Global asymptotic stability for a distributed delay differential-difference system of a Kermack-McKendrick SIR model - Archive ouverte HAL
Article Dans Une Revue Applicable Analysis Année : 2023

Global asymptotic stability for a distributed delay differential-difference system of a Kermack-McKendrick SIR model

Résumé

We investigate a system of distributed delay differential-difference equations describing an epidemic model of susceptible, infected, recovered and temporary protected population dynamics. A nonlocal term (distributed delay) appears in this model to describe the temporary protection period of the susceptible individuals. We investigate mathematical properties of the model. We obtain the global asymptotic stability of the two steady states: disease-free and endemic. We construct appropriate Lyapunov functionals where the basic reproduction number appears as a threshold for the global asymptotic behavior of the solution between disease extinction and persistence.
Fichier principal
Vignette du fichier
SIR_protdist.pdf (294.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03683861 , version 1 (01-06-2022)

Identifiants

Citer

Mostafa Adimy, Abdennasser Chekroun, Toshikazu Kuniya. Global asymptotic stability for a distributed delay differential-difference system of a Kermack-McKendrick SIR model. Applicable Analysis, 2023, 102 (Issue 12), pp.1-13. ⟨10.1080/00036811.2022.2075352⟩. ⟨hal-03683861⟩
66 Consultations
259 Téléchargements

Altmetric

Partager

More