An integral transform and its application in the propagation of Lorentz-Gaussian beams - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematics Année : 2021

An integral transform and its application in the propagation of Lorentz-Gaussian beams

A. Belafhal
  • Fonction : Auteur correspondant
E.M. El Halba
  • Fonction : Auteur
T. Usman
  • Fonction : Auteur

Résumé

The aim of the present note is to derive an integral transform I = ∫ 0 ∞ x s + 1 e - β x 2 + γ x M k , v ( 2 ζ x 2 ) J μ ( χ x ) d x , I = \int_0^\infty {{x^{s + 1}}{e^{ - \beta x}}^{2 + \gamma x}{M_{k,v}}} \left( {2\zeta {x^2}} \right)J\mu \left( {\chi x} \right)dx, involving the product of the Whittaker function Mk,ν and the Bessel function of the first kind Jµ of order µ. As a by-product, we also derive certain new integral transforms as particular cases for some special values of the parameters k and ν of the Whittaker function. Eventually, we show the application of the integral in the propagation of hollow higher-order circular Lorentz-cosh-Gaussian beams through an ABCD optical system (see, for details [13], [3]).
Fichier principal
Vignette du fichier
10-2478-cm-2021-0030.pdf (273.05 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt

Dates et versions

hal-03665031 , version 1 (11-05-2022)

Licence

Identifiants

Citer

A. Belafhal, E.M. El Halba, T. Usman. An integral transform and its application in the propagation of Lorentz-Gaussian beams. Communications in Mathematics, 2021, Volume 29 (2021), Issue 3 (3), pp.483 - 491. ⟨10.2478/cm-2021-0030⟩. ⟨hal-03665031⟩
28 Consultations
371 Téléchargements

Altmetric

Partager

More