Leibniz A-algebras - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematics Année : 2020

Leibniz A-algebras

David A. Towers
  • Fonction : Auteur correspondant

Résumé

A finite-dimensional Lie algebra is called an A-algebra if all of its nilpotent subalgebras are abelian. These arise in the study of constant Yang-Mills potentials and have also been particularly important in relation to the problem of describing residually finite varieties. They have been studied by several authors, including Bakhturin, Dallmer, Drensky, Sheina, Premet, Semenov, Towers and Varea. In this paper we establish generalisations of many of these results to Leibniz algebras.
Fichier principal
Vignette du fichier
10-2478-cm-2020-0013.pdf (264.67 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt

Dates et versions

hal-03664993 , version 1 (11-05-2022)

Licence

Identifiants

Citer

David A. Towers. Leibniz A-algebras. Communications in Mathematics, 2020, Volume 28 (2020), Issue 2 (Special Issue: 2nd International Workshop on Nonassociative Algebras in Porto) (2), pp.103 - 121. ⟨10.2478/cm-2020-0013⟩. ⟨hal-03664993⟩
14 Consultations
430 Téléchargements

Altmetric

Partager

More