Dispatch of UAVs for Urban Vehicular Networks: A Deep Reinforcement Learning Approach - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Vehicular Technology Année : 2021

Dispatch of UAVs for Urban Vehicular Networks: A Deep Reinforcement Learning Approach

Mohammed Atiquzzaman
  • Fonction : Auteur
  • PersonId : 1052613
Jalel Ben-Othman

Résumé

Due to the dynamic nature of connectivity in terrestrial vehicular networks, it is of great benefit to deploy unmanned aerial vehicles (UAVs) in these networks to act as relays. As a result, a remarkable number of studies have exploited UAVs to bridge the communication gaps between terrestrial vehicles, and sometimes despite their unoptimized mobility, their restricted communication coverage, and their limited energy resources. However, it was noted that for an intermittently connected vehicular network, UAVs could not cover all sparse areas all the time. Even worse, when deploying enough UAVs to cover all these areas, the probability of inter-UAV collisions increases, and it will be complex to control their movements efficiently. Consequently, it is required to dispatch an organized and intelligent group of UAVs to perform communication relays in the long term while keeping their connectivity, minimizing their average energy consumption, and providing an efficient coverage strategy. To meet these requirements, we propose a deep reinforcement learning (DRL) framework, called DISCOUNT (Dispatch of UAVs for Urban VANETs). Extensive simulations have been conducted to evaluate the performance of the proposed framework. It has been shown that the proposed framework significantly outperforms two commonly-used baseline techniques and some reinforcement learning methods in terms of energy consumption, coverage, and routing performances.
Fichier principal
Vignette du fichier
IEEE_TVT_Double.pdf (3.87 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03676625 , version 1 (24-05-2022)

Identifiants

Citer

Omar Sami Oubbati, Mohammed Atiquzzaman, Abdullah Baz, Hosam Alhakami, Jalel Ben-Othman. Dispatch of UAVs for Urban Vehicular Networks: A Deep Reinforcement Learning Approach. IEEE Transactions on Vehicular Technology, 2021, 70 (12), pp.13174-13189. ⟨10.1109/TVT.2021.3119070⟩. ⟨hal-03676625⟩
118 Consultations
246 Téléchargements

Altmetric

Partager

More