m = 1 1 + d2 1 r0,1 6=
d2∑
k=1

r
(2)
k,1 µj = g−1(ϑ(1) + ϑ

(2)
j ) σ2

j = a(φ)
pj
b′′((b′)−1(µj))(g

′(µj))
2

Below, we exhibit two examples to illustrate the previous result. Example 1 presents
the usual contrasts for two explanatory variables and q = 1 + d2 + d3. Example 2 gives
an example for q > 1 + d2 + d3 where the MLE differs from the closed-form estimator:
an over-contrasted matrix R which removes the interactions of the model, then which
removes the interactions and the second variable.

Example 1 (Case q = 1 + d2 + d3 and R∆ invertible). For the 3 examples of Table 3,

we have rank(R) = 1 + d2 + d3 and the MLE ϑ̂n is equal to the alternative estimator ϑ̃n.
Using Theorem 2.2 of Lu & Shiou (2002), Because R∆ = R−2 − Q−2R

(2,3) is invertible,
we have (

Q
R

)−1

=

(
Q−2 Id2d3
R−2 R(2,3)

)−1

=

(
−R−1

∆ R(2,3) R−1
∆

Id2d3 +Q−2R
−1
∆ R(2,3) −Q−2R

−1
∆

)
.

Table 3: Three contrasts for two variables and full rank R matrix

type Zero-sum Condition ref. category (1st modality) No intercept,
no single-variable dummy

contrast

∑
k ϑ

(2)
k =

∑
l ϑ

(3)
l = 0

∀l,
∑

k ϑ
(2,3)
k,l = 0

∀k,
∑

l ϑ
(2,3)
k,l = 0

ϑ
(2)
1 = ϑ

(3)
1 = 0

∀l, ϑ(2,3)1,l = 0

∀k, ϑ(2,3)k,1 = 0

ϑ(1) = 0

∀l, ϑ(3)l = 0

∀k, ϑ(2)k = 0

full rank R
d2 = d3 = 2


0 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 0




0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0



Example 2 (Case q > 1 + d2 + d3, Model without interaction). Let us consider the case
of model (17) without interaction. Indeed the contrast matrix is

R =

(
R1 02×0d2d3

01+d2+d2×d2d2 R2

)
, (19)

with

R1 =

(
r0,1 r

(2)
1,1 . . . r

(2)
d2,1

0 . . . 0

r0,2 0 . . . 0 r
(3)
1,2 . . . r

(3)
d3,2

)
, R2 = Id2d3 ,

8



where r0,1, r
(2)
1,1, . . . , r

(2)
d2,1

and r0,2, r
(3)
1,2, . . . , r

(3)
d3,2

are taken so that QTQ+RTR is invertible.
In this case rank(R) = 2 + d2d3 ≥ qmin = 1 + d2 + d3 and Q = (Q−2, I), we have

QTQ+RTR =

(
QT
−2Q−2 +RT

1R1 QT
−2

Q−2 I +RT
2R2

)
=

(
QT
−2Q−2 +RT

1R1 QT
−2

Q−2 2Id2d3

)
,

and using B.1

QR =

(
(QT
−2Q−2 +RT

1R1)−1QT
−2

1
2
(I −Q−2(QT

−2Q−2 +RT
1R1)−1QT

−2)

)
.

Hence the alternative estimator ϑ̃n fails to be MLE because Rϑ̃n 6= 0. We perform a
simulation analysis in Section 4 to compare asymptotic variances and computation times
between the proposed alternative estimator and the asymptotically efficent MLE. An ex-
ception is the canonical Gaussian case with balanced plan, i.e., m1,1 = . . . = md2,d3 for
which the alternative estimator is still the MLE.

We finish this section with the case of a single categorical explanatory variable. The
linear predictor (5) simplifies to an intercept and a single sum whereas the Q matrix is
given at the bottom of Table 1. A similar corollary to Corollary 1 can derived where
the minimum constraint number is q = 1, the identifiability condition and the variance
components are given at the bottom of Table 2. In that case, the alternative is the MLE,
as demonstrated by Brouste et al. (2020). The formula of matrices used for ϑ̃n for the
three usual contrasts (no intercept, no first-level, zero-sum) are given in Table 4, while
the proofs are put in Appendix A.4.

Table 4: Three well known examples of contrasts

name no-intercept no first-level zero-sum
R (1,0Td2) (0, 1,0Td2−1) (0,1Td2)

QTQ+RTR

(
d2 + 1 1Td2
1d2 Id2

)  d2 1 1Td2−1

1 2 0Td2−1

1d2−1 0d2−1 Id2−1

 (
d2 1Td2
1d2 Id2 + 1d2×d2

)
det(QTQ+RTR) 1 1 (d2)2(
Q
R

)−1 (
0Td2 1
Id2 −1d2

)  1 0Td2−1 −1
0 0Td2−1 1
−1d2 Id2−1 1d2−1

 − 1
d2

(
−1Td2 1

1d2×d2 − d2Id2 −1d2

)

4 Numerical illustrations

We make a simulation analysis to assess the performance advantage of the proposed
estimator (12) compared the MLE computed by IWLS. We also compare the asymptotic
variance of the two estimators based on simulated datasets. All computations are carried
out with the R statistical software.

In our simulations, we consider a GLM with a gamma distribution. Namely, we assume
a sample Y1, ..., Yn of independent variables following a gamma distribution with a shape
parameter k > 0 and rate parameter θi > 0, the associated log-likelihood is given by (1)
with

λi = −θi
k
, a(φ) = φ, φ =

1

k
, b(λi) = − log(−λi), c(yi, φ) = (

1

φ
−1) log(yi)−log Γ(

1

φ
)−log(

1

φ
).

9



We consider two explanatory variables x
(2)
i and x

(3)
i with d2 and d3 modalities. Given

a parameter value ϑ, we assume a zero-sum condition

ϑ
(2)
d2

= −
d2−1∑
k=1

ϑ
(2)
k , ϑ

(3)
d3

= −
d3−1∑
l=1

ϑ
(3)
l .

That corresponds to the following contrast matrix

R =

(
0 1d2 0d3
0 0d2 1d3

)
.

The simulation procedure for a given sample size n consists of simulating explanatory
variables, then of simulating the gamma variable and finally of estimating the MLE ϑ̂n
and the proposed estimator ϑ̃n The procedure is summarized as follows

1. For i = 1, . . . , n, generate two equiprobable categorical variables x
(2)
i and x

(3)
i with

d2 and d3 modalities;

2. Compute the linear predictor ηi = ϑ(1) +
∑d2

k=1 x
(2),k
i ϑ

(2)
k +

∑d3
l=1 x

(3),l
i ϑ

(3)
l using Table

5;

3. Compute rate parameters for gamma distribution θi = − `(ηi)
φ

;

4. repeat M times:

(a) generate n responses (Yi)i using λi = − θi
k

.

(b) estimate the GLM with the two methods assuming

g (EYi) = ϑ(1) +

d2∑
k=1

x
(2),k
i ϑ

(2)
k +

d3∑
l=1

x
(3),l
i ϑ

(3)
l .

(c) return computation times, the MLE ϑ̂n and the proposed estimator ϑ̃n.

end repeat;

5. Compute the variance of the two estimators.

We first present the results of computation times for two link functions of the gamma
distribution g(x) = 1/x and g(x) = log(x). The computation time displayed is the
average time over M = 5 runs for two sample sizes n = 105, n = 106 and d2 = d3 = d
with d = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50. The parameter values are given in Table 5 and
the dispersion parameter is fixed to φ = 8.

Table 5: Parameter values of the gamma distribution used for computation times

link function intercept variables j = 2, 3

g(x) `(x) ϑ(1) ϑ
(j)
1 ,. . . ,ϑ

(j)
d−1 ϑ

(j)
d

1/x −x 3d+ 1 1/d, . . . , (d− 1)/d −(d− 1)/2
log(x) −e−x 1 1, 2, 1, 2, . . . , 1 or 2 −3d/2 + 2 or −3(d− 1)/2

Computation times for both the MLE (denoted by IWLS) and the proposed estimator
(denoted by explicit) are displayed in Figure 1 for the inverse link. We observe that the
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IWLS has a computation time which increases almost linearly with the modality number
d. In comparison, the proposed estimator’s computation time is almost constant and
significantly lower. Table 6 shows the ratio of the computation time of ϑ̃n against the
computation time of ϑ̂n. Irrespective of the sample size, this ratio increases from 6 to 67
as d increases from 5 to 50. When considering the log link function, we observe similar
results, yet the computation of ϑ̂n is more erratic and higher than for the canonical link,
see Figure 2 and Table 6.

Figure 1: Computation time for gamma response with inverse link function (average over
5 runs)

Table 6: Time ratio of IWLS over explicit methods for sample size n and modality number
d

inverse link log link
n = 105 n = 106 n = 105 n = 106

d = 5 5.26 6.84 5.12 6.23
d = 10 9.17 8.83 8.01 9.98
d = 15 14.09 12.59 15.49 17.10
d = 20 17.56 18.70 21.60 22.89
d = 25 20.04 24.75 27.71 31.39
d = 30 28.97 32.41 56.62 66.41
d = 35 27.74 36.12 74.51 57.60
d = 40 32.63 43.37 70.22 55.81
d = 45 33.27 53.65 60.28 61.01
d = 50 36.04 55.58 67.03 68.80

Now, we turn our attention to asymptotic variances for two link functions of the gamma
distribution and link function g(x) = 1/x. Here, we consider M = 10000 replicates, a
sample size n = 103, 104 and d2 = 2 and d3 = 3. True parameter vector is chosen to

11



Figure 2: Computation time for gamma response with log link function (average over 5
runs)

guarantee the positivity of the parameter θi for the inverse link function, see Table 7.
Again, the dispersion parameter is fixed to φ = 8.

Table 7: Parameter values of the gamma distribution for asymptotic variance

link function intercept variable 2 variable 3

g(x) `(x) ϑ(1) ϑ
(2)
1 ϑ

(2)
2 ϑ

(3)
1 ϑ

(3)
2 ϑ

(3)
3

1/x −x 10 1 −1 2 3 −5
log(x) −e−x 1 1 −1 2 3 −5

Figure 3 displays the asymptotic distribution of errors for n = 1000 of ϑ̃n for the
inverse link function. Figure 3a shows a small bias of ϑ̃n when estimating the intercept,
which is not present for other coefficients. Asymptotic variances between the MLE and
the proposed estimator are very close except for ϑ(2),1. Indeed, Figure 3b shows a narrow
distribution for MLE than for the proposed estimator. Similar conclusions can be drawn
for n = 10000 and/or the log link function, as well as other distributions.

5 Conclusion

A closed form estimator for GLM with categorical explanatory variables has been pre-
sented. It is a fast computable alternative to the MLE, in particular in the practical case
of GLM with single effect only. The asymptotic properties of this estimation procedure
have been studied.

The closed-form estimator avoid using the IWLS algorithm which is time-consuming
for a large number of variables or modalities. Numerical illustrations quantify the perfor-
mances of our explicit estimator against the MLE in different GLM examples.

In order to handle the asymptotical non-efficiency of the proposed estimator (compared
to the MLE), the Le Cam one-step procedure could be targeted in a further research.
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(a) Error for ϑ̃n,1 (b) Error for ϑ̃n,(2),1

(c) Error for ϑ̃n,(3),1 (d) Error for ϑ̃n,(3),2

Figure 3: Histogram of parameter errors for gamma response with 2 variables (n = 103).

Dashed (resp. solid) lines are theoretical asymptotic densities for ϑ̃n (resp. ϑ̂n).
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A Proof of Section 3

A.1 Identifiability

Consider the subspace Θ = {x ∈ Rp, Rx = 0}. The parameter ϑ is identifiable if x 7→ Qx
is injective on Θ. That is

∀x ∈ Rp, Rx 6= 0 or

{
Rx = 0
Qx 6= 0

⇔ ∀x ∈ Rp, ‖Rx‖2 + ‖Qx‖2 > 0

⇔ ∀x ∈ Rp,xT (RTR +QTQ)x > 0.

Hence the identifiability condition is equivalent to RTR +QTQ being positive definite.

A.2 Proof of Theorem 1

Consider the empirical average Y
(k2,...,km+1)

n of Equation (11). Because random responses

Yi are i.i.d. on the set of observations {i; ηxi = ηk2,...,km+1}, Y
(k2,...,km+1)

n converges almost

surely to µk2,...,km+1 . By the continuous mapping theorem g(Y
k2,...,km+1

n ) converges almost

surely to g(µk2,...,km+1). Hence we obtain directly the strong consistency of ϑ̃n.
Using the Delta method (Van der Vaart 2000) and the central limit theorem, we have

√
mk2,...,km+1

(
g(Y

k2,...,km+1

n )− g(µk2,...,km+1)
)

D−→
n→+∞

N
(
0, a(φ)b′′((b′)−1(µk2,...,km+1))(g

′(µk2,...,km+1))
2
)
,

where mk2,...,km+1 are empirical frequencies (10) Using the theoretical relative frequencies
(10), we obtain

√
n
(
g(Y

k2,...,km+1

n )− g(µk2,...,km+1)
)

D−→
n→+∞

N
(
0, σ2

k2,...,km+1

)
,

Therefore we obtain the distribution of the vector of transformed empirical averages g(Y )

√
n
(
g(Y )− g(µ)

) D−→
n→+∞

N (0,Σ) , Σ = diag(σ2
k2,...,km+1

).

Multiplying by QR and using g(µ) = Qϑ leads to

√
n
(
QRg(Y )−QRQϑ

) D−→
n→+∞

N
(
0, QRΣQT

R

)
.

Using Rϑ = 0, we have

RTRϑ = 0d2+1 ⇔ QTQϑ = (QTQ+RTR)ϑ⇔ QRQϑ = ϑ. (20)

Replacing QRQϑ = ϑ leads to the desired result.
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A.3 Proof of Theorem 2

In the general case of m categorical explanatory variables, the log-likelihood (3) becomes

J(ϑ) = logL(ϑ |y) =
n∑
i=1

yi`(ηxi
)− b (`(ηxi

))

a(φ)
+

n∑
i=1

c(yi, φ).

where ηxi
= xTi ϑ. Let us compute partial derivative of the linear predictor ηxi

∂ηxi

∂ϑ(1)
= 1,

∂ηxi

∂ϑ
(j)
k

= x
(j),k
i ,

∂ηxi

∂ϑ
(j2,j3)
k2,k3

= x
(j2),k2
i x

(j3),k3
i , . . . ,

∂ηxi

∂ϑ
(2,...,m+1)
k2,...,km+1

= x
(2),k2
i . . . x

(m+1),km+1

i .

In order to deal with partial derivatives of J , we introduce the derivative w.r.t. intercept

S(1) =
∂J(ϑ)

∂ϑ(1)
=

n∑
i=1

yi`
′(ηxi

)− `′(ηxi
)b′ (`(ηxi

))

a(φ)

∂ηxi

∂ϑ(1)
=

n∑
i=1

`′(ηxi
)
yi − b′ (`(ηxi

))

a(φ)
,

the derivative w.r.t. single-effect coefficients j = 2, . . . ,m+ 1, k = 1, . . . , dj,

S
(j)
k =

∂J(ϑ)

∂ϑ
(j)
k

=
n∑
i=1

yi`
′(ηxi

)− `′(ηxi
)b′ (`(ηxi

))

a(φ)

∂ηxi

∂ϑ
(j)
k

=
n∑
i=1

`′(ηxi
)x

(j),k
i

yi − b′ (`(ηxi
))

a(φ)
,

the derivative w.r.t. double-effect coefficients ji = 2, . . . ,m+ 1, ki = 1, . . . , dji , i = 2, 3,

S
(j2,j3)
k2,k3

=
∂J(ϑ)

∂ϑ
(j2,j3)
k2,k3

=
n∑
i=1

yi`
′(ηxi

)− `′(ηxi
)b′ (`(ηxi

))

a(φ)

∂ηxi

∂ϑ
(j2,j3)
k2,k3

=
n∑
i=1

`′(ηxi
)x

(j2),k2
i x

(j3),k3
i

yi − b′ (`(ηxi
))

a(φ)
,

the derivative w.r.t. full-effect coefficients ji = 2, . . . ,m+1, ki = 1, . . . , dji , i = 2, . . . ,m+1,

S
(2,...,m+1)
k2,...,km+1

=
∂J(ϑ)

∂ϑ
(j2,...,jm+1)
k2,...,km+1

=
n∑
i=1

yi`
′(ηxi

)− `′(ηxi
)b′ (`(ηxi

))

a(φ)

∂ηxi

∂ϑ
(j2,...,jm+1)
k2,...,km+1

=
n∑
i=1

`′(ηxi
)x

(2),k2
i . . . x

(m+1),km+1

i

yi − b′ (`(ηxi
))

a(φ)
.

The maximum likelihood optimization problem is{
∇ϑJ(ϑ)−RTu = 0
Rϑ = 0,

(21)

where u is the Lagrange multiplier and the log-likelihood gradient and contrasts are

∇ϑJ(ϑ) =



S(1)

S
(j)
k
...

S
(j2,j3)
k2,k3

...

S
(j2,...,jm+1)
k2,...,km+1


, R =

(
R(1), R(j), . . . , R(j2,j3), . . . , R(2,...,m+1)

)
= (R−m, R

(2,...,m+1)).

(22)
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Using the binary structures of dummies, see Equation 9, the linear predictor ηxi simplifies.
Hence introducing multiple sums over k2, . . . , km+1 makes ηxi no longer depend on i but

on other sum indexes. Using empirical average (11), empirical frequency (10), and M
()
m

matrices (7) Equation (22) simplifies to

S(1) =
∑

k2,...,km+1

n∑
i=1;ηxi=ηk2,...,km+1

`′(ηk2,...,km+1)
yi − b′

(
`(ηk2,...,km+1)

)
a(φ)

=
∑

k2,...,km+1

`′(ηk2,...,km+1)

 n∑
i=1;ηxi=ηk2,...,km+1

yi
a(φ)

−
n∑

i=1;ηxi=ηk2,...,km+1

b′
(
`(ηk2,...,km+1)

)
a(φ)


=

∑
k2,...,km+1

ξk2,...,km+1 =
(
M ()

m

)T
Ξ,

with Ξ =
(
ξk2,...,km+1

)
k2,...,km+1

and

ξk2,...,km+1 = `′(ηk2,...,km+1)mk2,...,km+1

(
yk2,...,km+1
n − b′

(
`(ηk2,...,km+1)

)
a(φ)

)
.

Now for j = 2, . . . ,m+ 1 consider the single-effect score vector (S
(j)
k? )k?=1,...dj .

(
S

(j)
k?

)
k?=1,...dj

=

 ∑
k2,...,kj−1,kj+1,...,km+1

ξk2,...,kj−1,k?,kj+1,...,km+1


k?=1,...dj

=
(
M (j)

m

)T
Ξ.

Then for j2 < j3 = 2, . . . ,m+1 consider the double-effect score vector
(
S

(j2,j3)
k?2 ,k

?
3

)
k?2=1,...,dj2 ,k

?
3=1,...,dj3

.

(
S

(j2,j3)
k?2 ,k

?
3

)
k?2k

?
3

=

 ∑
...,kj2−1,kj2+1,...,kj3−1,kj3+1,...

ξk2,...,kj2−1,k?2 ,kj2+1,...,kj3−1,k?3 ,kj3+1,...,km+1


k?2k

?
3

=
(
M (j2,j3)

m

)T
Ξ.

For all-cross-effect score vector
(
S

(2,...,m+1)
k2,...,km+1

)
k2,...,km+1

, we have

(
S

(2,...,m+1)
k?2 ,...,k

?
m+1

)
k?2 ,...,k

?
m+1

=
(
ξk?2 ,...,k?m+1

)
k?2 ,...,k

?
m+1

= M (2,...,m+1)
m Ξ.

Note that S(1) (resp. other terms) can be written as a sum of all (resp. some) S
(2,...,m+1)
k2,...,km+1

.
Using the Q matrix (8), see also examples in Table 8, we have(

b′(`(ηk2,...,km+1)
)
k2,...,km+1

= g−1(Qϑ).
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Using the preceding equations and M
()
m matrices (7), the gradient of the log-likelihood

can be written as

∇J(ϑ) =



(
M

()
m

)T
Ξ

...((
M

(j)
m

)T
Ξ

)
j=1,...,m+1

...((
M

(j2,j3)
m

)T
Ξ

)
j2<j3=1,...,m+1

...

(M
(2,...,m+1)
m )TΞ


= QTΞ.

The first rows of the score equation (21) become QTΞ = RTu, R = (R(1). Then
(
(R(1))T −M0(R(2,...,m+1))T

)
u = 0(

(R(j))Tj −M1(R(2,...,m+1))T
)
u = 0(

(R(j2,j3))Tj2,j3 −M2(R(2,...,m+1))T
)
u = 0

...

⇔
(
RT
−m −QT

−m(R(2,...,m+1))T
)
u = 0.

Hence the system for u is

RT
∆u = 0, with R∆ = R−m −R(2,...,m+1)Q−m. (23)

This system admit an unique solution that is u = 0 if det(R∆) 6= 0. In this case, because
Ξ = G(ϑ)(Y − g−1(Qϑ)), with G(ϑ) the diagonal matrix

G(ϑ) =


`′(η1,...,1)m1,...,1

a(φ)
0 . . .

. . .

. . . 0
`′(ηd2,...,dm+1

)md2,...,dm+1

a(φ)

 ,

because `′ 6= 0, the system (21) rewrites
u = 0
Qϑ = g(Y )
Rϑ = 0

⇔
{
u = 0
ϑ = (QTQ+RTR)−1QTg(Y ).

A.4 Examples of Section 3.2

A.4.1 q = 1

The proposed estimator is correctly defined and

QTQ+RTR =

(
d2 1Td2
1d2 Id2

)
+

(
r2

0,1 r0,1r
r0,1r

T rTr

)
=

(
d2 + r2

0,1 1Td2 + r0,1r
1d2 + r0,1r

T Id2 + rTr

)
. (24)

In the case of q = 1, using

det(QTQ+RTR) =

(
det

(
Q
R

))2

,

and Appendix A of Brouste et al. (2020), we get

det(QTQ+RTR) =
(
(−1)d2(r0,1 − r1d2)

)2
= (r0,1 − r1d2)2. (25)
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Table 8: Notations of Q and R matrices for m = 2, 3, 4

m Q = notation corresp. contrast effect

4

(1d5d4d3d2 , M
()
4 R(1) intercept

1d5d4d3 ⊗ Id2 ,1d5d4 ⊗ Id3 ⊗ 1d2 ,1d5 ⊗ Id4 ⊗ 1d3d2 , Id5 ⊗ 1d4d3d2 , M
(j)
4 R(j) single effect

1d5d4 ⊗ Id3d2 ,1d5 ⊗ Id4 ⊗ 1d3 ⊗ Id2 , Id5 ⊗ 1d4d3 ⊗ Id2 ,

1d5 ⊗ Id4d3 ⊗ 1d2 , Id5 ⊗ 1d4 ⊗ Id3 ⊗ 1d2 , Id5d4 ⊗ 1d3d2 , M
(j2,j3)
4 R(j2,j3) double effect

1d5 ⊗ Id4d3d2 , Id5 ⊗ 1d4 ⊗ Id3d2 , Id5d4 ⊗ 1d3 ⊗ Id2 , Id5d4d3 ⊗ 1d2 , M
(j2,j3,j4)
4 R(j2,j3,j4) triple effect

Id5d4d3d2 ), M
(2,3,4,5)
4 R(2,3,4,5) all effect

3

(1d4d3d2 , M
(0),3
0 R(1) intercept

1d4d3 ⊗ Id2 ,1d4 ⊗ Id3 ⊗ 1d2 , Id4 ⊗ 1d3d2 , M
(1),3
k R(j) single effect

1d4 ⊗ Id3d2 , Id4 ⊗ 1d3 ⊗ Id2 , Id4d3 ⊗ 1d2 , M
(2),3
k R(j,j+1) double effect

Id4d3d2 ), M
(3),3
0 R(2,3,4) all effect

2
(1d3d2 , M

(0),2
0 R(1) intercept

1d3 ⊗ Id2 , Id3 ⊗ 1d2 , M
(1),2
k R(j) single effect

Id3d2 ) M
(2),2
0 R(2,3) all effect

The case of no intercept Consider R = (1, 0, . . . , 0), i.e. r0 = 1 and r = 0T .
Using (24), we have

QTQ+RTR =

(
d2 + 1 1Td2

1d2 Id2

)
.

Using (25), the determinant is non null det(QTQ+RTR) = 1 6= 0.

The case of no first-level Consider R = (0, 1, 0, . . . , 0), i.e. r0 = 0 and r = (1,0T ).
Using (24), we have

QTQ+RTR =

 d2 1 1Td2−1

1 2 0Td2−1

1d2−1 0d2−1 Id2−1

 .

Using (25), the determinant is non null det(QTQ+RTR) = (0− 1− 0)2 = 1 6= 0.

Zero-sum condition Consider R = (0,1T ), i.e. r0 = 0 and r = 1T .
Using (24), we have

QTQ+RTR =

(
d2 1Td2
1d2 Id2 + 1d2×d2

)
.

Using (25), the determinant is non null det(QTQ+RTR) = (0− 1T1)2 = (d2)2 6= 0.

B Linear algebra on Q and R

B.1 Linear algebra on Q,R in (17) without interaction

Consider the matrices Q1, Q and R1, R, defined in (18) and (19).
Using Theorem 2.1 of Lu & Shiou (2002), QTQ+RTR is invertible iff QT

1Q1 + 2RT
1R1

invertible. In this case we have

(QTQ+RTR)−1 =

(
(1

2
QT

1Q1 +RT
1R1)−1 −1

2
(1

2
QT

1Q1 +RT
1R1)−1QT

1

−1
2
Q1(1

2
QT

1Q1 +RT
1R1)−1 1

2
I + 1

4
Q1(1

2
QT

1Q1 +RT
1R1)−1QT

1

)

= 2

(
(QT

1Q1 + 2RT
1R1)−1 −1

2
(QT

1Q1 + 2RT
1R1)−1QT

1

−1
2
Q1(QT

1Q1 + 2RT
1R1)−1 1

4
I + 1

4
Q1(QT

1Q1 + 2RT
1R1)−1QT

1

)
.
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It can be verified that (QT
1Q1 + 2RT

1R1)−1QT
1 = (QT

1Q1 + RT
1R1)−1QT

1 . So because Q =
(Q1, I), we have

QR = 2

(
(QT

1Q1 +RT
1R1)−1QT

1 − 1
2
(QT

1Q1 +RT
1R1)−1QT

1

−1
2
Q1(QT

1Q1 +RT
1R1)−1QT

1 + 1
4
I + 1

4
Q1(QT

1Q1 +RT
1R1)−1QT

1

)
=

(
(QT

1Q1 +RT
1R1)−1QT

1
1
2
(I −Q1(QT

1Q1 +RT
1R1)−1QT

1 )

)
.
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